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Abstract: The negatively charged extracellular matrix plays a vital role in intervertebral disc tissues,
providing specific cues for cell maintenance and tissue hydration. Unfortunately, suitable biomimetics
for intervertebral disc regeneration are lacking. Here, sulfated alginate was investigated as a 3D
culture material due to its similarity to the charged matrix of the intervertebral disc. Precursor
solutions of standard alginate, or alginate with 0.1% or 0.2% degrees of sulfation, were mixed with
primary human nucleus pulposus cells, cast, and cultured for 14 days. A 0.2% degree of sulfation
resulted in significantly decreased cell density and viability after 7 days of culture. Furthermore,
a sulfation-dependent decrease in DNA content and metabolic activity was evident after 14 days.
Interestingly, no significant differences in cell density and viability were observed between surface and
core regions for sulfated alginate, unlike in standard alginate, where the cell number was significantly
higher in the core than in the surface region. Due to low cell numbers, phenotypic evaluation was
not achieved in sulfated alginate biomaterial. Overall, standard alginate supported human NP cell
growth and viability superior to sulfated alginate; however, future research on phenotypic properties
is required to decipher the biological properties of sulfated alginate in intervertebral disc cells.

Keywords: intervertebral disc; sulfation alginate; 3D culture; qPCR; cell viability

1. Introduction

Low back pain (LBP) is a widespread symptom experienced by people of all ages [1–3].
Several types of pain fall under the umbrella of the LBP spectrum and can simultaneously
overlap, including nociceptive and neuropathic pain (radicular) as well as non-specific pain
often associated with the amplification of pain in the central nervous system (CNS) [4].

Since 2015, LBP has remained the leading cause of Years Lived with Disability (YLD)
globally, with approximately 619 million prevalent cases in 2020, which is predicted to rise
to 800 million by 2050. Interestingly, a higher global prevalence is reported among females
compared to males with a higher difference over 75 years of age group [5]. In terms of
economic burden, the annual costs related to patient management with LBP exceeded USD
100 billion in the US [6], GBP 2.8 billion in the UK [7], AUD 4.8 billion in Australia [5],
and EUR 2.6 billion in Switzerland [8], demonstrating an economic impact comparable
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to other prevalent diseases including cancer, autoimmune diseases, mental health and
cardiovascular diseases [9].

According to the recent Global Burden of Disease risk factors study, almost 40%
of years lived with disability (YLD) caused by LBP are attributed to mechanical and
ergonomic factors (e.g., lifting, forceful movements, awkward postures), smoking and high
BMI [10]. Nevertheless, although disc-related diseases have not been accurately classified as
individual pain contributors [11], several clinical and imaging studies have associated back
pain with the degeneration of the intervertebral disc (IVD) [12], with IVD degeneration
considered a significant cause of LBP [13,14].

IVDs are located between two adjacent vertebral bodies and contribute to the weight
bearing of the spine, withstanding compression loads, and providing spine flexibility [15,16].
An IVD consists of three primary tissues: the nucleus pulposus (NP) core, peripherally
constrained by the annulus fibrosus (AF) region which are constrained cranially and cau-
dally by the cartilage endplates (CEP) [17]. The IVD is the largest avascular organ in the
human body, with blood vessels only present in the vertebrae boney end plates and outer
AF region [18]. Nevertheless, nutrient, oxygen and waste transport are possible inside the
core of the NP and inner AF due to the CEP’s key role as a diffusion intermediary from
the peripheral vasculature [19]. Under physiological conditions, the central NP region
contains high concentrations of negatively charged sulfated proteoglycans such as aggrecan
molecules, which are responsible for the osmotic swelling of the disc. Similarly, the healthy
AF is a highly organized fibrous structure with alternate collagen lamella fibers, which are
orientated at ±30◦ consisting of predominately type I collagen in the outer AF [20]. During
the degeneration of the IVD, cell phenotype changes with a decrease in the normal disc
matrix and an increased degrading enzyme production, leading to the loss of proteoglycan
in the NP and thus a decreasing water content [21], disc height [22] and promoting the
generation of more fibrotic tissue [23]. The degeneration of the AF leads to disc bulging [24]
as well as the accumulation of structural defects [25,26], together with increased fissures
and the calcification of the CEP [27], leading to altered permeability [28]. Thus, as the IVD
degenerates, structural and biochemical changes occur, leading to blood vessel and nerve
ingrowth into the disc, which is thought to contribute to pain.

In the past decades, several novel biomaterials have been tested in in vitro studies to
more closely mimic the native IVD extracellular matrix (ECM) with the aim to provide
improved physiological mechanical support, cytokines and growth factors reservoir. Al-
ginate has been extensively employed in IVD research due to its structural similarity to
native ECM, low toxicity [29], high biocompatibility [30] and ability to be modified [31].
Nevertheless, although alginate is considered a gold-standard hydrogel in IVD and car-
tilage fields [32], it lacks a crucial feature which is present in IVD and cartilage ECM:
the sulfonic groups of proteoglycans responsible for negatively charged microenviron-
ments [33,34]. Native IVD ECM is mainly composed of proteoglycans, which consist of
a core protein modified by linear sulfated glycosaminoglycans (GAGs), responsible for
osmotically water attraction conferring mechanical stability and local biological environ-
ment modulation. These GAGs bear negative charges that are essential for developing
biomimetic hydrogels [35,36]. The negative charges characteristic of sulfated hydrogels
provide two beneficial effects: (1) chemical cues to maintain and induce chondrocytes/disc-
like phenotype [37–40] and (2) the possibility of the constant release of positively charged
drugs [41,42]. Studies investigating articular chondrocytes have shown that sulfated al-
ginate carriers provide potential alternatives to non-sulfated alginate due to a higher cell
viability, increased proteoglycan deposition, chondroprotective effects and sulfation dose-
dependent cell proliferation, recognition and adhesion, as well as an increased fibroblast
growth factor (FGF) retention in human or bovine articular chondrocytes [43,44]. Never-
theless, standard alginate culture has exhibited improvements compared to the sulfated
alternative, including increased collagen type II deposition and a higher stiffness in bovine
articular chondrocytes [43,45]. To date, their use has not been investigated for IVD cells.
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This study aimed to investigate the potential of sulfated alginate 3D culture strategies,
which have been applied to articular chondrocytes for IVD cells. The behavior of human
NP cells was investigated using this novel sulfated alginate approach with varying degrees
of sulfation (DS) to investigate the increasing sulfation effect in human NP cells.

2. Results and Discussion
2.1. NP Cell Density Significantly Decreases in 0.2 DS Sulfated Alginate Carriers

To explore the effects of sulfation in NP cells on cell growth and density, freshly isolated
primary cells isolated from discs removed due to traumatic injury were encapsulated in
standard alginate, 0.1% degree of sulfation (DS) and 0.2% DS alginate material at a density
of 4 × 106 cells/mL (1.08 × 105 cell/ carrier) for up to 14 days under hypoxia (1.5%
O2 tension). To quantify cell density after 7 and 14 days of culture, human NP cells
inside the different carriers were stained with calcein-AM and ethidium homodimer for
confocal slice-stack imaging and measured on the surface (Y orientation) and core of the
carrier (X orientation) of each carrier (Figure 1a, Supplementary Online Figure S1). For
the analysis, the slice containing the highest total cell number from the slice stack was
determined, and then, the number of slices between the first and last slices containing
over half of this maximum cell number was examined. Hence, slices containing higher cell
density were analyzed, providing more consistent slice stacks and avoiding edge effects
and arbitrary areas. Imaging highlighted that 0.1% DS sulfated alginate and unmodified
alginate carriers showed increased NP cell density after seven days of culture in both
surface and core regions compared to the initial cell seeding amount (1.08 × 105 cells
per carrier), suggesting cellular proliferation inside the carriers (Table S1). The 0.2% DS
carriers exhibited a decreased NP cell density on the surface region compared to the initial
cell seeding density after seven days of culture (Table S1). In addition, all sulfated and
unmodified alginate carriers exhibited a slight decrease in density during the second
week of culture and no significant differences in cell density were observed between the
surface and core regions in standard and 0.1% DS carriers after 7 or 14 days of culture
(Table S1). It is noteworthy that the core region measurements of the 0.2% DS carriers
were not achieved due to the low stiffness of the carriers impairing core location after
carrier halving. Interestingly, a significant decrease in cell density was observed in 0.2%
DS sulfated carriers compared to standard alginate after 7 days and 14 days of culture
(Figure 1b). Nevertheless, donor variability was higher in standard alginate than in sulfated
groups (Table S1). Additionally, 0.2% DS alginate carriers showed abnormal living cell
clustering in the surface region after 14 days of culture, frequently observed in degenerative
NP tissue samples (Figure 1c).

2.2. The 0.2% DS Sulfated Alginate Significantly Decreases NP Cell Viability after 7 Days
3D Culture

To further assess the influence of the different sulfated and non-sulfated materials
on human NP cells, cell viability was assessed in previously measured slice stacks. Non-
significant differences in cell viability were observed between standard and 0.1% DS groups
in both the surface and the core of the carrier after seven days of culture (Figure 2a).
Nevertheless, cell viability was significantly decreased (p < 0.05) in 0.2% DS sulfated
carriers compared to 0.1% DS sulfated alginate in the surface of the carrier after seven
days of culture (Figure 2a). In contrast, similar cell viability was evidenced between the
core and surface regions in standard and 0.1% DS material. After 14 days of culture,
standard alginate and 0.1% DS sulfated material exhibited higher living cell numbers, while
0.2% DS showed a significant reduction despite exhibiting similar percentage cell viability,
suggesting that cells which had died during earlier time points had been degraded and
were no longer detectable as dead cells, improving remaining cell viability percentage
(Figure 2b). No significant differences in cell viability were observed between surface and
core regions (Figure 2).



Gels 2024, 10, 330 4 of 16Gels 2024, 10, x FOR PEER REVIEW 4 of 18 
 

 

 

 
(a) (b) (c) 

Figure 1. (a) Scheme of the orientation and imaging strategy of the cylinder carriers during cLSM 
slice-stack imaging on the surface or in the core. (b) Human NP cell density in standard, 0.1% DS 
and 0.2% DS alginate carriers normalized to standard alginate group after 7 and 14 days of culture. 
(c) Calcein-AM staining on human NP cells encapsulated in standard and 0.2% DS alginate carriers 
after 14 days of cell culture. White arrows indicate human NP living cell clustering. Shown are me-
dians, N = 3–5, p-value: * <0.05. Objective magnification = 10×; scale bar = 100 µm. Abbreviations: C, 
core; S, surface. Red arrows indicate Y and X axis. 
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Figure 1. (a) Scheme of the orientation and imaging strategy of the cylinder carriers during cLSM
slice-stack imaging on the surface or in the core. (b) Human NP cell density in standard, 0.1% DS
and 0.2% DS alginate carriers normalized to standard alginate group after 7 and 14 days of culture.
(c) Calcein-AM staining on human NP cells encapsulated in standard and 0.2% DS alginate carriers
after 14 days of cell culture. White arrows indicate human NP living cell clustering. Shown are
medians, N = 3–5, p-value: * <0.05. Objective magnification = 10×; scale bar = 100 µm. Abbreviations:
C, core; S, surface. Red arrows indicate Y and X axis.

2.3. No Significant Differences in Cell Distribution Were Observed between Sulfated and
Non-Sulfated Material at the Surface of the Carrier

To estimate the cell distribution in the Y-dimension near the surface of the non-sulfated
and sulfated alginate carriers, the number of slices containing equal or over half of the total
of the maximum number of cells was examined in each case. No significant differences
were observed between the standard alginate, 0.1% and 0.2% DS sulfated alginate groups,
indicating a similar cell distribution on the surface of the carriers on the Y-axis after 7 and
14 days of culture (Figure 3).

2.4. Anisotropic Cell Distribution Was Observed between Surface and Core of the Carrier in
Standard Alginate Carriers

Slice-stack scans were performed in Y and X orientations to further investigate the cell
distribution inside the carriers in different locations including surface and core. According
to the number of slices containing over half of the maximum total cell number, no significant
differences were observed between surface and core location (Y- and X-orientations) in
standard alginate carriers after seven days of culture. Nevertheless, a significant increase
in the slice number was observed in the core compared to the surface after 14 days of
culture, indicating a more spread cell distribution between these locations as well as an
anisotropic cell distribution depending on the scanning orientation (Figures 4a and S1).
Interestingly, 0.1% DS sulfated material did not exhibit any cell-related anisotropic behavior
after 7 or 14 days of culture due to a similar slice number containing half of the maximum
cell number in both surface (Y-orientation) and core (X-orientation) (Figure 4b).
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Figure 2. Live (green) and dead (red) staining in human NP cells in the surface or core of standard, 
0.1% DS and 0.2% DS alginate carriers: (a) Cell viability after 7 days of 3D culture; (b) cell viability 
after 14 days of 3D culture. Shown are medians ± standard deviation, N = 3–5, p-value: * <0.05. 

Figure 2. Live (green) and dead (red) staining in human NP cells in the surface or core of standard,
0.1% DS and 0.2% DS alginate carriers: (a) Cell viability after 7 days of 3D culture; (b) cell viability
after 14 days of 3D culture. Shown are medians ± standard deviation, N = 3–5, p-value: * <0.05.
Objective magnification = 10×.; scale bar = 100 µm. Abbreviations: C, core; S, surface. Red arrows
indicate Y and X axis.
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2.6. Low RNA Yield on Sulfated Material Hampered Gene Expression Analysis 

Figure 4. Human NP cell distribution in the surface and core of standard and 0.1% DS alginate
carriers. (a) Y and X oriented number of slice-stacks containing over half of the maximum cell number
on the surface and core of standard alginate carriers after 7 and 14 days of 3D culture. (b) Y and X
oriented number of slice-stacks containing over half of the maximum cell number on surface and core
0.1% DS sulfated alginate carriers after 7 and 14 days of 3D culture. Shown are medians, N = 3–5,
p-value: * <0.05.

2.5. Metabolic Activity and DNA Quantification

Additionally, human NP cell DNA and metabolic activity was measured to evalu-
ate cell proliferation and performance. No significant differences in DNA content were
observed between non-sulfated and sulfated carriers on the encapsulation day (day 0) or
after 14 days. Notably, decreased DNA content in 0.2% DS sulfated alginate was found
after 14 days of culture (Figure 5a). Additionally, sulfation-dependent metabolic activity
reduction was evidenced between non-sulfated and sulfated carriers. In particular, 0.2% DS
sulfated carriers showed a strong trend towards decreased metabolic activity on day 0 and
after 14 days, suggesting a sulfation-dependent decrease in cell performance (Figure 5b).
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2.6. Low RNA Yield on Sulfated Material Hampered Gene Expression Analysis

To evaluate the influence of sulfation in human NP cell phenotype recovery after
cell expansion, genes considered markers for ECM synthesis (ACAN, COL2A1, COL10A1,
COL1A2) as well as 18S as a reference gene were analyzed. According to 18S gene expression
in the different carriers after seven days of culture, a sulfation-dependent increase in 18S Ct
value was observed across the groups. Particularly, a significant increase in 18S Ct value was
measured in the 0.2% DS group compared to standard alginate, indicating a higher cycle
number was required to reach the fluorescence threshold in the qPCR method, a lower initial
cDNA and thus lower yield in RNA extraction (Figure 6a). Unfortunately, the expression of
anabolic markers was not observed in the sulfated material during the first 40 cycles which
was attributed to the late 18S Ct values that were obtained. In contrast, ACAN and COL2A1
gene expression increased within the standard alginate group after 7 and/or 14 days
of culture, supporting the NP cell phenotype. In addition, COL10A1 and COL1A2 gene
expression decreased after 14 days (Figure 6b, p = 0.1) suggesting a decreased hypertrophic
phenotype and the return of a normal NP phenotype after the de-differentiation towards
fibroblast-like cells which is induced in monolayer culture [46]. Overall, standard alginate
3D culture displayed an optimal NP cell phenotype and performance across the donors,
while the cell phenotype evaluation was not achieved in sulfated carriers.

2.7. Discussion

The negatively charged ECM plays a vital role in cartilage and IVD tissues, promoting
specific cues for resident cells and maintaining the tissue’s hydration. Over the past years,
several hydrogels have been inspired in native ECM characteristics to provide novel 3D
culture systems. In particular, sulfated alginate hydrogels have seen a growing interest as
an improved 3D culture system for cartilage cell culture. In the present study, 0.1% and
0.2% DS alginate hydrogels were evaluated for IVD tissue engineering applications and
were thus characterized according to their biological properties.

For that purpose, cell viability and cell density inside standard and sulfated algi-
nate were monitored to investigate the impact of the sulfation degree in human NP cell
culture. Previous studies in bovine and human articular chondrocytes encapsulated in
unmodified and sulfated alginate in normoxia (21% O2) have reported a high chondrocyte
viability in all sulfated or unmodified hydrogels [43,47,48] without significant differences
between sulfated or non-sulfated materials. Similarly, both studies have evidenced sulfa-
tion degree-dependent cell morphological changes after three weeks, implying an extensive
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cell spreading throughout sulfated materials. A spread cell morphology indicates higher
cellular recognition and cell adhesion, commonly obtained in hydrogels modified by
integrin-binding motifs [49]. For instance, integrin β1 has been reported in sulfated algi-
nate hydrogels as a chondrocyte-spreading mediator [47]. In contrast, in our study, we
observed a significantly decreased human NP cell viability (p > 0.05) and density (p > 0.05)
in the 0.2% DS carrier after seven days of culture. Additionally, NP cell proliferation was
mainly observed in both surface and core regions of standard alginate carriers with an
increased density value compared to the seeding density amount after seven days of culture.
Interestingly, cell density decreased after 14 days of culture in all the groups together with
no significant differences in cell viability, probably due to the large loss of cells after 7 days
of culture. According to previously reported cell morphology changes in sulfated carriers,
rounded-shaped NP cells were observed as sulfated alginate carriers, possibly due to the
shorter culture period inferior to 3 weeks. Furthermore, abnormal cell clustering was also
observed in 0.2% DS carriers after 14 days of culture, considered as a degenerative human
NP tissue feature according to the standardized histopathology scoring system for human
intervertebral disc degeneration [50].
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Figure 6. (a) 18S reference gene Ct values quantified in standard alginate, and in 0.1% and 0.2%
DS sulfated alginate, respectively, after 7 days of culture. Shown are the medians, N = 3–4, p-value:
p-value ** <0.01; (b) Relative gene expression of NP-specific ECM markers, i.e., ACAN, COL2A1,
COL10A1 and COL1A2 in human NP cells encapsulated on standard alginate after 7 and 14 days of
culture. Shown are medians, N = 3–4.

A possible cause for observing different cell viability outcomes might have been the
utilization of fetal calf serum (FCS) during the 3D culture period. FCS-containing media
promotes significantly higher GAG production in human NP cells and a higher prolifera-
tion of bovine NP cell 3D cultures compared to serum-free media [51]. Similarly, previous
investigations in bovine, equine and porcine articular cartilage chondrocytes encapsulated
in alginate cultures containing FCS have exhibited improved cell performance with sig-
nificantly higher proteoglycan synthesis compared to the serum-free alternative [52,53].
Interestingly, although no significant cell viability differences were reported under different
FCS conditions, chondrocytes embedded in alginate and cultured in serum-free media did
show lower (86 ± 1%) cell viability compared to 5% FCS containing cultures (97 ± 7%).
This could have indicated an enhanced viability in the presence of serum. Furthermore,
several growth factors are present in the undefined FCS cocktail that have been claimed as
NP cell proliferation and survival factors including transforming growth factor β (TGFβ),
platelet-derived growth factor (PDGF), fibroblast growth factor (FGF) and insulin-like
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growth factor (IGF) [54–57]. The presence of these mediators could explain chondrocyte
long-term maintenance in previous studies, especially in sulfated alginate hydrogels, since
they confer higher growth factor entrapment and participate actively in mediating the
interaction between growth factors and their receptors [43]. Thus, the disparity between
previous investigations containing FCS and our study could be explained by the presence
of FCS and phenotypic differences between cell types. Noteworthy, composition and
biological effect variability between FCS batches previously observed in chondrogenic
differentiation of human adipose-derived MSCs (hAMSCs) [58], together with the poor
clinical translation, are major concerns for FCS utilization. Additionally, culture media
lacking ascorbic acid as well as different oxygen tension conditions has been used in our
current study compared to previous sulfated alginate studies, suggesting another possible
reason for result disparity [43,47,48].

To further investigate cell growth and distribution inside unmodified and sulfated
cylindrical-shaped carriers, NP cells were stained for slice-stacks imagining in different
locations including the surface and core of the carrier as well as orientations including
Y and X orientations (Figure 1a). For the analysis, the slice-stack containing over half of
the highest total cell number were only considered. Thus, the different number of slices
conforming the slice-stack were examined and indicated different cell distribution profiles
inside the carriers. No significant differences in the Y orientated number of slices measured
in the surface were evidenced between the standard, 0.1% and 0.2% DS alginate carriers
after 7 and 14 days of culture, indicating a similar cell distribution and spreading inside
the different carriers. Nevertheless, a significantly higher number of slices containing over
half of the total cell number (p > 0.05) were analyzed in X-orientated (core) measurements
compared to Y-orientation (surface) in standard alginate constructs, suggesting different
cell distribution depending on the location and orientation. Notably, this effect was not
observed in 0.1% DS carriers (Figure 4b). Birefringence in alginate cylindrical gels was
reported 70 years ago [59], identifying alginate as an anisotropic material depending on
the cation flow gradient during gel casting. In this study, cylindrical-shaped carriers
were cast, applying Ca2+ cations on the top and bottom of the carriers (Y orientation)
creating a vertical Ca2+ gradient towards the core of the cylinder. In contrast, previous
studies have utilized radial-oriented (X orientation) casting methods according to the QGel
SA disc caster system [47,48], promoting a radial gradient of Ca+2 cations (Figure 7). In
our study, different orientations were used to evaluate cell distribution. Interestingly, a
significantly higher cell distribution was observed in standard alginate carriers measured
in the X orientation, perpendicular to Ca+2 cation flow and parallel to the vertical Ca+2

cation gradient, indicating higher human NP cell distribution in planes with the same gel
properties (Figure 7).
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Nevertheless, not only orientations but also locations (surface and core) were different
during these measurements, suggesting a combined effect of the orientation and location
in cell distribution. Remarkably, surface and core locations in 3D microgel culture models
have shown different cell performances and behaviors in the past. Previous studies in
spherical microgels consisting of gelatin norbornene (GelNB) and a poly(ethylene glycol)
(PEG) cross-linker have reported human chondroprogenitor cells, articular chondrocytes
and bone marrow-derived mesenchymal stromal cells (hBMSCs) migration towards the
surface, leaving the core region with less cells after seven days of culture [60,61]. One
hypothesis to explain heterogeneous cell distribution inside the microgels is the higher
growth factor concentrations and mass transfer within the boundaries of the hydrogel.
Thus, encapsulated cells could sense and migrate away from the interior of the spheres,
which has been also reported in previous investigations [62,63]. In addition, a sulfated
version of gelatin/hyaluronic acid microgels has also observed a similar cell migration
phenomenon from the core of the microgels to the surface after 14 days of culture. In
this case, a nutritional gradient experienced by hBMSCs explains cell migration [47,48].
Nevertheless, parallel experiments with bulk gels (thickness ~3 mm) did not exhibit cell
migration processes in line with our study, where we showed no significant differences in
cell density between core and surface regions in standard and sulfated alginate carriers
(4 mm ∅ × 2 mm height) (Figure 1b). Thus, differences in cell distribution between the
surface and core of standard alginate carriers might not have been directly affected by the
measurement location but by the orientation of the measurements.

The analysis of DNA quantification revealed similar DNA amounts in all the groups
on the encapsulation day but with a decreased DNA amount in 0.2% DS carriers after
14 days of culture (Figure 5a). Similarly, the analysis of cell performance according to cell
metabolic activity revealed a sulfation-dependent reduction in mitochondrial activity on
encapsulation day and after 14 days of culture. Particularly, human NP cells encapsulated
in 0.2% DS carriers exhibited a trend (p = 0.051) towards decreased metabolic activity
(p = 0.05) on the encapsulation day, and after 14 days, this strong trend (p = 0.07) towards
decreased metabolic activity was maintained (Figure 5b). However, previous studies have
shown the opposite effect, with higher and more homogeneous Col2 and proteoglycan
deposition in sulfated alginate carriers containing human and bovine chondrocytes after
3 and 6 weeks, suggesting an enhanced chondrocyte cell performance. Furthermore, the
DNA amount and chondrocyte proliferation were significantly higher in sulfated carriers,
indicating a strikingly better cell performance in the presence of sulfated material [43,47,48].
Unfortunately, we did not observe similar results with human NP cells.

Finally, the gene expression of ECM genes, including ACAN, COL2A1, COL1A2, and
COL10A1, were evaluated together with the 18S ribosomal RNA reference gene. Predictably,
the 18S Ct value was significantly higher (p > 0.01) in the 0.2% DS groups, indicating a
lower RNA amount and thus significantly decreased cell viability and density (p > 0.05)
and a reduced DNA amount, as previously mentioned. Thus, the gene expression results
of ECM markers were not achieved in the sulfated groups. Interestingly, previous research
has shown no significant differences between sulfated and unmodified alginate carriers
in COL2/COL1 gene expression ratio in bovine chondrocytes [47]. Moreover, standard
alginate cultures containing bovine chondrocytes have shown higher COL2 expression at
different time points (7, 14 and 21 days) compared to the sulfated material [43]. This could
also be attributed to a higher stiffness in standard alginate since chondrocytes tended to
express COL2 in stiffer carriers [45]. Nevertheless, a previous study in human articular
chondrocytes showed significantly decreased catabolic and pro-inflammatory markers,
including IL-6, IL-8 and COX-2 in sulfated materials compared to the standard alginate,
indicating a catabolic environment suppression in the presence of sulfated material rather
than an anabolic environment enhancement [48]. In our study, “standard” alginate carriers
showed an increased COL2A1 and decreased COL10A1 and COL1A2 after 14 days of culture,
although longer 3D culture periods have been reported to recover ACAN expression. Taken
together, standard alginate seems to be the most suitable 3D culture model for human
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NP cell culture. Nevertheless, limited RNA extraction from sulfated material has left the
sulfation effect in the human NP phenotype obscured. Hence, further investigations of
catabolic and anabolic makers in NP cells encapsulated in sulfated alginate 3D cultures are
needed to clarify the sulfated alginate role in IVD cell culture.

3. Conclusions

In conclusion, human NP cells encapsulated in “gold standard” alginate have shown
significantly increased cell viability and metabolic activity and enhanced density and DNA
amount compared to 0.2% DS sulfated alginate alternative. Additionally, standard alginate
material seems to provide different cell distribution depending on the orientation and
location in the carrier. This outcome might be explained as a cell preference to growth
or spread depending on the location and calcium gradient orientation during carrier
casting. Hence, future work employing cLSM slice-stack imaging on hydrogels might
consider different orientation preferences according to the hydrogel casting system as well
as different location alternatives. According to gene expression data, standard alginate
showed optimal cell phenotypic support. Unfortunately, anabolic and catabolic gene
expression was not obtained in the sulfated material due to a low RNA yield. Taken
together, a standard alginate 3D culture model is the preferred option for human NP cell
culture. Nevertheless, a further examination of sulfation degree impact on human NP cell
phenotype is needed to characterize sulfated alginate biological properties on IVD culture.

4. Materials and Methods
4.1. Ethical Approval

Human IVD tissue was obtained from patients undergoing spine surgery for the
treatment of trauma with the informed consent of the patients or relatives. This study
utilized six surgical samples from six different individuals.

4.2. Human NP Cell Isolation

Human IVD tissue was collected from patients (Table 1) aged between 30 and 72 years
old (51.0 ± 15.7 [mean ± SD]) and subsequently separated into NP, AF and CEP tissue for
processing within 24 h after the surgery. Human NP cells were isolated from NP tissue
pieces by 1 h digestion with 1.9 mg/mL pronase ((7 U/mg) #10165921001; Roche Diagnos-
tics, Basel, Switzerland) followed by overnight digestion with collagenase II ((285 U/mg)
Worthington, London, UK) in serum free low-glucose (1g/L) Dulbecco’s Modified Eagle
Medium (LG-DMEM; 10569010 HG; Gibco, Zug, Switzerland) containing 1% v/v P/S
and 0.2% v/v primocin (#ant-pm; InvivoGen, San Diego, CA, USA, distributed by Lubio-
science, inc., Lucerne, Switzerland) on an orbital shaker at 37 ◦C. Following digestion,
the remaining tissue was removed using 100 µm cell strainer filtration and cell viability
and counting were determined via trypan blue exclusion. Following isolation, human
NP cells were expanded until passage three in monolayer in HG DMEM supplemented
with 10% v/v heat-inactivated FCS (#F7524; Sigma-Aldrich, Buchs, Switzerland), 1% v/v
P/S, 2.5 µg/mL Amphotericin B (#A4888; Sigma-Aldrich) and maintained at 37 ◦C in a
humidified atmosphere containing 5% CO2 and 21% O2 prior to encapsulation.

Table 1. Patient donor list of NP tissue samples enrolled in the study.

Donor ID * Level * Age Sex Surgery Reason

Donor 1 Th12/L1 30 male Trauma

Donor 2 L2/L3 34 male Trauma

Donor 3 Th12/L1 72 female Trauma

Donor 4 L1/L3 34 male Trauma

Donor 5 L4/L5 48 female Trauma

Donor 6 L1/L2 37 female Trauma
* Posttraumatic intervertebral disc subjects without a history of disc degeneration were collected and identified
with their ID number. Abbreviations: L, lumbar; Th, thoracic.
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4.3. Cell Encapsulation

Standard alginate, 0.1% v/w degree of sulfation (DS) and 0.2% DS alginate material
were synthesized as described previously [43]. In short, primary human NP cells were
expanded until passage three. Afterwards, the solutions of 2.5% of standard alginate, 0.1%
DS and 0.2% DS alginate were mixed with human NP cells at 4 × 106 cells/mL physiological
density [64] and 27 µL of each mixture were pipetted onto cylindrical-shaped silicon ring
molds of 6 mm in outer and 4 mm in inner diameters and 2 mm in height. Silicon molds
containing standard alginate, 0.1% DS and 0.2% DS alginate solutions were immersed
in 0.2 M CaCl2 for 10 min at 37 ◦C. Disc-shaped carriers were then washed twice with
0.15 M NaCl and low-glucose (1g/L) Dulbecco’s Modified Eagle Medium (LG-DMEM; cat.#
10569010 HG; Gibco) containing 1% v/v P/S. Finally, disc-shaped carriers were cultured
for two weeks for phenotype recovery in serum-free low glucose (1g/L) DMEM under NP
tissue lowest physiological hypoxia condition (1.5% O2 tension) and re-crosslinking every
week with 0.2 M CaCl2 at 37 ◦C for 10 min. All experimental groups were maintained in an
Invivo II 300 Hypoxia Workstation (Ruskinn Technology, Ltd., Bridgend, UK) throughout
the culture. Finally, carriers were collected on day 0, 7 and 14 for the downstream analysis
of cell viability, density, DNA quantification and metabolic activity.

4.4. Cell Density and Viability

To assess the cell density and viability of NP cells in each alginate material, disc-shaped
carriers were cultured in serum-free LG medium containing 5 µM calcein-AM (#17783-1MG;
Sigma-Aldrich) to stain the living cells and 1 µM ethidium homodimer (#46043-1MG-F;
Sigma-Aldrich) to stain the dead cells and incubated at 37 ◦C for 90 min. Following the
incubation and after washing carriers with phosphate-buffered salt solution (PBS), 3D
stacked images were taken on a confocal laser scanning microscope (cLSM710; Carl Zeiss;
Jena, Germany). To facilitate and compare the analysis of human NP cell location, cylinder-
shaped carriers were measured at the surface region at a Y-orientation and core region at an
X-orientation. Afterwards, the maximum number of live and dead cells was determined in
each slice-stack measurement. For the analysis, slices containing over half of the maximum
total cell number were examined using a custom-made macro for ImageJ software Java
1.8.0_172 version (see also [65]). For density quantification, a correction factor was applied
to avoid cell number overestimation [66], (Supplementary Table S1).

4.5. DNA Quantification

All samples were digested overnight in 5 mM L-cysteine hydrochloride (#20119; Sigma-
Aldrich) enriched papain solution (3.9 U/mL; #P3125; Sigma-Aldrich) at 60 ◦C. The DNA
content was measured from digested alginate carriers using Hoechst 33,258 dye (#86d1405;
Sigma-Aldrich). The optical fluorescence index was measured at 350 nm excitation and
450 nm emission wavelengths in digested samples as well as in a standard curve of
increasing DNA sodium salt concentrations from calf thymus (#D1501; Sigma-Aldrich) to
interpolate the sample DNA concentration.

4.6. Metabolic Activity

For metabolic activity evaluation, on day 0 and 14 standard, 0.1% and 0.2% alginate
carriers containing NP cells were immersed in HG-DMEM supplemented 10% FCS (Sigma–
Aldrich) containing 50 µM resazurin sodium salt solution and incubated for two hours
at 37 ◦C. The optical fluorescence index was measured at 544 nm excitation wavelength
and 578 nm emission wavelength using an ELISA plate reader (Spectramax M5, Molecular
Devices, distributed by Bucher Biotec, Basel, Switzerland).

4.7. RNA Extraction, cDNA Synthesis and Relative Gene Expression

Sulfated and non-sulfated carriers were collected, snap-frozen in liquid nitrogen and
pulverized using a cooled mortar. The powder was then mixed with Tri reagent and
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processed as described previously using a combined Trizol-silicon membrane purification
approach [67,68].

In a next step, the isolated RNA (9–22 ng/µL) was transcribed into cDNA using a High-
Capacity cDNA Reverse Transcription kit (#4368814; Thermo Fisher Scientific, Waltham,
MA, USA) and a MyCycler™ Thermal Cycler system (#1709703; Bio-Rad Laboratories, Inc.;
Cressier, Switzerland).

Finally, the obtained cDNA was then mixed with the primers of interest (Table 2) and
iTaq Universal SYBR Green Supermix (#1725122; Bio-Rad) for a quantitative polymerase
chain (qPCR) reaction on a CFX96™ Real-Time System (#185-5096; Bio-Rad Laboratories).
Finally, the 2−∆∆Ct method [69] was used for relative gene expression analysis with 18S
ribosomal RNA as the reference.

Table 2. Investigated gene overview and primers used in this study.

Gene Type Full Name Symbol NCBI
Gene ID

Forward and Reverse
Primer Sequences

Reference Gene 18S ribosomal RNA 18S 100008588 f—CGG ACA GGA TTG ACA GAT TGA TAG
r—TGC CAG AGT CTC GTT CGT TA

NP cell
ECM

markers

Aggrecan ACAN 176 f—CAT CAC TGC AGC TGT CAC
r—AGC AGC ACT ACC TCC TTC

Collagen type 2,
Alpha chain 1 COL2A1 1280 f—AGC AGC AAG AGC AAG GAG AA

r—GTA GGA AGG TCA TCT GGA

Collagen type 10,
Alpha chain 1 COL10A1 1300 f—GAA TGC CTG TGT CTG CTT

r—TCA TAA TGC TGT TGC CTG TTA

Collagen type 1,
Alpha chain 2 COL1A2 1278 f—GTG GCA GTG ATG GAA GTG

r— CAC CAG TAA GGC CGT TTG

4.8. Statistical Analysis

A nonparametric distribution was assumed in all quantitative data. Cell density,
viability, DNA quantification and metabolic activity data were analyzed using a Kruskal–
Wallis test followed by a Dunn’s multiple comparisons test using GraphPad Prism (version
10.2.1 for Mac OS X, GraphPad Software; San Diego, CA, USA) and a p-value < 0.05 was
considered statistically significant. All quantitative results are presented as median and up
to six replicates were used for each experiment. However, the exact number of biological
replicates (n) are indicated in each figure legend.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels10050330/s1, Figure S1: Collected and examined (shaded
region) confocal slice stacks in the surface (Y orientation) and core (X orientation) of standard alginate
carriers after seven and 14 days of culture. Green = Living cell amount; Red = Dead cell amount;
Blue = Total cell amount; Table S1: Average density of human NP cells in Standard, 0.1% DS and 0.2%
DS alginate.
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