
Abstract: 

This study aimed to evaluate the impact of copy num-
ber variants (CNVs) on 13 reproduction and 12 disease 
traits in Holstein cattle. Intensity signal files containing 
Log R ratio and B allele frequency information from 
13,730 Holstein animals genotyped with a 95K SNP 
panel, and 8,467 Holstein animals genotyped with a 50K 
SNP panel were used to identify the CNVs. Subsequently, 
the identified CNVs were validated using whole genome 
sequence data from 126 animals, resulting in 870 high-
confidence CNV regions (CNVRs) on 12,131 animals. 
Out of these, 54 CNVRs had frequencies higher than 
or equal to 1% in the population and were used in the 
genome-wide association analysis (one CNVR at a time, 
including the G matrix). Results revealed that 4 CNVRs 
were significantly (p-value < 3.7 × 10−5) associated with 
at least one of the traits analyzed in this study. Spe-
cifically, 2 CNVRs were associated with 3 reproduction 
traits (i.e., calf survival, first service to conception, and 
non-return rate), and 2 CNVRs were associated with 2 
disease traits (i.e., metritis and retained placenta). These 
CNVRs harbored genes implicated in immune response, 
cellular signaling, and neuronal development, support-
ing their potential involvement in these traits. Further 
investigations to unravel the mechanistic and functional 
implications of these CNVRs on the mentioned traits are 
warranted.
Keywords: dairy cattle, deletion, duplication, GWAS, 
structural variation

INTRODUCTION

Although the initial focus of most dairy cattle breeding 
programs has been to improve milk production, official 
genetic and genomic evaluations performed in several 
countries have already included other economically im-
portant traits (e.g., Fleming et al. 2018; Miglior et al., 
2017). For instance, in Canada, reproduction traits have 
been evaluated since 2004, when genetic evaluations for 
16 female reproduction traits were launched (Jamrozik et 
al., 2005). Moreover, various metabolic and reproductive 
diseases have been routinely evaluated since 2016 and 
2020, respectively (Jamrozik et al., 2016a,b; Oliveira 
Jr. et al., 2021). Despite the high economic impact of 
reproduction and diseases in the dairy industry, achiev-
ing genetic progress for these traits is slower compared 
with production traits, because they usually have lower 
heritabilities (Oliveira Jr. et al., 2021). Therefore, under-
standing the genetic basis of variation in the expression 
of these traits across individuals can help to accelerate 
genetic progress.

Single nucleotide polymorphisms (SNPs) have been 
the main type of genetic variant used to identify quantita-
tive trait loci (QTLs) and candidate genes associated with 
traits of interest in several livestock species, due to their 
wide distribution across the genome and relative low cost 
of genotyping (e.g., Weller et al., 2017; VanRaden 2020). 
However, genetic variation is not only identified by SNP 
markers. Recent studies involving human subjects have 
shown that structural variants (SV), mainly copy num-
ber variants (CNVs), also have an important impact on 
phenotypes of various traits, including reproduction and 
diseases (e.g., Sudmant et al., 2015; Beyter et al., 2021). 
Briefly, CNVs are variations in the number of DNA seg-
ments, usually deletions or duplications, which are more 
than 50 bp in length (Mills et al., 2011; Sudmant et al., 
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2015). As CNVs involve larger genomic regions com-
pared with SNPs, they can likely affect gene expression 
through a variety of mechanisms (Levy et al., 2007). For 
instance, human studies have also shown that CNVs can 
affect gene structure and function by changing coding 
sequences and regulatory elements (Stranger et al. 2007; 
Zhang et al., 2009). In this context, Stranger et al. (2007) 
estimated that CNVs can account for up to ~18% of the 
genetic variation in gene expression of various human 
related-traits. Specifically in cattle, CNVs have already 
been found to be associated with feed intake, mastitis, 
and hoof health traits (Butty et al., 2021; Lee at al., 2021, 
2023). The low linkage disequilibrium between SNPs and 
CNVs suggests that CNVs contain additional informa-
tion not previously captured in traditional genome-wide 
association studies (GWAS) based solely on SNPs (e.g., 
Hay et al., 2018; Xu et al., 2014).

The main limitation of using CNVs in GWAS is the 
lack of consensus regarding CNV detection methods. 
In general, CNVs can be detected using genotypes 
obtained from either SNP panels or whole-genome se-
quence (WGS) data (Butty et al., 2020). Using WGS 
data enhances the precision of identifying CNV regions 
(CNVRs) compared with methods using SNP panels 
(Jiang et al., 2013), offering increased accuracy and the 
ability to detect shorter CNVs; nevertheless, the cost 
of WGS data for use in association studies can still be 
prohibitive. As an alternative, WGS data can be used to 
validate CNVRs identified using SNP arrays, to ascertain 
high-confidence CNVRs in a large number of animals 
(Butty et al., 2020; Rafter et al., 2020; Zhan et al., 2011). 
Consequently, this study aimed to: 1) identify CNVs 
using genotypes obtained from 2 different SNP arrays 
(i.e., 50K and 95K); 2) validate the CNVRs identified 
using WGS data; and 3) assess the association between 
the CNVs identified within the high-confidence CNVRs 
and several reproduction and disease traits in Canadian 
Holstein cattle.

MATERIALS AND METHODS

No Animal Care Committee approval was necessary 
for the purposes of this study, as all information required 
was obtained from existing databases.

SNP panels and quality control

Final reports containing the intensity signal files from 
13,730 Holstein cows, genotyped using the 95K SNP 
panel (Illumina®, San Diego, CA), and 8,467 Holstein 
animals (4,726 bulls and 3,741 cows) genotyped using 
the 50K SNP panel (Illumina®, San Diego, CA), were 
available for this study. All SNP marker positions were 
updated to the ARS-UCD1.2 bovine reference genome 

assembly (Rosen et al., 2020). Non-autosomal SNPs, 
SNPs with unknow genome position, and SNPs with a 
GenCall score below 0.15 were removed on a per-sample 
basis during the genomic quality control. After the qual-
ity control, a total of 88,593 (95K) and 46,689 (50K) 
SNPs remained for further analyses.

CNV Identification. The CNV identification was 
performed independently for each SNP panel, using the 
PennCNV software (version 1.0.3; Wang et al., 2007) and 
the intensity signal files containing the log R ratio (LRR) 
and B allele frequency (BAF) information. To reduce the 
waviness due to the high correlation between LRR and 
the content of guanine-cytosine (GC) in the genomic 
regions, the genomic waves were adjusted using the -gc-
model option available in the PennCNV software. The 
cattle gcmodel file was generated by calculating the GC 
content of each marker. Thereafter, the LRR values of 
each SNP were adjusted for the genomic waves along the 
genomic regions, taking into account the expected GC 
content ± 500Kb around each SNP (Diskin et al., 2008).

After the CNV calling, a sample-based quality control 
was performed to remove possible false positive CNVs. 
Samples with high intensity noise (LRR SD >0.3), 
extreme intensity waviness (absolute waviness factor 
>0.05, after LRR correction), BAF drift <0.01, and more 
than 9 CNVs identified per animal were removed. The 
threshold criterion of 9 CNV per animal was chosen 
because it represents the mean number of CNVs found 
per animal (i.e., 4.73 between the 2 SNP panels) plus 3 
standard deviations (SD = 1.46), which is similar to what 
was previously recommended by Butty et al. (2021). 
Moreover, only CNVs containing at least 3 SNPs were 
retained for further analysis.

The copy number of the CNV calls obtained from 
PennCNV are coded as 0 (deletion of 2 copies), 1 (dele-
tion of one copy), 2 (normal state), 3 (single-copy dupli-
cation), and 4 (double-copy duplication). However, due 
to the lower frequencies of the codes 0 and 4 compared 
with the others, we have combined the deletion of one 
and 2 copies in the same group, as well as the duplica-
tion of one and 2 copies in another group. Thereafter, 
the states 0–1, 2, and 3–4 were re-coded using a biallelic 
format for the association analysis (please see details 
under the “Association Analyses” section). Finally, a to-
tal of 10,101 animals from the 95K SNP array genotype 
data and 5,353 animals from the 50K SNP array genotype 
data remained after quality control. This included 46,732 
CNVs (26,398 deletions and 20,334 duplications) and 
26,396 CNVs (15,630 deletions and 10,766 duplications) 
identified from the 95K and 50K SNP panels, respec-
tively. Details on the CNV calls in each chromosome, 
for the 2 SNP panels, is provided in the Supplementary 
Table S1.
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CNVRs Creation and Validation. The CNVRs were 
formed by collating overlapping and/or contiguous CNVs 
from both SNP panels (within and across animals) as 
originally described by Redon et al. (2006). The CNVRs 
that had more than one state for the same animal (i.e., both 
deletion and duplication in the same CNVR, for the same 
animal) were removed from the analyzed sample, as the 
probability to have 2 different events in the same region 
is low (Lin et al., 2013). Moreover, to remove the CNVs 
with very low frequency in the population (possible false 
positives), only continuous CNVRs and/or CNVRs that 
minimally overlapped (i.e., 1% overlap) between at least 
2 animals were considered to be validated using the WGS 
data. Consequently, a total of 12,336 animals and 2,490 
CNVRs remained in the data set to be validated.

The CNVRs originated from SNP genotypes were vali-
dated using CNVRs identified based on whole genome 
sequence data (CNVRWGS), following the approach 
described by Butty et al. (2020). For instance, only 
CNVRs that reciprocally overlapped at least 50% with 
the CNVRWGS were kept for the association analysis (i.e., 
high-confidence CNVRs). The CNVRWGS were identified 
by collating overlapping and/or contiguous CNVs (Re-
don et al., 2006). The CNVs of the sequence data were 
identified using the CNVnator software (Abyzov, et al., 
2011) and 2 independent data sets: one containing 23 
Holsteins cows, and other containing 103 Holstein ani-
mals (88 bulls and 15 cows). Details about CNV detec-
tion using the sequence data are available in a previous 
study (Butty et al., 2020). In both data sets, paired-end 
reads were aligned to the ARS-UCD1.2 bovine genome 
assembly, following the protocol of the 1,000 Bull Ge-
nomes Project (http: / / www .1000bullgenomes .com/ ). 
Furthermore, only CNVs from regions with more than 
50% of the reads mapped with a quality greater than zero 
were kept.

At the end, non-validated CNVRs were excluded from 
the data set, and in cases where none of the CNVRs of an 
animal were validated after aligning the CNVRs detected 
from the SNP genotypes with the CNVRWGS, the animal 
was removed from the data set. These final quality con-
trol criteria led to a total of 870 high-confidence CNVRs, 
identified on 12,131 animals, which were available to be 
used in the association analyses. The CNVRs were classi-
fied as deletions when the animals showed a region with 
loss of a chromosomal segment, duplication for repeated 
chromosomal regions, and mixed, when it was identified 
deletions and duplications in the same genomic region.

Breeding Values and Deregressed Breeding Values. 
Estimated breeding values (and their theoretical reli-
abilities) for several reproduction and disease traits from 
the official genetic evaluation performed by Lactanet 
(Guelph, Ontario, Canada) in August 2021 were avail-
able for the association analyses. A total of 25 traits were 

analyzed in this study, which were categorized as repro-
duction: 1) age at first service (AFS), 2) calf survival 
[measured in heifers (CSh), cows (CSc), and bulls mated 
with either heifers (CSsh) or cows (CSsc)], 3) calving 
ease [measured in heifers (CEh) or cows (CEc)], 4) calv-
ing to first service (CTFS), 5) days open (DO), 6) first 
service to conception [measured in heifers (FSTCh) or 
cows (FSTCc)], 7) non return rate [measured in heif-
ers (NRRh) or cows (NRRc)]; and disease: 8) cystic 
ovaries [measured in heifers (COh) or cows (COc)], 9) 
displaced abomasum [measured in heifers (DAh) or cows 
(DAc)], 10) clinical ketosis [measured in heifers (CKh) 
or cows (CKc)], 11) subclinical ketosis [measured in 
heifers (SCKh) or cows (SCKc)], 12) metritis [measured 
in heifers (METh) or cows (METc)], and 13) retained 
placenta [measured in heifers (RPLh) or cows (RPLc)] 
traits. A summary of the 25 traits evaluated in this study 
and their abbreviations are shown in Table 1.

Traits were defined as currently done by Lactanet 
Canada (Guelph, ON, Canada) in the official genetic and 
genomic evaluations for Holstein cattle. In this context, 
reproduction and disease traits were evaluated by Lac-
tanet using multiple-trait animal models, and the traits 
measured in cows (i.e., CSc, CSsc, CEc, FSTCc, NRRc, 
COc, DAc, CKc, SCKc, METc, RPLc) were evaluated 
considering measurements from different lactations as 
repeated records. Additional details regarding the statisti-
cal models used by Lactanet can be found in the literature 
for reproduction (Jamrozik et al., 2005; Oliveira Jr. et al., 
2021), and disease traits (Jamrozik et al., 2016; Oliveira 
Jr. et al., 2021). For all traits, EBVs were standardized 
to a mean of 100 and standard deviation of 5, as usually 
performed by Lactanet to facilitate the comparison of 
EBVs among traits.

The EBV of animals predicted during the August 
2021 official genetic evaluation run by Lactanet were 
used to derive deregressed breeding values (dEBVs) for 
animals with CNVRs identified. The dEBV were calcu-
lated following the method presented in VanRaden et al. 
(2009), and subsequently used as pseudo-phenotypes in 
the association analyses. Only animals with theoretical 
reliability above 0.10 for the analyzed trait and effec-
tive record contributions higher than zero (i.e., animals 
whose EBVs were different from their parent average) 
were included in the association analyses. The heritabil-
ity estimates used in the deregression procedure ranged 
from 0.003 (CSsc) to 0.15 (SCKh). The heritability used 
in the deregression process for each trait is shown in the 
Supplementary Table S2.

Association Analyses

The association analyses between the CNVs contained 
in the high-confidence CNVRs and the dEBVs were 
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performed using the blupf90+ software (Misztal et al., 
2022). They were performed for one CNVR at a time, 
and the CNVs located within each CNVR were coded as 
−1 (deletion of either one or 2 copies), 0 (normal state), 
and 1 (duplication of either one or 2 copies). Only high-
confidence CNVRs identified in at least 1% of animals 
in the population (i.e., 54 CNVRs) were included in the 
association analyses. Animals that did not have a CNV 
identified within the CNVR used in the association anal-
ysis (for example, due to differences in the SNP panel 
used), were excluded from the analysis. The final number 
of animals included in the association analysis for each 
trait, along with descriptive statistics of their dEBV, is 
shown in the Supplementary Table S2. The number of 
SNPs within each CNVR for each SNP panel is showed 
in the Supplementary Table S3.

The general model used for the association analysis of 
each trait is described as:

 y = 1μ + Xb + Zg + e, 

where y is the vector of pseudo-phenotypes (i.e., dEBV), 
1 is a vector of ones, μ is the average of the dEBVs (close 
to 100 for all traits; Supplementary Table S2), X is the 
incidence matrix for the fixed regression on the recoded 
CNV of one CNVR at a time, b is the linear regression 
coefficient (the CNV effect) in the analyzed CNVR, g is 
the vector of additive genomic random effects, Z is the 

incidence matrix for the vector g, and e is the vector of 
residual effects. The model assumptions were:

E[y] = 1μ + Xb and  Var
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where G is the is genomic relationship matrix created as 
in the first method presented in VanRaden (2008), in-
cluding all SNP markers that were not included in the 
CNVR under investigation (to avoid double-counting) 
and blended with the traditional pedigree-based additive 
relationship matrix A (10%) to make G invertible to ac-
count for the polygenic effects. The σg

2 is the additive 
genetic variance, R is a matrix of weights to account for 
the differences in dEBV reliabilities (i.e., 1/dEBV reli-
ability −1), and σe

2  is the residual variance. The variance 
components were previously estimated by fitting the 
above-described model excluding the CNVR as a fixed 
effect in the model and using only the A matrix. The es-
timation of variance components was also performed 
using the blupf90+ software (Misztal et al., 2022). All 
other terms in the model were previously described.

The effect size and standard error (SE) estimated for 
each CNVR was used to calculate the t statistic (t = ef-
fect size/SE). Thereafter, p-values were obtained using a 
t-distribution with “n– 2” degrees of freedom, where n 
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Table 1. Summary of the traits evaluated in this study and their abbreviations

Category  Trait  Abbreviation  
1Animal group 
(Final abbreviation)

Reproduction Age at first service AFS Heifers (AFS)
Calf survival CS Heifers (CSh)

Cows (CSc)
Bulls mated with heifers (CSsh)
Bulls mated with cows (CSsc)

Calving ease CE Heifers (CEh)
Cows (CEc)

Calving to first service CTFS Heifers (CTFS)
Days open DO Cows (DO)
First service to conception FSTC Heifers (FSTCh)

Cows (FSTCc)
Non return rate NRR Heifers (NRRh)

Cows (NRRc)
Disease Cystic ovaries CO Heifers (COh)

Cows (COc)
Displaced abomasum DA Heifers (DAh)

Cows (DAc)
Clinical ketosis CK Heifers (CKh)

Cows (CKc)
Subclinical ketosis SCK Heifers (SCKh)

Cows (SCKc)
Metritis MET Heifers (METh)

Cows (METc)
Retained placenta RPL Heifers (RPLh)

Cows (RPLc)
1Animal group in which the phenotypic records were measured, as currently used in the official genetic evaluations 
performed by Lactanet (Guelph, Ontario, Canada).
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is the number of animals used in the association analysis 
for each trait (Supplementary Table S2). To correct for 
multiple testing, a Bonferroni correction at a significance 
level of α = 0.05 was applied by dividing α by the total 
number of tests (i.e., 0.05/(54x25) = 3.7 × 10−5).

Functional Analyses. The CNVRs that were significant 
after the Bonferroni correction were further investigated. 
Positional candidate genes located within the associated 
regions were retrieved from the Ensembl Gene Database 
(Howe et al., 2021), using the Ensembl Biomart tool and 
the latest bovine reference genome assembly available 
(i.e., ARS-UCD1.2). Information about the quantitative 
trait loci (QTL) annotated in the significant CNVR was 
retrieved from the Animal QTL Database (Hu et al., 2013), 
and the complete list of gene functions were obtained 
from the National Center for Biotechnology Information 
database (NCBI, 2018). Biological pathways from the 
Kyoto Encyclopedia of Genes and Genomes (KEGG, 
Ogata et al., 1999) and the GO analyses (considering the 
main categories of biological processes, molecular func-
tion, and cellular component) were used to identify the 
most likely candidate genes. The NetworkAnalyst web 
server (Zhou, et al., 2019) was used for construction of 
gene networks, and the PhenoGram option available in 
the Ritchie Lab Visualization tool (http: / / visualization 
.ritchielab .org/ phenograms/ plot), from Perelman School 
of Medicine at the University of Pennsylvania, was used 
to visualize the position of the CNVRs in the chromo-
somes. Genome size was obtained from the NCBI (https: 
/ / www .ncbi .nlm .nih .gov/ assembly/ GCF _002263795 .1/ #/ 
st), using the ARS-UCD1.2 reference genome.

RESULTS AND DISCUSSION

CNV Identification

After quality control, the average number of CNVs per 
animal detected using both the 95K and 50K SNP pan-
els was comparable (4.63 and 4.93, respectively; before 
CNV validation). The length of CNVs ranged from 66 
bp to 6.19 Mb for the 95K SNP panel, with an average 
length of 112.93 Kb. For the 50K SNP panel, the length 
ranged from 76 bp to 4.53 Mb, with an average length 
of 154.54 Kb. The possible implications of these dif-
ferences in our results, and recommendations for future 
studies are discussed in the “Limitations of this Study 
and Future Directions” sub-topic.

Interestingly, the number of CNVs was consistently 
higher on BTAs 8 and 12, regardless of the SNP panel 
used (see Supplementary Table S1). These findings, spe-
cially related to BTA12, corroborate with those in Lee 
et al. (2020). The length of the high-confidence CNVRs 
ranged from 5.11 Kb to 3.09 Mb, with an average length 
of 160.39 Kb, where approximately 5.61% of the entire 

bovine genome was encompassed by CNVRs. This find-
ing aligns with a previous study performed by Mielczarek 
et al. (2017), which analyzed 29 Polish Holstein-Friesian 
cows and reported that CNVs covered an average of 
5.89% of their genome. It is important to highlight that 
although there is a common trend in genome coverage by 
CNVs across these studies, variability in the precise ex-
tent to which CNVs impact the animal genome exists, a 
variation that can be observed among different individu-
als and breeds (Bickhart and Liu, 2014; Peripolli et al., 
2017). Moreover, it is noteworthy that deletions tend to 
be more frequent than duplications in the overall genome 
(Fan et al., 2007), a pattern that was also observed in our 
study (i.e., 42,028 deletions versus 31,100 duplications).

CNVRs Creation and Validation

The analysis of high-confidence CNVRs reinforced 
the evidence that the majority of CNVRs exhibit low 
frequency within the Holstein population. Notably, a 
considerable proportion, approximately 37%, were iden-
tified in only one individual, highlighting their rarity 
within the population. This observation aligns with the 
understanding that CNVRs, akin to SNPs, undergo a pro-
cess of evolutionary selection, where de novo mutations 
arise over thousands of generations, with only a fraction 
becoming fixed while the majority disappears. In addi-
tion some of the CNVRs identified are likely attributed 
to recent genetic events, including recent de novo muta-
tions (Itsara et al., 2010; Belyeu et al., 2021). In this con-
text, hypothesizing that CNVRs have emerged recently, 
it is possible that these CNVRs have not had sufficient 
time to become prevalent within the Holstein population.

While the majority of the identified CNVRs exhibit low 
frequencies in the population (most CNVRs appeared in 
less than 1% of the animals), it is worth noting that a sub-
set of CNVRs, accounting for 6.2% of the total (i.e., 54 
out of 870 CNVRs), displayed frequencies higher than or 
equal to 1%. These findings corroborate those reported 
by Sassi et al. (2016), who identified 90 CNVRs out of 
823 segregating in more than 1% of the Spanish Holstein 
population. Moreover, these higher-frequency CNVRs, 
although still relatively scarce, offer potential for genetic 
diversity and could serve as valuable resources for breed-
ing programs. However, the scarcity of high-frequency 
CNVRs further reinforces the prevailing notion that most 
of these genomic variants are infrequent in the Holstein 
population. For detailed information regarding the num-
ber and location of all high-confidence CNVRs identified 
in each autosome and their corresponding genome cover-
age, please refer to the Supplementary material (Table S4 
and Figure S1)

Figure 1 provides a visual representation of the 
specific locations of high-confidence CNVRs with fre-
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quency higher than or equal to 1% in the population. It 
is interesting to observe that previous studies have also 
consistently reported that BTA12 had the highest propor-
tional CNV length compared with all bovine autosomes 
(Zhou et al., 2016; Durán Aguilar et al., 2017, Lee et 
al., 2020). Specifically in this study, the BTA12 not only 
exhibited the highest proportional CNV length, covering 
12.04 Mb, but also contained the most frequently oc-
curring CNVR in the population (i.e., this CNVR was 
present in 46.74% of the animals). Similarly, Lee et al. 
(2020) reported BTA12 as the autosome with the dens-
est coverage of CNVRs in the bovine genome. Previous 
research has linked a region on this autosome to a signifi-
cant QTL impacting reproduction and milk production in 
Nordic Red Cattle (Kadri et al., 2014). Please refer to the 
Supplementary material (Table S5) for the distribution 
and frequency of the identified CNVRs in this study.

Association Analyses

In our study, we examined only high-confidence 
CNVRs with frequency higher than or equal to 1% in 
the population (i.e., 54 CNVRs). Out of these, 8 CNVRs 
were tested solely based on the CNVRs identified in the 
100K SNP panel: CNVRs located on BTA2 (123,701,258 
to 123,887,590), BTA3 (37,275,225 to 37,702,081), 
BTA4 (115,319,018 to 115,367,660), BTA6 (51,856,578 
to 52,320,441), BTA9 (1,657,206 to 1,813,012), BTA9 
(91,813,809 to 91,996,013), BTA16 (79,509,462 to 
79,953,581), and BTA18 (13,195,401 to 13,466,019), 
as they were not identified using the 50K SNP panel 
(Supplementary Table S3). A total of 4 unique CNVRs 
showed statistical significance for at least one of the 
analyzed traits. Specifically, 2 CNVRs (CNVR2 and 
CNVR3) were associated with 3 reproduction (CSh, 
FSTCc, NRRh), and 2 CNVRs (CNVR1 and CNVR4) 
were associated with 2 disease (METc, and RPLc) traits 
(Figure 2). No CNVRs were found to be significantly as-
sociated with AFS, CEc, CEh, CSc, CSsh, CSsc, CTFS, 
DO, FSTCh, and NRRc (reproduction traits), and COh, 
COc, DAh, DAc, CKh, CKc, METh, RPLh, SCKh, and 
SCKc (disease traits). Detailed information about the sig-
nificant CNVRs for each trait, along with their frequency 
in the population, can be found in Table 2. To the best of 
our knowledge, this is the first time CNV-based GWAS 
has been performed for the specific traits analyzed in this 
study.

Significant CNVRs were detected on 2 autosomes 
(i.e., BTA7 and BTA21) for reproduction traits, and 2 
autosomes (BTA5 and BTA23) for disease traits. From 
these, 2 CNVRs (i.e., CNVR1 and CNVR3) showed sig-
nificant associations with more than one trait, suggesting 
the presence of pleiotropic effects. On the other hand, 
CNVR2 and CNVR4 had significance for a single trait 

(i.e., CSh and RPLc, respectively). Notably, from the 4 
CNVRs found significant, 2 were found to be associated 
with RPLc in cows.

The shortest significant CNVRs identified covered 
23 Kb (CNVR1 located on BTA5), for which we found 
significant association with RPLc and METc. This CNV 
is near the CD163L1 gene (located within CNVR1), a 
gene found to be associated with inflammatory response 
(Moeller et al., 2012; Schieffer et al., 2021). The rela-
tionship between RPL and MET with the inflammatory 
response is complex, as these disorders can be influenced 
by multiple factors (Miyoshi et al., 2002; Dervishi et al., 
2016). Metritis, an inflammation of the uterine lining 
commonly observed post-calving, shares overlapping 
pathophysiological mechanisms with RPL. Remarkably, 
MET and RPL show a high genetic correlation of 0.55 
(Weller et al., 2019), illustrating their strong relation-
ship. For instance, during the process of calving, there is 
an activation of immune cells and release of inflamma-
tory mediators to facilitate the expulsion of the placenta. 
The prolonged inflammation can impair the normal 
physiological mechanisms involved in the separation and 
expulsion of the placenta, leading to its retention (Lye, 
1996). The inflammatory environment in the uterus pre-
disposes it to bacterial contamination, delaying uterine 
involution and increasing the risk of metritis (Chastant 
and Saint-Dizier, 2019; Amin and Hussein, 2022). Con-
versely, MET can also exacerbate the inflammation in 
the uterus, contributing to RPL in subsequent calvings 
(Amin and Hussein, 2022).

Notably, a specific CNVR located on BTA7 (CNVR2) 
was significantly associated with CSh, and it was ob-
served in 36.28% of the studied animals. Within this 
region, there were 92 genes with uncertain functions 
and one olfactory receptor (OR7A17). Olfactory recep-
tors exhibit a remarkable degree of diversity (Spehr and 
Munger, 2009) and serve essential functions in social 
interaction (Kotajima-Murakami et al., 2022) and repro-
duction (Spehr et al., 2006). Given the significance of 
maternal recognition for calf survival, it is plausible to 
hypothesize that olfactory receptor genes may contribute 
to this process. However, the precise role of OR7A17 in 
reproductive disorders remains mainly unknown.

The CNVR located on BTA21 (i.e., CNVR3) exhibited 
significance for FSTCc and NRRh. This CNVR4, de-
tected in 2.52% of the animals in the analyzed Holstein 
population, spans a genomic region (BTA21: 41,221,141 
bp - 41,648,365 bp) that encompasses the G2E3 gene. 
Previous studies have linked G2E3 to the interval be-
tween calving and first insemination (Liu et al., 2017), 
suggesting its crucial involvement in reproductive pro-
cesses. Notably, G2E3 plays a pivotal role in regulating 
the cell cycle (Brooks et al., 2007), which holds particular 
importance during the estrous cycle in cows. Its impact 
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on follicular development, ovulation, and corpus luteum 
function directly influences reproductive traits such as 
NRR and FSTC.

Our study also revealed that the CNVR located on 
BTA23 (CNVR4), present in 16.32% of the evaluated 
animals, was significantly associated with RPLc. This ge-
nomic region contains 44 genes, with 21 of them having 
unknown functions. Among these genes, we observed the 
presence of the MCM3 gene, which may play a key role 
on RPL disorder in cows. This gene is known for its role 
in DNA replication and cell cycle regulation (Madine, et 
al., 1995). Therefore, we hypothesize that alterations in 
cellular processes or genetic factors related to DNA repli-
cation and cell cycle regulation can indirectly contribute 
to the development of reproductive disorders, including 

RPL. A protein–protein interaction (PPI) network (Zhou 
et al., 2019) was created and identified MCM3 as a key 
gene for progesterone-mediated oocyte maturation (Fig-
ure 3). Imbalances or deficiencies in progesterone af-
fect the normal maturation of oocytes and subsequently 
impact reproduction (López-Gatius and Garcia-Ispierto, 
2022). Moreover, the decline in progesterone levels be-
fore uterine contraction during parturition is a pivotal 
process (Janszen et al., 1990; Mesiano, 2022), that may 
have implications for the proper release or detachment of 
the placenta after calving, thereby heightening the risk 
of RPL.

Oliveira et al.: COPY NUMBER VARIANTS AFFECTING HOLSTEIN TRAITS

Figure 1. Distribution across the genome of the high-confidence copy number variant regions (CNVR) with frequency higher than or equal to 1% 
in the population. Colors represent the frequency.
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Limitations of this Study and Future Directions

The reliance on SNP panels used for CNV detection 
may lead to underrepresentation or incomplete charac-
terization of CNVRs across the genome, particularly in 
regions poorly covered by SNP arrays. This limitation 
underscores the importance of incorporating technolo-
gies like WGS to achieve more comprehensive CNV de-
tection. Indeed, if all animals had WGS data to create 
CNVRs, we would expect a higher resolution and accu-
racy in CNV identification, potentially uncovering addi-
tional CNVs not captured by the SNP arrays. Moreover, 
the use of different SNP panels may introduce variability 
in CNV calling and subsequent association analyses.

In this study, we performed GWAS using CNV data 
obtained from 2 different SNP panels: one containing 
46,689 SNPs (50K) and another one containing 88,593 
SNPs (95K). After the quality control of the CNV calls, 

the average number of CNVs per animal detected using 
both SNP panels was comparable, indicating robustness 
across different SNP densities. However, the possible 
discrepancy in SNP coverage between the 2 panels raised 
concerns regarding potential biases in CNV calling and 
subsequent analysis. To address this, we used WGS 
data to validate CNVRs identified based on the SNP 
genotypes. This comprehensive validation approach en-
hances the robustness and reliability of our CNVR data, 
minimizing potential biases introduced by differences in 
SNP panel density and strengthening the validity of our 
GWAS analysis. However, it is essential to acknowledge 
the possibility of false positives and false negatives in 
detections (Lepamets et al., 2022). Future studies should 
consider testing different minimum numbers of SNPs in a 
CNV for various SNP panel densities, instead of the fixed 
number of 3 SNPs used in this study. Additionally, incor-
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Figure 2. Sankey diagram illustrating the relationship between high-confidence copy number variant regions (CNVRs) with frequency higher 
than or equal to 1% in the population and the analyzed traits. The diagram displays the proportions of significantly associated CNVRs across chro-
mosomes, organized by trait categories (i.e., reproduction and disease). Reproduction traits: calf survival measured in heifers (CSh); first service to 
conception measured in cows (FSTCc); and non-return rate measured in heifers (NRRh). Disease traits: retained placenta measured in cows (RPLc); 
and metritis measured in cows (METc).

Table 2. High-confidence copy number variant regions (CNVR) significantly (p-value < 3.7x10−5) associated with 
the reproduction and disease traits analyzed in this study

CNVR BTA Start (bp) End (bp)  Type1 Freq2 (%)  Traits3

CNVR1 5 103,010,571 103,046,878 DUP 2.23 RPLc, METc
CNVR2 7 8,325,833 10,619,615 DEL 36.28 CSh
CNVR3 21 41,221,141 41,648,365 DUP 2.52 FSTCc, NRRh
CNVR4 23 24,697,169 26,863,188 DEL 16.32 RPLc
1Type: deletion (DEL) or duplication (DUP). 2Freq (%): frequency of the CNVR in the population. 3Traits: retained 
placenta measured in cows (RPLc), metritis measured in cows (METc), calf survival measured in heifers (CSh), 
first service to conception measured in cows (FSTCc), and non-return rate measured in heifers (NRRh).
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porating multi-omics information could help improving 
power for CNV associations (Lepamets et al., 2022).

It is also paramount to acknowledge the wide range 
of methodological approaches and statistical models 
used for GWAS of CNVs. Notably, many studies in the 
literature have overlooked the incorporation of poly-
genic effects and potential adjustments for population 
stratification, which can introduce biases and hinder 
the identification of true associations. Recognizing this 
gap, it becomes imperative for future studies to integrate 
these aspects into their analytical frameworks to ensure 
robust and reliable findings. For instance, in a previous 
version of this study, we initially fit a statistical model 
incorporating the A matrix and the first few principal 
components of the G matrix in the association analysis, 
to avoid the possible double-counting of information 
generated by the fact that CNVs were defined using the 
SNP information. However, during the review process of 
this paper, we enhanced our methodology by integrating 
the G matrix derived from SNP information alongside 
CNVs in the model, but excluding the SNPs within the 
CNVR under evaluation. We believe this refinement 
helped us to avoid possible false positives and mitigate 
potential confounding effects. Regardless, incorporating 
polygenic effects and accounting for population stratifi-
cation remain paramount in GWAS, and should also be 
considered in studies involving CNVs.

CONCLUSIONS

Our investigation on CNVs in Holstein cattle showed 
that, while high-confidence CNVRs were relatively 
uncommon in the population, a small subset exhibited 
higher frequencies (54 out of 870 CNVRs had frequen-
cies higher than or equal to 1% in the population). As-
sociation analyses revealed that a total of 4 CNVRs were 
significantly associated with reproduction (CSh, FSTCc, 
NRRh) and/or disease (METc and RPLc) traits. These 
CNVRs harbored genes implicated in immune response, 
cellular signaling, and neuronal development, support-
ing their potential involvement in these traits. Further 
investigations to unravel the mechanistic and functional 
implications of these CNVRs on the mentioned traits are 
warranted.
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