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Figure 1: An illustration of a participant solving hardware reverse engineering tasks while thinking aloud, with eye tracking
recorded, along with a heatmap of their visual attention (eye fixations) on the screen.

ABSTRACT
Trust in digital systems depends on secure hardware, often assured
through Hardware Reverse Engineering (HRE). This work develops
methods for investigating human problem-solving processes in
HRE, an underexplored yet critical aspect. Since reverse engineers
rely heavily on visual information, eye tracking holds promise
for studying their cognitive processes. To gain further insights,
we additionally employ verbal thought protocols during and
immediately after HRE tasks: Concurrent and Retrospective Think
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Aloud. We evaluate the combination of eye tracking and Think
Aloud with 41 participants in an HRE simulation. Eye tracking
accurately identifies fixations on individual circuit elements
and highlights critical components. Based on two use cases, we
demonstrate that eye tracking and Think Aloud can complement
each other to improve data quality. Our methodological insights can
inform future studies in HRE, a specific setting of human-computer
interaction, and in other problem-solving settings involving
misleading or missing information.

CCS CONCEPTS
• Security and privacy → Hardware reverse engineering; •
Hardware → Logic circuits; • Human-centered computing →
Empirical studies in HCI; Laboratory experiments; User studies.
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1 INTRODUCTION
With a strong reliance of society on information technology, people
need to be able to trust an increasing variety of digital systems in
their everyday lives. To build systems that can be truly trusted, we
must be able to provide high assurance not only for all software
layers but also for the underlying hardware. At the core of such
hardware, we find a multitude of microchips, commonly referred
to as digital Integrated Circuits (ICs). To provide assurance in hard-
ware, analysts often employ Hardware Reverse Engineering (HRE),
which is a crucial technique to detect, e. g., counterfeits [28], intel-
lectual property violations [73], or even malicious circuit manipula-
tions [58] in ICs. HRE consists of two fundamental steps [76]: First,
analysts reconstruct a blueprint of the thousands to millions of logic
gates on the IC – the so-called netlist. Second, they analyze this
often very complex netlist using a variety of methods tailored to
their detection objectives. Even though tools such as HAL [23, 80]
exist, which partially assist human analysts during HRE, success
depends heavily on their experience, skills, and cognitive abilities
for performing complex and diverse HRE subprocesses [22, 86].
Thus, similar to other application areas such as design engineering
and medicine, HRE represents a specific Human Computer Inter-
action (HCI) setting in which humans perform (computer-aided)
complex problem solving using digital visualizations [24, 40].

When analysts navigate through a netlist, they have to integrate
the current visual information with previously acquired knowledge
about other parts of the netlist to make sense of its broader inter-
connections and functions. We argue that eye tracking is therefore
highly suitable to gain a deeper understanding of how reverse en-
gineers approach the analysis of a netlist. To interpret such eye
tracking data holistically in terms of participants’ strategies, reason-
ing, insights, or reflections on errors, more information is needed.
A way to enrich eye tracking data with this kind of information is
to let participants verbalize their thoughts as they solve an HRE
task, or to ask them to subsequently reflect on the task. We pro-
pose that this combination of eye tracking and Think Aloud (TA)
is a promising and comprehensive approach to cognitive-factors
research in HRE. However, evidence from similar fields, e. g., design
engineering, marketing and cognitive psychology, show conflicting
results as to whether verbalizations influence the behavior of the
problem solver during a given task [9, 15] or not [21, 60]. Therefore,
it is not clear if and to what extent results from other studies can
be transferred to HRE problem-solving processes. Hence, the pri-
mary objective of this work is to design, implement, and validate a
mixed-methods approach that can subsequently be used to gain a
comprehensive and nuanced understanding of the capabilities and

skills influencingHRE success. Understanding how problem-solvers
navigate in a netlist may inform the development of innovative
hardware protection schemes. It may further help tailor educational
programs [85] on hardware security.

To investigate if and in which way eye tracking, verbal TA proto-
cols, and log files can be used to observe HRE problem solving, we
conduct an experiment with 41 participants. Ourmain contributions
are the following:

• We show that eye tracking provides high-resolution data on
participants’ visual attention to individual circuit elements.

• We identify Think Aloud as suitable for gaining insight into
reverse engineers’ thought processes, with eye gaze–cued
Retrospective Think Aloud (RTA) generating a higher quan-
tity of codes, while Concurrent Think Aloud (CTA) allows
us to synchronize participants’ verbalizations with their eye
tracking data.

• We investigate the potential of analyzing eye tracking and
TA data in combination and present two use cases: (1) map-
ping of TA codes with eye tracking for the triangulation of
participants’ navigation patterns, and (2) identifying strate-
gies used in an HRE task with eye tracking, without needing
to fully rely on TA.

• Drawing on previous research on TA and eye tracking, we
advocate for methodological evaluations, propose enhanced
combined analyses, and highlight the broader applicability of
our approach to visually demanding problem-solving tasks in
digital environments. In addition, our results provide insights
for practitioners aiming at improving hardware security or
developing educational tools pertinent to HRE.

2 BACKGROUND AND RELATEDWORK
2.1 Hardware and Netlist Reverse Engineering
In its broadest sense, reverse engineering describes the process of
recovering the underlying specifications and design process of any
man-made object by anyone else than the original designers [59].
Hardware Reverse Engineering (HRE) in particular is often moti-
vated by checking for the absence of malicious manipulations also
known as hardware Trojans, which may have been introduced by
a contracted manufacturer [58]. Further applications include the
identification of Intellectual Property (IP) infringements such as
counterfeit ICs which pose a major risk to the IC supply chain [28],
or failure analysis of ICs aimed at improving manufacturing pro-
cesses [11].

Azriel et al. describe the reverse engineering of digital ICs as
a two-step process [3]. Initially, one obtains the circuit diagram
of Boolean logic gates and memory elements and their intercon-
nections – the gate-level netlist – from the IC. A single logic gate
implements a small Boolean function such as NOT, AND, NAND
or XOR. While single gates are straightforward to grasp for hu-
mans, understanding the complex functions that emerge when
several are combined quickly becomes a major challenge. Netlists
can be recovered using scanning electron microscopy of an actual
IC [76] or, e. g., by gaining direct access to design files describing the
netlist [3]. Reverse engineers then apply a wide range of methods
for recovering and making sense of the higher-level structure and
design rationale of the netlist at hand [1, 51, 73]. Given that this
sense-making stage operates on the abstract digital description of

https://doi.org/10.1145/3613904.3642837
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a circuit, rather than the physical sample, it is often referred to as
netlist reverse engineering. Analysts need to rely strongly on their
own experience, technical skills, and cognitive abilities for manual
analyses, as well as to adequately set up and apply methods from
their semi-automated toolbox [5, 22, 86].

State-of-the-art reverse engineering tools support analysts via
interactive visualizations of the extracted circuit [63, 76, 80]. Those
visualizations appear to lend themselves well to the graph-based
structure of electronic circuits and make them more accessible [85].

2.2 Prior Research on Problem Solving in HRE
While the technical steps in HRE are often tedious to perform but
generally well understood, little research has been done on the
human problem-solving aspects. Lee and Johnson-Laird performed
an early laboratory study investigating how HRE novices analyze
simple Boolean circuits using fully manual approaches [43]. The
authors define HRE as a specific and poorly understood kind of
human problem solving, requiring analysts to identify how each
component influences the output of the circuit at hand, as well as
how the different components depend on each other.

Later research applied the findings of Lee and Johnson-Laird to
more complex, real-world HRE settings [5, 84], providing first valu-
able insights into the higher-level strategies and cognitive processes.
This strain of work led to a hierarchical model that divides the HRE
process into reversing actions, such as inspection and information
gathering or strategy decisions, and source code development [86].
A drawback of these initial investigations is that they are based on
a complex training phase of human subjects and require massive
evaluation efforts due to manual annotation of log files. This leads
to small sample sizes and limits generalizability of these first studies
on capabilities and skills in HRE.

Recent efforts addressing these challenges have resulted in the
development of ReverSim [6], a game-based simulation that mimics
realistic HRE subprocesses. Notably, ReverSim focuses on visually
representing netlists, which are crucial for reverse engineers solving
real-world HRE tasks. As ReverSim enables fine control over these
visualizations, it facilitates the consistent collection of eye tracking
data, which we consider a promising basis for studying important
HRE subprocesses. At the same time, ReverSim allows recording
and quantifying interactions of reverse engineers, regardless of
prior knowledge, in a standardized environment.

2.3 Problem Solving and Eye Tracking
Eye tracking measures a person’s visual focus non-intrusively. It
estimates the positions of eye gazes from the captured eye images
and the infrared reflections of pupils and corneas [48]. Eye tracking
reveals rich and subtle dynamics of humans’ cognitive processes
when they review materials, e. g., on a computer screen, without
causing discomfort or requiring particular effort from research
participants. Thus, researchers have been developing and using
eye tracking for decades to understand various psychological and
physiological factors, including cognitive load [54], personality
traits [8], health status [79], and problem solving [52, 88]. Recently,
using eye tracking to study engineering and computer-assisted
tasks has received growing attention, especially in software en-
gineering [52]. For example, researchers adopted eye tracking to
investigate the individual differences in comprehending software

programs [77], which are related to different factors such as task
familiarity [35] and age groups [55]. Sharafi et al. leveraged eye
tracking to identify people’s problem-solving strategies when they
manipulate data structures for programming [67]. Further, prior
work utilized eye-tracking to reveal how people debug software
programs, relating their performance differences to the problem-
solving strategies applied [47]. Beyond software engineering, pre-
vious research employed eye tracking in other tasks, particularly
gamified tasks that involve significant visual interaction and navi-
gation, to gain insights for educational, medical, and engineering
applications [41, 44]. Recent studies have also proposed to use eye
tracking in computer security research, including software reverse
engineering [50].

The eye tracking metrics used for studying problem-solving pro-
cesses are primarily related to visual attention and its transition.
Fundamentally, eye tracking reports a time series of eye gaze posi-
tions. The three most common abstractions of this time series are
fixations, saccades, and scanpaths [68–70]. Fixations are clusters
of relatively stable eye gazes, standing for a basic unit of visual
attention. Saccades are rapidly moving eye gazes in between two
consecutive fixations. A scanpath is the resulting sequence of fix-
ations due to the transition of visual attention. Multiple spatial
and temporal metrics are computed on the top of these abstrac-
tions, e. g., number of fixations, duration of fixations, and attention
switching [68–70]. Note that these metrics are often evaluated re-
garding the composition of visual stimuli, where researchers define
their Areas of Interest (AOIs) [62]. It enables them to analyze the
fixation and saccade metrics within each AOI or across different
ones [68–70]. Fixation metrics are more commonly adopted than
saccades, as they retain richer information of cognitive process-
ing [33, 66]. Prior research motivated us to employ eye tracking,
especially fixation metrics, for HRE problem solving – a task that
is in particular visually demanding. However, those eye tracking
metrics alone may lack interpretability as a primary method to un-
derstand problem solving, though offering detailed measurements
in its spatial context [14]. As such, prior work proposed to combine
eye tracking with other study methods, e. g., Concurrent Think
Aloud (CTA) or Retrospective Think Aloud (RTA) which elicits
problem solvers’ thoughts, to attain interpretable and fine-grained
measurements at the same time [27, 60].

2.4 Concurrent and Retrospective Think Aloud
When conducting TA in research studies, participants are asked
to verbalize their thoughts to obtain information about their mo-
tivations, strategies, problems, or in general the “how” and “why”
for a specific action. This method was first introduced in 1920 by
Watson [81] with the goal of making thinking observable. Since
then, TA methods have been developed and evaluated in many
domains and contexts. In addition to CTA, where participants are
asked to verbalize their thoughts while solving a given task, RTA,
where participants are asked to verbalize the thoughts they had
after completing the task, has also been receiving attention in the
research community [19]. A common extension of RTA is cued
retrospective reporting, where participants are shown recordings
of their problem-solving session, complemented by their eye move-
ments and mouse operations. Eye-gaze cueing has been shown to
produce more comprehensive reports and improve participants’
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ability to recall their thoughts, even though the gaze cue can be dis-
tracting for some participants [17]. Both methods have individual
advantages and limitations, and neither have been applied in the
field of HRE. Therefore, one goal of our work is to investigate both
methods in conjunction with eye tracking during HRE processes.

For CTA, it is assumed that the verbalizations are mainly about
actions and their outcomes [74], decision-making steps [39] or gen-
erally representations of short-term memory contents [19]. We
therefore assume a direct and unaltered access to participants’
problem-solving approaches. Also, immediate verbalizations are
more synchronous to the eye movements than RTA, where TA is
cued by eye movement. Of course, it is conceivable that CTA might
distract the participant from their task or otherwise affect their
performance [19]. Previous findings promote these assumptions
at least in the field of design problem solving [15]. Also, empirical
studies have presented evidence that CTA might skew eye tracking
data [57]. However, a number of studies that did not find influ-
ences on eye tracking data or problem-solving behavior [21, 42, 60]
challenge those reports. Due to the inconsistent evidence, an in-
vestigation of CTA’s influence on the HRE process is part of the
study’s research questions.

Verbalizations generated by RTA stem from both long-term and
short-term memory [19] and are assumed to contain more state-
ments on participants’ final choices [39]. Cued retrospective report-
ing elicits even more action, “how” and metacognitive information
than non-cued RTA [78]. In addition, we can rule out the possibility
that participants’ performance during the task is influenced by RTA
and their performance can serve as baseline for comparison with
the CTA group. For these reasons the cued RTAmethod was chosen
for the present study and its evaluation was included as part of the
research questions.

2.5 ResearchQuestions
From prior methodological work outside of Hardware Reverse En-
gineering (HRE), we derive that Think Aloud (TA) and eye tracking
may be promising techniques for investigating problem-solving
processes involved in netlist reverse engineering. Neither method
has previously been used in the domain of HRE problem solving.
Thus, it appears highly desirable to investigate their usefulness in
studying netlist reverse engineering behavior. Given inconclusive
findings in prior research, evaluating the potential interactions be-
tween eye tracking and TA methods is essential for establishing
a methodologically sound and robust experimental setup. To this
end, we answer the following research questions:

RQ1 Can fixations obtained from eye tracking be used to observe
behaviors within HRE problem solving?

RQ2 How do Concurrent Think Aloud and Retrospective Think
Aloud differ in revealing behaviors and approaches within
HRE problem solving?

RQ3 Does Concurrent Think Aloud influence participants’ perfor-
mance, user experience, or eye movement?

Based on the methodological insight from the three research
questions above, we explore and discuss a mixed-methods design
combining TA and eye tracking. We highlight the utility of both
CTA and RTA, with a particular focus on the combined analysis of

verbal protocols and gaze behavior. Thus, our overarching research
question is:
RQ4 How can eye tracking and Think Aloud complement each

other in describing HRE problem solving?

3 METHODS
We conducted a lab study in which eye tracking was employed in
combination with CTA or gaze-cued RTA while participants solved
HRE problems. In the following sections, we provide details about
the materials used, our participants, study procedures, as well as
data collection and analysis.

3.1 HRE Task Materials
3.1.1 HRE Simulation. To administer the HRE tasks central to the
present work, we used ReverSim, a computer game-based simu-
lation of netlist reverse engineering problems [6]. The simulation
consists of multiple levels, each representing one HRE task. Each
task comprises a Boolean circuit diagram that participants need
to reverse engineer in order to advance to the next level. Figure 2
shows the user interface with an example circuit. Specifically, in
each task the participants need to reason about the functionality
of the circuit in order to identify the binary input values that light
all light bulbs while not triggering any danger signs. To enter their
solution, participants can interact with the three switches to the
left. Closing a switch powers the connected wire, corresponding
to a binary input value of 1. Each gate within the circuit takes the
binary values on its input wires, applies its Boolean function, and
generates a corresponding value on the output wire. We illustrate
this process using a straw man example in Figure 3. The effect of
the chosen inputs is displayed by highlighting all powered wires
once participants submit their solution. Should the solution be in-
correct, participants can start another attempt and revise the switch
positions. Participants can also annotate each circuit by using the
mouse to draw onto the screen in three different colors.

Switches

Player
Statistics

Logical AND
Gate

Game
Score

Camouflaged
Gate

Outputs

Submit
Solution

Logical OR
GateLogical NOT

Gate
Drawing
Tools

Figure 2: An example level of ReverSim. Participants need
to understand the functionality of the circuit and then set
the switches to the left such that the light bulb illuminates,
whereas the danger sign must not be supplied with current.
With the drawing tools they can annotate the circuit. The
function of the gate in the form of an ink blot is hidden
from the participants to make the solution of the level more
difficult, simulating camouflaged gate obfuscation [13].
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Figure 3: A strawman example of netlist reverse engineering.
The goal is to light the bulb which needs a binary input value
of 1. Knowing that the logical NOT gate can invert the signal
from 0 to 1, we make the switch open (0) to light the bulb.

�

�
. = � ∨ �

�

�
. = ?

Figure 4: Two gate symbols from the circuits used in the HRE
simulation. The left symbol depicts a standard logical OR
gate with two inputs and a single output. The right symbol is
specific to the ReverSim environment and represents a cam-
ouflaged gate [13]. The logic function of this circuit element
is hidden from the participant, representing the case where
the function of a gate could not be extracted from an IC due
to an obfuscation countermeasures.

3.1.2 Netlist Reverse Engineering Tasks. The tasks used in this work
were taken from the ReverSim level library. Each features three
inputs and two outputs. First, we selected four medium-complexity
tasks, where each possible combination of light bulbs and danger
signs appears exactly once, i. e., there were no two tasks with identi-
cal target output values. Second, we included two tasks containing
simulations of obfuscated circuit elements: Covert gates aim at
confusing reverse engineers by mimicking one type of gate when
visually inspected, while actually implementing a different func-
tionality [65]. A camouflaged gate, on the other hand, is clearly
identifiable as being obfuscated, but the actual functionality is hard
to identify [13]. Figure 4 shows an example of a camouflaged gate
as a game element in ReverSim, visualized as an ink blot.

3.2 Participants
In April and May 2022, we recruited 50 participants from a univer-
sity in an English-speaking country. Conditions for participation
were a minimum age of 18 and sufficient English proficiency. Each
participant was compensated with 15 USD per hour. We aimed at
recruiting a diverse population regarding prior knowledge. There-
fore, we not only advertised the study in electrical and computer
engineering courses but also in other departments and on campus
via email, flyers, and word of mouth. The first nine participants
were recruited to pilot the study. Hence, we obtained a sample
of 41 participants for the analyses reported below. We randomly
divided our participants into two groups with CTA and RTA, re-
spectively. 20 participants were assigned to the CTA group and 21
were assigned to the RTA group.

After voluntarily agreeing on study participation, all participants
answered a pre-study questionnaire on their age, gender and edu-
cational background including their majors of study. Table 1 shows
a detailed breakdown of the demographics in our CTA and RTA
groups. In general, our sample was young and educated. 28 of them
had an educational background in electrical and computer engineer-
ing, while 13 had not. Furthermore, all participants self-rated their

Table 1: Basic demographics and prior knowledge score of
our participants by assigned TA condition.

Condition CTA RTA
rel. abs. rel. abs.

Number of Participants 20 21
Gender

male 60% 12 57% 12
female 40% 8 43% 9

Age Range
min 18 18
mean 24.7 23.2
max 32 34

Education
secondary 40% 8 52% 11
tertiary 60% 12 48% 10

Prior Knowledge Score
mean 3.15 3.24
SD 1.27 0.83

0=unfamiliar

with term

1=very low

2=low
3=medium

4=high

5=very high

Prior Knowledge Score

0

5

10

15

20

25
Di

st
rib

ut
io

n 
[%

]
CTA
RTA

Figure 5: Distribution of prior-knowledge scores for both
TA conditions. Most participants self-rated their prior know-
ledge between “medium” and “high”.

prior knowledge in 15 domains related to netlist reverse engineer-
ing. The prior-knowledge scale was developed alongside ReverSim
and concerns areas such as Boolean algebra, digital circuits, as well
as reverse engineering in general [6]. It yields a combined score as
the mean of the individual answers on a five-point Likert scale rang-
ing from “Very Low” (1) to “Very High” (5). All items offer a separate
option “unfamiliar with the term”, which is represented as 0. We
report prior-knowledge distributions for both groups in Figure 5,
showing “Medium” as the most common score.
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Demographics
Survey

Screen Recording

Tutorial Example
Tasks

4 normal 
tasks

2 obfuscated 
tasks

Playback of
Screen Recording

with Gaze Cue

Think Aloud

Feedback
Survey

Think Aloud

Screen Recording

Eye Tracking

CTA condition

RTA condition

Figure 6: Overview of the study procedure. Participants first filled out a basic demographics and prior-knowledge survey and
were then randomly assigned to the CTA or RTA condition. Both conditions contained the same set of tasks, during which
screen captures and eye tracking data were recorded. Participants in the CTA condition thought aloud while performing the
tasks. Those in the RTA condition thought aloud while reviewing a playback of their interactions with the tasks. Finally, all
participants answered a feedback survey.

3.3 Ethical Considerations
Our study was approved by our institution’s Institutional Review
Board (IRB) and we secured participants’ rights, safety and data
privacy. Before participation, we informed participants about the
study procedure, possible risks, and the right to withdraw at any
time. We minimized participants’ fatigue with regular rest periods
throughout the study. We recorded the computer screen, surveys,
eye-tracking data and audio during think-aloud sessions. Besides
voice recordings, no personal information were collected. We tran-
scribed the audio recordings using an automated transcription ser-
vice and manually curated them. Through this process, we made
sure no personal information is revealed in the transcripts for ana-
lysis and storage. Last, we stored all data on a secured department
server.

3.4 Study Procedure
Accompanied by an experimenter, each participant completed the
study procedure presented in Figure 6. Participants gave voluntary
informed consent, followed by a survey on their background and
demographics. Then, the experimenter walked participants through
a tutorial about the basic concepts and interactions required to solve
the tasks and gave instructions for thinking aloud. Importantly,
participants did not receive explicit guidance on reverse engineering
strategies. To check whether participants understood the basic
concepts and interactions, the experimenter instructed them to
pass three minimal working examples of netlist reverse engineering
tasks; otherwise, participants revisited the tutorial. Participants in
the CTA group were instructed to practice thinking aloud while
solving these example tasks.

Next, we assigned the same six reverse engineering tasks de-
scribed in Section 3.1.2 to both groups. We first presented the four
tasks with medium complexity and then the two tasks with obfus-
cated gates, each in random order. The experimenter instructed
participants to rest between two consecutive tasks. Participants in
the CTA group thought aloud throughout the tasks. Conversely,

participants in the RTA group worked in silence and were guided
to think aloud after solving all tasks. When thinking aloud, these
participants referred to a replay of their interactions with Rever-
Sim with their eye movement overlaid on the screen recording
to support them in recalling their behaviors. In accordance with
the recommendations by van Gog et al. [78], participants were in
control of the video playback. After solving the tasks and think-
ing aloud, participants filled out a post-study survey about their
experience with the tasks and the TA method. Overall, each CTA
experiment took around 1 to 1.5 hours and each RTA experiment
consumed 1.5 to 2 hours.

3.5 Data Collection
During the experiment, we collected logs and screen captureswithin
the ReverSim environment, as well as eye tracking and TA record-
ings, in the manner presented below. Furthermore, we collected
participants’ feedback after the study task. We took particular care
to ensure that all data is accurately time-synchronized, such as to
allow cross referencing between the various types of data.

3.5.1 Log Files. Throughout the experiment, ReverSim records
all interactions, including drawing, interacting with switches, and
submitting solutions. All such events are stored in a time-stamped
log file, allowing us to precisely track participants’ progress, solution
time per level, and correctness of individual solutions.

3.5.2 Eye Tracking Data. We used a Tobii Pro Nano eye tracker
to collect eye tracking data with a sampling frequency of 60 Hz.
We mounted the eye tracker and displayed the stimuli from the
HRE simulation on a 19-inch computer monitor with a resolution
of 1280 × 1024 pixels. The monitor was placed about 50 cm away
from participants’ seating position. For each participant, we cali-
brated the eye tracker before collecting data, following a standard
procedure [31, 32, 90]. We guided participants to take a seat and
adjusted the eye tracker’s tilt for them. Next, we calibrated the
system using the Tobii Pro Eye Tracker Manager software [75]. The
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software displays nine white dots on different parts of the screen
as targets for the participant to stare at. It uses the calibration data
to personalize the eye model for better tracking accuracy.

3.5.3 Think Aloud Protocols. To ensure TA quality, participants
were asked to indicate their native language and to rate their profi-
ciency in English. Based on their self-rating and our observations,
all participants met general professional proficiency. We captured
their TA verbalizations using a desk microphone and stored them in
combination with a screen recording, such that the current state of
the HRE simulation as well as anymouse movements were available
to provide context for later analysis. Transcripts were automatically
generated from the audio recordings for both CTA and RTA groups
using Microsoft Office 365.

3.5.4 Feedback Survey. Following Ruckpaul et al. [60], we assessed
whether participants were comfortable with both CTA and RTA
settings. All participants gave feedback on their personal experience
of the experiment in three areas using an online questionnaire:
(1) satisfaction with their personal task performance, (2) perceived
difficulty of the task, (3) confidence when describing the tasks
during TA, (4) CTA specific: how helpful it was to think aloud to
solve the tasks, and (5) RTA specific: how helpful the eye-gaze
cued video playback was in remembering and describing what they
were thinking. All items across all areas consisted of a rating on a
five-point Likert scale and an optional free-form answer field.

3.6 Data Analysis
Below, we provide an overview of how we analyzed eye tracking
and TA data, respectively and jointly.

3.6.1 Analysis of Eye Tracking Data. To answer RQ1, our analysis
of eye tracking data follows the steps below.

Data synchronization and cleaning. Before analyzing our data,
we temporally aligned the data sources using timestamps attached
to each recording. We first synchronized the raw eye gaze data
with the simulation log files recorded by ReverSim. This allowed
us to subsequently extract the eye-tracking data for each HRE task.
We removed data from individual HRE tasks for a small number of
participants due to poor quality or interruptions during the task.
For this purpose, we carefully cross-examined the logs from the
eye tracker and the simulation server, screen recordings, and notes
taken by the experimenter, resulting in the exclusion of 6 out of
the 246 recorded tasks.

Fixation detection. To model participants’ visual attention, we
extracted their fixations from the raw eye gaze data. Our pipeline
adopts the I2MC1 algorithm and applies Kalman filtering, interpola-
tion of missing data, and 2-means clustering to detect fixations and
address noise from the eye tracking data for our analysis [29].

Defining Areas of Interest (AOIs). AOI analysis enables us to eval-
uate fixation metrics with regard to individual visual elements of
the HRE simulation. We defined AOIs on the screen for each of the
six HRE tasks. Our AOIs were grouped into three categories: logic
gate elements, circuit input/output, and User Interface (UI) elements
such as the controls for the drawing tools. Figure 7 showcases the

1I2MC is available under open-source license: https://github.com/royhessels/I2MC/

Figure 7: Areas of Interest (AOIs) defined in one of the HRE
tasks. The color indicates the AOI category: UI elements
(blue), inputs and outputs (orange), and logic gates (green).

AOIs for one task. Each AOI covers a rectangular area around the
center of each element. We follow Goldberg and Helfman’s guide-
lines to determine the granularity and sizes of AOIs [26], despite
there being no universal practice for it.

Fixation metrics and analysis. We leveraged fixation metrics to
evaluate participants’ visual interest on AOIs. We first measured
fixation rate, which is the ratio of the total number of fixations in
each AOI to all AOIs of circuit elements [68]. A higher fixation
rate suggests participants’ greater visual interest in an AOI. Simi-
larly, we computed the proportional fixation time, which is the ratio
of the sum of fixation durations in one AOI to the total duration
time in all AOIs of circuit elements [7]. In addition, we generated
fixation heatmaps on images of the HRE tasks to aid visual ana-
lysis. In RQ1, we examine (1) how HRE tasks with different logic
gate complexities affect participants’ eye tracking metrics and, and
(2) the correlation of eye tracking features between different gates
in relation to participants’ problem-solving processes..

3.6.2 Iterative Coding of Think Aloud Protocols. We analyzed the
TA transcripts by qualitative coding and content analysis [38] to
inductively develop a codebook in the light of RQ2. One researcher
checked and corrected the automatic transcriptions from both TA
data sets for errors. The most common error sources were technical
terms such as AND gate, inverter or wires. Simultaneously, the
researcher applied content-based segmentation in order to prepare
the transcripts for coding. From the six recorded tasks for each
participant, we selected both the first task they encountered and
the task containing obfuscation (a camouflaged gate). This way we
wanted to capture the problem-solving behavior of the participants
when they encountered a new task of each set for the first time.

Four coders individually applied an open coding procedure
on those transcripts to categorize verbalizations. We used screen
recordings alongside to resolve verbal references to individual on-
screen components. All coders discussed the elicited codes and
resolved disagreements. To ensure that we accurately capture dif-
ferences between CTA and RTA, the four coders generated a coding
scheme for each separate TA method before merging both code-
books.

https://github.com/royhessels/I2MC/
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Two coders individually applied the coding scheme on a training
sample of 20% of the transcripts and iteratively discussed differ-
ences in their coding in order to revise the codebook. After this
first phase Inter-Rater Reliability (IRR) reached ^ = .43 (Cohen’s
kappa). We further refined the codebook to improve reliability by
merging similar codes, further discussing disagreement and resolv-
ing ambiguity in code definitions. Subsequent to this second phase,
the codebook was applied on 20% of the sample to validate relia-
bility. Overall IRR improved to ^ = .51. However, specific codes
concerning participants’ navigation behavior achieved an IRR of
^ >= .71. Given that those codes are essential for mapping with the
eye tracking data, we decided to apply the codebook with one coder
and limited our analysis to those codes. After creation of the final
codebook (see Appendix A), one of the involved coders deductively
coded 48 tasks from 24 randomly chosen participants – 12 from the
CTA and 12 from the RTA group. In our analysis and discussion,
we report the frequencies of codes and compare the results from
both TA methods in relation to prior literature.

3.6.3 Effects of the CTA Method on Participants and Data. As high-
lighted in Section 2.3, asking participants to think aloud while solv-
ing a cognitively demanding task might affect their performance or
impact eye tracking data. In the light ofRQ3, we therefore analyzed
the effect of CTA on our participants’ experiences, as well as on
their task performance and eye tracking data. To verify that we did
not create a negative experience for participants by asking them
to concurrently think aloud while solving the HRE challenges, we
analyzed their answers to the feedback survey. In particular, we
compared mean values of participants’ self-reported confidence
regarding the use of both TA methods, as well as the perceived
difficulty of the HRE tasks.

Exercising caution regarding potentially detrimental effects of
CTA on the experiment itself, we then checked for differences be-
tween data acquired from the CTA group compared to the RTA
group. Here, the latter group serves as our non-CTA control, given
that those participants worked in silence. Regarding task perfor-
mance, we evaluated CTA’s impact on participants’ problem-solving
time. Furthermore, we counted the number of clicks on switches
over par, i. e., the clicks that were unnecessary for an optimal so-
lution, as well as the number of attempts required to solve each
individual task and applied the same comparison. In both cases, we
used t tests to determine whether the sample means differ signifi-
cantly between the CTA and RTA groups.

Following the approach by Ruckpaul et al. [60], we further veri-
fied whether CTA prolongs fixation duration compared to working
in silence and thereby affects eye-tracking data. For this purpose,
we calculated the relative frequencies of fixation durations captured
in either TA conditions and compared the respective distributions.

3.6.4 Use Cases for Combining Eye Tracking and TA. To illustrate
the potential of joint analysis of eye tracking and TA data in the
light of RQ4, we present two use cases studying how eye tracking
features are correlated with data from TA coding.

Our first use case concerns the level of individual code assign-
ments. Here we examined how fixation statistics, e. g., their position
distributions, correspond to participants’ behaviors observed in TA.
This approach relies on accurate time synchronization between
eye gaze recordings and thought protocols. While synchronicity

can be manually achieved for RTA, we focused our analysis on
CTA transcripts, where automatic synchronization is possible. We
extracted the start and end time for each occurrence of the relevant
codes in the TA transcript using the timestamps inserted by the
automatic transcription service. We then mapped the correspond-
ing fragments of eye tracking data to each code occurrence and
compared the fixation statistics between different codes.

In our second, high-level use case, we compared eye tracking
data from participants who started an HRE task with different
strategies. We first identified the initially applied strategy from the
beginnings of RTA and CTA transcripts, using screen recordings
for context where required. After grouping participants by strategy,
we then applied AOI analysis to determine mean fixation durations
for different AOIs and compared them across the groups.

3.6.5 Statistical Calculations. For statistical group comparisons,
we used t tests when normal distribution and homogeneity of vari-
ance were given. We tested these with the Lilliefors test [46] and
Levene’s test [45]. If the assumption of normal distribution was
violated we used Welch’s t tests [82]; if further homogeneity of
variance was not given, Mann-Whitney U tests [49] were employed.
When multiple tests were calculated, Holm-Bonferroni [30] cor-
rection was applied. If variables were not metric, e. g., the code
distribution between CTA and RTA, we used Pearson’s j2 tests
for comparison. For the eye tracking data we also calculated Pear-
son’s A [56]. In general, we applied statistical calculations sparingly
because (1) our sample was not very large, which is a risk for beta
errors, and (2) we wanted to prevent alpha error accumulation due
to multiple testing.

3.7 Limitations
We recognize several limitations in our study. First, our participant
population is overall well-educated and young. Participants from
other age groups or with other prior knowledge backgrounds may
contribute to different observations in completing the HRE tasks.
Second, though all participants met our requirements for English
proficiency, it remains a question if speaking a non-native language
affected their accuracy of TA in this context. Also, it remains unclear
whether verbalizations are representations of unbiased retrievals
from memory during TA. Nevertheless, future studies may use
eye tracking to cross-validate the verbalizations during TA. Third,
our work primarily analyzed participants’ visual attention during
HRE problem-solving using fixations captured with eye tracking
and AOI analysis in line with prior work and guidelines [52, 70].
We chose this particular focus because these features are most
crucial to understanding visual attention, which is the foundation
for solvingHRE tasks, and how to analyze them in combinationwith
TA was previously unknown. Compared to fixations, the amount of
information acquisition and cognitive processing during saccades is
limited [33, 66]. Nevertheless, we encourage future studies to enable
more kinds of analysis for HRE from aspects other than attention,
including stress and cognitive familiarity indicated by saccadic
and pupil features respectively [34, 71]. In addition, HRE problem
solving may depend on other factors as well, such as the prior
experience and working memory of the analyst [5]. Quantifying
the influences of these factors is not within the scope of this paper.
Despite these limitations due to the exploratory nature of our work,
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we believe our study’s contribution is significant as the first work
to design mixed methods for understanding HRE problem-solving.

4 RESULTS AND DISCUSSION
4.1 RQ1: Analyzing HRE Problem Solving using

Eye Tracking
This section discusses how to interpret participants’ processes to
solve HRE tasks from eye tracking features of individual circuit
elements.

In Figure 8, we present one participant’s fixation heatmap as an
example for visualizing their attention on different regions of an
HRE task. This particular task features a camouflaged gate, which
means that its actual logic function is obscured by an ink blot.
The example shows that the participant spent most fixations on
the camouflaged gate, compared to other gates. An insight gained
from this is that even though uncovering the logic function of the
camouflaged gate is not actually required to solve the HRE task,
the gate nevertheless presents a strong distractor.

While heatmaps are a helpful tool to visualize individual partici-
pants’ behavior, statistical analyses on eye gaze behavior require
an abstraction of AOIs: In the following, we compute the number
and duration of fixations on individual AOIs. From this, we gain
insight into the effect of gate types and obfuscation on eye gaze
in Section 4.1.1. In Section 4.1.2, we investigate the effect of gate
positions and their interconnection.

4.1.1 Complexity of Gate Types. We first demonstrate how tasks
with and without obfuscated gates affect participants’ visual atten-
tion. Figure 9 shows the statistics of fixation rates for each category
of AOIs for the three different task types; i. e., without obfuscation,
camouflaging obfuscation and covert obfuscation. Overall, we ob-
served that the fixation rates feature similar proportions between
the AOIs in all three types of task. A comparison of proportional fix-
ation times, shown in Appendix B, yields equal results. For the tasks
containing either type of obfuscated gate, those gates occupied a

Figure 8: Heat map of raw eye gaze data for a single partici-
pant in an HRE task involving a camouflaged gate, overlaid
with the participant’s annotations on the circuit. The cam-
ouflaged gate is represented by the orange ink blot in the
center. It is evident that this participant focuses most of their
attention on the camouflaged gate, while the input and out-
put elements receive very limited attention.

major fraction of visual attention compared to non-obfuscated ones.
This matches the initial observation from Figure 8 where we con-
cluded from the heat map that a considerable amount of attention
is drawn to the camouflaged gate.

In addition, participants spent the least visual attention on UI
elements, despite the total size of this category being the largest.
Also, participants weremore attentive to the input switches than the
circuit’s outputs. This stands to reason because participants need
to enter their solutions by clicking switches, while the outputs are
static elements that require little reasoning. Note that the variances
are large in every type of task, revealing substantial individual
differences between participants.

4.1.2 Correlation Between Gates. Beyond showing the influence of
individual elements on problem solving, we employed eye tracking
to investigate the underlying association between circuit elements.
We computed the correlations of fixation rate and proportional
fixation time between every pair of circuit element AOI for all
levels. Specifically, Figure 10 shows a correlation coefficient matrix
for fixation rate in one task, across participants. We find that the
significant correlations visible in Figure 10a correspond to gate pairs
between which exists an immediate, or at least short, connection.

4.1.3 Discussion of RQ1. From the above results, we summarize
the following takeaways. First, both heatmaps and AOI analysis
helped us identify where participants spent most visual attention
during HRE tasks. Notably, both analyses indicate that eye tracking
on circuit diagrams as employed in the present setting is precise
enough to resolve participants’ focus on individual circuit elements.
From a problem-solving perspective, the distractive power of indi-
vidual obfuscated gates is remarkable. Even more so, camouflaged
gates appear to draw participants’ attention regardless of whether
an understanding of their function is in fact required to solve the
HRE task at hand. This insight may give rise to more efficient hard-
ware protection schemes, which we will further discuss towards
the end of this paper.

Second, we discovered correlations between fixation rates on
different gates. As these correlations correspond well with the inter-
connections of the gates within the netlist, we see this as a further
indicator that eye tracking may be suitable to track participants’
navigation within a netlist, for which we provide two use cases
when answering RQ4. While in the present example, we performed
the required AOI analyses after completion of the experiment, we
consider it certainly feasible to do so in real time with dynamic
AOIs. The ability to perform such fast component-level AOI analy-
ses may, furthermore, open up a new avenue for integrating eye
tracking into reverse engineering tools such as HAL [23].

4.2 RQ2: Revealing Behaviors and Approaches
through Participants’ Think Aloud

To further reveal participants’ behaviors and approaches during
HRE problem solving, we analyzed their TA transcripts using a
coding technique based on qualitative content analysis as described
in Section 3.6.2.

4.2.1 Final Codebook and Code Frequencies. The final codebook
consists of the 16 main codes shown in Figure 11 with their ob-
served relative frequencies. Four of these codes were specific to the
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Figure 9: Statistics of fixation rate for each AOI category under different task complexities (RTA group). The basic logic gate
types (AND, OR, NOT) receive similar attention across all types of the HRE tasks, but are outweighed by both camouflaged and
covert gates. Output and UI elements receive little attention. In the statistics for proportional fixation time and the CTA group,
we attained very similar observations to this example.

Retrospective Think Aloud method. The full codebook and code
hierarchy including all sub-codes can be found in Appendix A.

For forward tracking we reached Cohen’s kappa of ^ = .71 and
for backward tracking^ = .73.These codes were assigned to capture
participants’ navigation within the task, which is fundamental for
understanding problem-solving processes in HRE. In particular,
forward tracking was assigned when participants proceeded with
a given input value from a switch or gate and tracked this signal
further towards the next gate or the circuit’s output; i. e., light bulb
or danger sign. Backward tracking was assigned when participants
traced from the circuit’s output or a gate towards the preceding
gate or the switches.

We compared the relative proportions between the codes com-
mon to both CTA and RTA and found no significant differences
(j2 = 15.01, 3 5 = 15, ? = .45). Interestingly, CTA produces an
average of 38.7 codes while RTA yields 45.9, which equates to
approximately 19% more codes in the RTA condition. Note that
11.5 percentage points of additional codes are allotted to the RTA-
specific codes, which describe behavior that occurred as participants
recalled the task.The code insight, shown at the bottom of Figure 11,
is by far the most prevalent of those codes and marks segments
where participants came to new insights about the task or the qual-
ity of their solution while watching the video playback of their
own actions. This difference is largely explained by RTA transcripts
being significantly longer because participants were able to pause
the video at will. In contrast, the length of CTA transcripts is lim-
ited by the duration of the HRE tasks. RTA participants used the
pause feature a total of 118 times, corresponding to 5-6 times per
participant across all coded tasks.

We further found that rate of speech, measured in words per
minute, differed only slightly between CTA (94) and RTA (98).
However, the presence of covert gates appears to influence rate
of speech within the CTA condition. During the task with the

covert gate participants verbalized approximately 24 words less
per minute (< = 72.4, B3 = 30.5) than in tasks without obfusca-
tion (< = 96, B3 = 33.8) or the task containing a camouflaged gate
(< = 96.1, B3 = 37.4).

4.2.2 Discussion of RQ2. The overall high complexity of HRE tasks
and participants’ diverse strategies for solving them are reflected
in our codebook. Thus, for some codes, it is natural to allow ambi-
guity when coders are required to interpret participants’ mental
activities from TA. We observed from our iterative coding process
that resolving this ambiguity is possible via extensive discussion of
disagreements with at least two coders, however, doing so incurs
a significant overhead. In addition, the quality of codes applied
to the RTA transcripts may differ from those in CTA due to some
erroneous recollections during RTA (Section 4.4.3). Nevertheless,
our current coding still reliably identified fundamental behaviors
of HRE, namely forward and backward tracking, from the TA ver-
balizations. When applying our codebook, coders should make a
trade-off between saving efforts by reducing the codebook complex-
ity and gaining more in-depth insights from intensive discussion. In
addition, both CTA and RTA appear to be appropriate TA methods
to study HRE problem-solving, considering the following trade-offs.
CTA offers immediate verbalizations of participants’ navigation
and reasoning and allows high temporal synchronicity with eye
tracking. Nevertheless, in very complex tasks, RTA may offer more
benefits than CTA, as CTA participants might stop talking due to
their strong focus on the task.

4.3 RQ3: Differences Between CTA and RTA
Groups

To determine whether CTA had an impact on participants’ HRE, we
compared the CTA and RTA groups in terms of their performance,
user experience, and eye-tracking data. As the RTA group did not
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Figure 10: Correlation matrix between the fixation rates on
all gate AOIs within one task. Significant correlations be-
tween fixation rates on AOIs are explained by their underly-
ing gates being direct successors or having common inputs.

think aloud while solving the levels but afterwards, their HRE
behavior served as a baseline for our comparison.

4.3.1 Performance. To measure performance of solving each of
the six levels, we resort to three metrics: time, attempts, and
switch clicks over par (see Section 3.6). Figure 12 shows box-
plots of the solution times per level for both groups. To determine
whether there were significant differences between the conditions,
we calculated multiple Mann-Whitney-U-tests [49] with Holm-
Bonferroni correction [30]. Even without correction, the groups did
not differ significantly in their performance regarding time (ranges:
* = [201.0 − 259.0], ? = [.10 − .56]).

Similarly, for switch clicks over par (ranges: * = [126.0 −
205.0], ? = [.16 − .85]) and for number of attempts (ranges:
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Figure 11: Relative frequencies for each think-aloud code as-
signment compared between CTA and RTA conditions. Bar
lengths indicate relative frequencies. The bottom four codes
are exclusive to the RTA codebook. Either condition gener-
ates similar relative frequencies across all codes, even though,
in absolute terms, RTA generates more code assignments
overall.

* = [138.5 − 192.5], ? = [.28 − .68]) we observed no significant
differences between CTA and RTA groups.

4.3.2 Participants’ Feedback on Task Difficulty. In the feedback sur-
vey, we asked participants to rate the difficulty of the different task
sets on a 5-point Likert scale ranging from 1 (strongly disagree) and
5 (strongly agree). As the performance of CTA and RTA participants
did not differ significantly, we did not calculate inferential statistics
for perceived task difficulty, but instead report mean values and
standard deviations to reflect the participants’ evaluations.

For the question, “Solving the first four tasks (puzzles) (…)
was challenging to me.”, participants from the CTA group (< =

2.45, B3 = 1.28) as well as from the RTA group (< = 2.43, B3 = 1.25)
rather tended to disagree with mean answers between “neither
agree nor disagree” and “somewhat disagree.”

Conversely, for the question “Solving the last two tasks (puzzles)
(…) [with an obfuscated gate] was challenging to me.”, participants
from the CTA group (< = 3.50, B3 = 1.15) as well as from the RTA
group (< = 3.86, B3 = 0.91) rather tended to agree with means
between “neither agree nor disagree” and “somewhat agree.”

4.3.3 Participants’ Feedback on the TA Procedure. We also report
means and standard deviations of participant’s self-rated confidence
in describing the tasks by thinking aloud and participant’s self-rated
ease of verbalization for both groups, respectively.

For the question “I felt confident when describing the tasks (puz-
zles) during think aloud.”, participants from the CTA group (< =

3.95, B3 = 1.15) as well as from the RTA group (< = 3.71, B3 = 1.23)
tended to “somewhat agree.”
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Figure 12: Distribution of participants’ solution times for
each HRE task, divided by TA condition. The four “Plain”
tasks on the left do not feature obfuscation. An example task
is given in Figure 7.The two tasks on the right feature a single
obfuscated gate. An example for the camouflaged gate task
is given in Figure 2. We observe similar solution times for
both groups.

For the question, “I found it easy to verbalize my thoughts.”,
participants from the CTA group (< = 3.75, B3 = 1.33) as well as
from the RTA group (< = 3.57, B3 = 1.29) also tended to “somewhat
agree.”

Although the mean values of the Likert scale responses are very
similar, the content of the responses differ between groups, when
asked for explanation of their rating. A participant in the CTA
group who “strongly agreed” regarding their TA confidence argued
“I felt more like I was explaining the logic aspects of the puzzle in my
thoughts rather than random solutions so I felt comfortable with that,
with an exception of the last task.” This trade-off between difficulty
and confidencewas alsomentioned by a participant who “somewhat
disagreed”: “I feel like I was too focused on trying to figure the puzzle
out in my head than having to say it out loud. I got better at speaking
when I knew what I understand. But when I get something wrong I
would be confused and not know what to say.”

Participants in the RTA group expressed problems remembering
their thoughts during the task; e. g., “At some points I wasn’t entirely
sure what I was thinking,” “(…)if this had been done during my solving
of the problems, it would have gone much better (…)”

The CTA group was further asked to rate the statement “I found
it helpful to think aloud for solving the task (puzzle).” With a mean
of< = 3.5, B3 = 1.43 they scale between “neither agree nor disagre”
and “rather agree.” One participant who “strongly agreed” men-
tioned: “Yes, thinking aloud and writing small notes helped me keep
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Figure 13: Distribution of fixation duration (kernel density
estimation) for all participants in the CTA and RTA condi-
tions (logarithmic scale). The two distributions are similar
and approximately lognormal.Themedian fixation durations
differ by about 16 milliseconds.

track of my strategy.” In contrast, for a participant who “strongly
disagreed” it felt “(…) hard doing verbalizing and thinking at same
time.”

TheRTA groupwas asked to rate the statement “I found it helpful
to refer to the video playbackwith eye gaze cues when remembering
and describing what I thought.” With a mean of < = 3.9, B3 =

1.22 they “rather agree.” Nevertheless, participants gave diverging
explanations to this question in the free-form answer field. One
the one hand they stated that it was “definitely helpful because it
reminded me of the way I approached the problem and what I started
looking at and solving.” but on the other hand “(…) that it was more
distracting than helpful.”

4.3.4 Eye Tracking Data. To identify whether the TA method sys-
tematically influences eye gaze behavior, we compared relative
frequency distributions of all fixations recorded within the CTA
and RTA groups. We find that both frequencies approximately fol-
low a lognormal distribution as shown in Figure 13 and observe very
similar shapes (CTA:<40= = 274ms,<4380= = 233ms, B3 = 158ms;
RTA: <40= = 267ms, <4380= = 217ms, B3 = 152ms). A Mann-
Whitney U test shows that the observed 9-millisecond difference
of mean values, with CTA exhibiting higher fixation lengths, is
indeed strongly significant (* = 5.7 · 108, ? < 10−7). This signifi-
cance is probably due to the large sample of = = 66, 806 individual
fixations and should be interpreted with caution. The median fixa-
tion duration shows a similar result with a difference of about 16
milliseconds.

4.3.5 Discussion of RQ3. From the above analysis we identify little
impact of the CTA method for all four tested effects. Participants’
performance in both the obfuscated and non-obfuscated tasks did
not differ significantly between CTA and working in silence, which
is also reflected in their perceived task difficulty.
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Regarding the effect on eye tracking, Ruckpaul et al. observed
mean CTA fixations in their task that were about 55 milliseconds
shorter than in RTA, however, did not obtain a statistically signifi-
cant result (? = 0.123) [60]. Contrary to those findings, our results
indicate a slight positive and statistically significant difference in
means. We argue that, for the purpose of observing how visual
attention is distributed on individual circuit components, this dif-
ference is of limited importance and comparability between CTA
and RTA eye tracking data is generally given. In summary, we have
no evidence that CTA systematically skews the data which our
mixed-methods approach captures.

4.4 RQ4: Eye Tracking and TA as
Complementary Research Methods

By addressing RQ 1, 2 and 3 we showed that eye tracking and TA
are in isolation appropriate methods to investigate human problem
solving in HRE. Combining eye tracking and TA data might there-
fore be useful for achieving a more holistic explanation of HRE
behavior. To answer the overarching research question on how the
strengths of each method can be complemented, we present two use
cases. In Section 4.4.1, we perform a descriptive analysis localizing
the prevalence of behaviors observed in different parts of the circuit,
combining positional data obtained from eye tracking with time
frames of individual behaviors observed in TA. In Section 4.4.2, we
show that, on a higher level of abstraction, participants’ chosen
starting points in the HRE task leave characteristic patterns in eye
tracking data. Additionally, in Section 4.4.3 we highlight how eye
tracking can support RTA in the form of eye gaze–cueing.

4.4.1 Use Case I: Matching TA Codes to Eye Tracking Fixations. An
advantage of accurate time synchronization between eye tracking
and CTA protocols is the ability to precisely extract the eye tracking
data for individual behaviors that were coded in the TA protocols.

Setup. In Section 4.2, we have identified the codes forward track-
ing and backward tracking as frequent behaviors that we can detect
in the TA transcripts with high agreement. However, localizing
those behaviors is extraordinarily tedious by manual coding of tran-
scripts. To demonstrate how eye tracking reflects this information,
we followed the steps below. We first obtained two sets of fixation
time series labeled forward tracking and backward tracking using
the timestamped code assignments from all TA transcripts. Each
fixation represents visual attention to a specific coordinate on the
screen. For each of the two sets, we then calculated the distributions
of the fixations along the horizontal axis of the screen. By com-
paring the resulting density plots, we investigate the assumption
that forward tracking occurs more often towards the inputs of the
circuits, i. e., to the left, and that backward tracking is prevalent
towards the outputs on the right.

Results. Figure 14 shows which locations on the circuit partic-
ipants tended to fixate during episodes of forward or backward
tracking. From the plots it is apparent that forward tracking is more
prevalent at lower horizontal coordinates, i. e., towards the inputs
of the circuit, whereas backward tracking is more often occurring
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Figure 14: Distribution of the horizontal coordinate of fix-
ations coded with forward and backward tracking actions
(kernel density estimation), combined across all participants
and all coded HRE tasks. The shaded areas on the left and
right show the position of the circuit’s inputs, i. e.switches,
and the output symbols. During forward tracking, partici-
pants’ visual focus is predominantly on the left side of the
screen, towards the circuit’s inputs and first set of gates. Back-
ward tracking is more prevalent towards the right side of the
screen, containing gates directly connected to either of the
outputs. The three distinct peaks in both distributions are
caused by the most prevalent horizontal position of gates
across the different tasks.

towards the outputs of the circuit.2 This result reflects our definition
of forward and backward tracking behavior well. We believe that
with two coders and consensus after discussion, an even better fit
of eye tracking and TA could be reached. Eye tracking data could
further serve as an indicator for coding quality if only one coder is
available.

4.4.2 Use Case II: Identifying Strategies. To find out whether eye
tracking is suitable for identifying task-specific strategies in HRE
problem solving, we explored individual participants’ gaze behavior.

Setup. First, we identified a sample task with a peculiar structure
and formulated hypotheses for potential solution strategies: It is
sufficient to reverse engineer the blue branch in Figure 15 to un-
ambiguously solve the task, i. e., all switch positions can be clearly
determined by reverse engineering this one branch. Conversely, the
branch that ends in a danger sign alone does not provide sufficient
information to solve the task. Arguably, the best strategy to solve
this level is to apply backward tracking to the blue branch from
the light bulb, while the other branch can be ignored. Second, we
grouped participants by strategy, using the TA transcripts to iden-
tify at which of the two branches they started reverse engineering.

2Please note that each density plot is normalized, such that the area under both curves
is 1. This corrects for the fact that in total participants spent more time backward
tracking than forward tracking, as Figure 11 suggests.
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Figure 15: The structure of this HRE task allows a shortcut:
All three switch positions can be unambiguously determined
by following the blue path backwards from the light bulb on
the right. Inspecting the remaining gates colored orange is
not required and does not yield additional information.

If participants did not verbalize where they started, we extracted
this information from the video.

Third, we used the eye tracking data to calculate fixation duration
within the first 20 seconds during the task on the AOIs on both
branches to capture how participants initially explore the circuit.
We then compared the average fixation duration of participants
who started at the light bulb versus participants who started at the
danger sign.

Results. We found that participants who started reverse engineer-
ing at the light bulb spent an average of 1.44 seconds on each AOI
on the path behind the bulb, while they fixated the other AOIs for
0.52 seconds each. Conversely, participants starting at the danger
sign, spent an average of 0.99 seconds on each AOI on the light
bulb path and 0.65 seconds on each AOI on the path feeding the
danger sign.

In summary, the two strategies yield distinctive eye gaze pat-
terns: Participants starting with the light bulb gazed more at the
components of the blue branch in Figure 15, whether consciously or
unconsciously. Participants starting with the danger sign gazed less
at the components of the blue branch and more at the components
of lesser importance. We argue that one may extend this approach
to generate eye gaze models for different HRE problem-solving
strategies identified from TA within a small number of participants.
Using such models, automated analyses of eye tracking data could
then enable the discovery of corresponding strategies within a
large sample, where manual coding of full TA protocols for the
same purpose would be prohibitively time-consuming.

4.4.3 The Case for Gaze-Cued RTA. During RTA, participants
sometimes had difficulty remembering or verbalizing their problem-
solving approaches during the task. We coded these RTA specific
verbalizations as RTA orientation, RTA uncertainty/error, RTA cor-
rection, or RTA insight (see Section 4.2.1). This way, we could iden-
tify several instances in which participants reconsidered what they
had just said because the captured eye tracking differed from their
memories. To give an example from a participant who watched
their video starting the first level: “(…) and I also tried to pay at-
tention close to the beginning – but I guess based on where my eyes

were, that’s not true – where or what the end points were like.” The
participant remembered that they first had to identify the goal state
of the task, i. e. light bulb or danger sign, to subsequently start
reverse engineering from there. However, as this was their first
task, they likely had not yet developed this strategy and only used
it in subsequent tasks. During RTA, the participant became aware
of this mismatch of their memory and their actual behavior visible
from their eye gaze recording. This example indicates the potential
improvement of RTA by eye tracking.

4.4.4 Discussion of RQ4. In RQ1, we have shown that eye track-
ing has the precision to identify gaze behavior on individual gates
through AOI analysis. However, participants’ actions are hard to
interpret from eye tracking alone. At the same time, TA has short-
comings because it is often difficult to interpret which gates partic-
ipants are applying an action to, even when researchers use screen
recordings as context for coding.

Our two use cases demonstrate that combining both methods
can be valuable for interpreting problem-solving behavior in HRE.
First, eye tracking allows us to spatially locate specific behaviors
identified from TA. Second, eye tracking can be used to differenti-
ate between eye-gaze patterns resulting from different high-level
reverse engineering strategies. These techniques can reduce the
amount of manual coding required in TA, thus providing a means
to increase the sample size that can realistically be analyzed.

An important consideration here is the choice of CTA as the TA
method, as eye tracking data cannot be easily synchronized with
RTA protocols. In addition, the CTA method avoids the issue of par-
ticipants not having a comprehensive memory of a task. However,
the RTA method can be a valuable methodological adjunct when
investigating challenging reverse engineering problems where par-
ticipants are expected to become task saturated and therefore would
be unable to talk while solving the task.

5 IMPLICATIONS AND OUTLOOK
In the following, we review the theoretical and practical relevance
of our findings and outline future research directions. First, we
highlight the broader applicability of our methodological approach
beyond HRE. We then discuss our findings in relation to prior
research on Think Aloud and eye tracking, and offer insight for
improved combined analyses of both data sources. Second, our
findings inform practitioners in enhancing hardware security or
in developing educational resources for HRE. Finally, we suggest
future research directions, including automated analyses to identify
HRE problem-solving strategies and further investigating cognitive
factors relevant to HRE.

5.1 Methodological Implications
Reverse engineering as an HCI phenomenon. HRE problem solving

is not only visually demanding but also often involves navigating
complex circuits. Lee and Johnson-Laird defined HRE as “the pro-
cess of working out how to assemble components with known
properties into a system that has the input–output relations of a
target system,” i. e., as a special kind of problem solving [43]. In
particular, HRE problem solving requires frequent (re-)evaluation
of assumptions as soon as a circuit’s property – e. g., an input –
changes. This phenomenon is not exclusive to hardware security, as
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reverse engineering is a common problem-solving approach when
people have to find and process information about a digital [12] or
physical system [87] that is not intuitively accessible (e. g., not well
designed), not given (e. g., expert knowledge), lost due to poor docu-
mentation, or even intentionally hidden (e. g., through obfuscation
or dark patterns). Our methodological findings may therefore be
used to inform studies in the above cases and may also be applied
in various HCI contexts.

Methodological considerations in relation to prior work. We contex-
tualize our methodological findings with previous work on metho-
dological aspects of TA and eye tracking. Concerning RQ2 (see Sec-
tion 4.2), we discovered that RTA produces more overall codes but
does not elicit significantly different information than CTA. Previ-
ous work has come to contradictory conclusions: Some papers find
that RTA [57, 74] generates a higher number of codes, while other
papers find that CTA [39, 78] produces a higher number of codes.
Prior research tends to agree that RTA produces more insights into
high-level reasoning and metacognitive reflections [39, 60, 74, 78]3,
while participants in our study generated a substantial amount
of high-level reflections during CTA as well. Second, our findings
in RQ3 (see Section 4.3) evidence that CTA does not affect task
performance. Prior work either agrees with our results [21, 57]
or reports either a small positive [60] or negative [42] effect on
performance. Davies et al. [15] further report a notable skew in
problem-solving behavior when participants are asked to verbalize.
Considering a sample size of five participants per condition and
an inconclusive result pertaining to the direction in which task
behavior changes, this analysis should be interpreted cautiously.
In RQ3, we further observed that CTA minimally prolongs eye
fixations. In contrast, prior work by Prokop et al. [57] finds that
fixation duration is significantly shorter when verbalizing. Ruck-
paul et al. [60] generally agree, however, their observation does
not reach statistical significance. Prokop et al.’s work also suggests
that the differing findings could be a result of how participants
concentrate on the tasks during verbalization [57], which is open
to further investigation.

In summary, we find inconsistent results in the literature to
date. We emphasize that the lack of concrete and widely applicable
guidelines for combining TA and eye tracking necessitates a basic
methodological evaluation – such as the one conducted in this
paper – to ensure a sound experiment design.

Suggestions for Mixed-Methods Designs. In response to RQ4, we
proposed two innovative semi-automated approaches to tightly
combining eye tracking as a quantitative research method with
qualitative content analysis of TA. Use Case I highlights how TA
codes can be used to select and compare specific episodes of eye
gazes. Use Case II suggests that eye tracking can help extract HRE
problem-solving strategies more efficiently. While researchers have
previously applied eye tracking and TA in the same experiment,
some of this work uses eye tracking solely to provide a visual cue to
participants during Retrospective Think Aloud [17, 78]. Other work
often evaluates the results from both methods separately [25, 61].
Prior work that combines both sources either uses eye tracking
3Van Gog et al. conclude that CTA produces more insights on reasoning but base their
conclusion on absolute numbers of codes alone. Taking the relative proportions into
account, their findings appear to be generally in line with the other works.

for aligning AOIs or transcripts at a basic level [10, 27], filling si-
lence periods in TA [18], or providing additional qualitative context
for manual TA content analysis [14]. Our work expands on those
approaches by integrating TA protocols with quantitative and au-
tomated analysis of eye gaze. We suggest that our joint analysis
may offer more fine-grained insight into problem-solving behavior
with reduced analysis effort, without extensive changes to existing
experiment designs.

5.2 Practical Applications
Enhancing hardware protection by cognitive obfuscation. A bet-

ter understanding of HRE problem-solving processes may help to
protect ICs against adversarial HRE, e. g., by competitors or hostile
nation-state actors. While traditional obfuscation aims at defeating
reverse engineering tools and algorithms [89], recent work intro-
duced the concept of “cognitive obfuscation” [83]. This twist on
the HCI framework attempts to hamper human understanding of a
circuit. We observed that camouflaged and covert gates can draw
considerable attention. Hardware designers may thus use those
traditional obfuscated gates to introduce a false lead into an at-
tacker’s problem-solving process: By selectively obfuscating parts
of the circuit unrelated to the security-critical areas, they may shift
attackers’ attention away from the relevant components. With this
selective obfuscation, defenders can use obfuscated gates sparingly
and thus economically while still wasting the attackers’ time and re-
sources. The eye tracking metrics introduced in our research could
further be used to construct models that quantify the efficacy of
such obfuscation.

Improving education in hardware security. Recent massive invest-
ments [20, 64] in domestic semiconductor fabrication are creating a
major demand for the training of new talents in hardware security.
In the field of HRE, where experts are already scarce, a serious
shortage in hardware security educators thus arises. This demand
for education may be supplemented with computer-aided tools for
independent learning. Our method will motivate the design of learn-
ing content in a tutoring system for HRE novices. Specifically, a
promising method is the application of Eye Movement Modeling Ex-
amples (EMMEs): Using eye tracking and TA, one captures experts’
explanations as well as visualizations of their gaze locations as they
solve an HRE problem. EMMEs foster learning by guiding attention,
illustrating advanced perceptual strategies, and inducing a stronger
social learning situation as learners watch experts performing a
task [36, 37]. We consider EMMEs to be well-applicable to HRE
education, following our evidence from Section 4.4.2 that differing
netlist analysis strategies are indeed reflected in the corresponding
eye gaze recordings.

5.3 Future Research Directions
Our work suggests multiple research directions towards a more
comprehensive and less complex analysis of the human aspects of
HRE, which can lead to more trusted hardware devices. We identify
two major directions in the following.

Automating analysis of HRE strategies using eye tracking and TA.
Section 4.4.2 demonstrates that our participants’ problem-solving
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strategies varied. We expect that manually identifying problem-
solving strategies will become less feasible as the size and complex-
ity of hardware circuits grow. Consequently, we suggest in future
research to automate this process based on the following aspects.
First, future approaches can further automate AOI definition, espe-
cially for dynamic visual stimuli (e. g., pop-up notices) in real-world
HRE scenarios, which can be more challenging. Prior research in
software engineering has shown that it is possible to define dy-
namic AOIs automatically from fixation saliency during software
code navigation tasks [66]. Second, segmentation and labeling of
eye tracking data can be streamlined with the aid of machine learn-
ing models tuned for coding and labeling the TA data, which will
then enable more fine-grained analysis of the temporal phases in
problem solving [16].

Studying the influences of cognitive factors within HRE problem
solving. This work is exploratory with respect to understanding
HRE processes based on participants’ visual attention. HRE prob-
lem solving entails multiple sub-processes (see Section 4.2), which
are influenced by different cognitive factors, such as prior know-
ledge and working memory [86]. These factors might be behind the
varieties in problem solving that we have observed (see Section 4.4),
which encourages a more granular analysis of eye-tracking data
for these sub-processes and factors. Our case study in Section 4.4.1
exemplifies such potential, as fine-grained behaviors can be inter-
preted from just a few seconds of eye tracking data. By recruiting
more participants and introducing additional study instruments, fu-
ture studies could extend our methodology to quantifying the effect
of different cognitive factors, such as working memory [4], in these
sub-processes. Further, additional physiological data modalities
could be analyzed jointly with eye movement, including pupil dila-
tion, electroencephalogram, etc. Prior work indicates the benefits of
such multi-modal data for understanding of human processes dur-
ing screen interaction, e. g., with respect to spatial abilities [67, 72].

5.4 Conclusion
Understanding the human aspects of Hardware Reverse Engineer-
ing (HRE) is a crucial step in building more secure hardware. How-
ever, an in-depth understanding remains challenging through tradi-
tional methods, e. g., log file analysis, due to the complex problem-
solving process of HRE. Recognizing visual processing as a key in
people’s HRE problem-solving process, we contribute an innovative
mixed-methods HRE study that combines eye tracking and Think
Aloud (TA) to gain deeper insight into such processes. Based on
our study with 41 participants, we gathered evidence in support
of the hypothesis that fixations are an appropriate eye-tracking
metric to describe participants’ visual attention within an HRE task.
In particular, Area of Interest (AOI) analysis with fixation rates is
valuable for quantifying attention to individual circuit elements.
Furthermore, we evaluated two TA methods with eye tracking and
identified both as suitable with distinct strengths in different appli-
cations. Based on two use cases, we demonstrated how eye tracking
and TA complement each other for the analysis of HRE processes.
From our results, we derive methodological implications that go be-
yond the specific domain of HRE and propose practical applications
in the field of hardware security.
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Strategies / Reasoning
concluding actions / insight

justification

elimination
partial solution

branch

irrelevant input

decamouflaging

unsuccsessful strategy
perseveres

reaching a conclusion

theory crafting
planning

theory / assumption / guess
speculation

validating

backward tracking

forward tracking

Exploration
problem exceeds capabilities

starting point identification

localization of camouflaged gate

circuit exploration

goal state identification

Recall
recalls prior insight

recognizes known sub-problem

Errors and Error Correction
corrective action

identifying problem

realizing mistake

correcting mistake

error
incorrect reasoning

misinterpretation

forgetting

confusion

input error

Misc
self-talk

self instruction

external interruption

participant not talking

mumbles

RTA
orientation

uncertainty / error

correction

insight



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Walendy et al.

B FIXATION DURATION
AN

D OR NO
T

Ob
fu

sc
at

ed

In
pu

t

Ou
tp

ut UI
0.00

0.02

0.04

0.06

0.08

0.10

0.12

Fix
at

io
n 

Du
ra

tio
n

Tasks without obfuscation

AN
D OR NO
T

Ob
fu

sc
at

ed

In
pu

t

Ou
tp

ut UI

Area of Interest (AOI) Category

Task with camouflaging obfuscation

AN
D OR NO
T

Ob
fu

sc
at

ed

In
pu

t

Ou
tp

ut UI

Task with covert obfuscation

Figure 16: Statistics of fixation duration for each AOI category under different task complexities (RTA group). The basic logic
gate types (AND, OR, NOT) receive similar attention across all types of the HRE tasks, but are outweighed by both camouflaged
and covert gates. Output and UI elements receive little attention.
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