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ABSTRACT

Over the past decades, morphometric analysis of brain MRI has contributed substantially to the understanding of
healthy brain structure, development and aging as well as to improved characterisation of disease related pa-
thologies. Certified commercial tools based on normative modeling of these metrics are meanwhile available for
diagnostic purposes, but they are cost intensive and their clinical evaluation is still in its infancy. Here we have
compared the performance of “ScanOMetrics”, an open-source research-level tool for detection of statistical
anomalies in individual MRI scans, depending on whether it is operated on the output of FreeSurfer or of the
deep learning based brain morphometry tool DL + DiReCT. When applied to the public OASIS3 dataset, con-
taining patients with Alzheimer’s disease (AD) and healthy controls (HC), cortical thickness anomalies in patient
scans were mainly detected in regions that are known as predilection areas of cortical atrophy in AD, regardless
of the software used for extraction of the metrics. By contrast, anomaly detections in HCs were up to twenty-fold
reduced and spatially unspecific using both DL + DiReCT and FreeSurfer. Progression of the atrophy pattern with
clinical dementia rating (CDR) was clearly observable with both methods. DL + DiReCT provided results in less
than 25 min, more than 15 times faster than FreeSurfer. This difference in computation time might be relevant
when considering application of this or similar methodology as diagnostic decision support for neuroradiologists.

1. Introduction

morphometric variables have been included as outcome measures in
recent clinical trials (e.g. National Library of Medicine [NLM],

Many pathological processes affecting the central nervous system
(CNS) have an impact on its structural organization. Various forms of
brain morphometry have made it possible to describe brain shape
mathematically, yielding variables for statistical evaluation, which have
made important contributions towards a better understanding of healthy
brain development and aging as well as to disease manifestation and
mechanisms (see e.g. Mills et al.,, 2021; Statsenko et al., 2022;
McCutcheon et al., 2023; Joy et al., 2023 for recent examples). Large
group studies have demonstrated that metrics derived from routine
structural MRI scans are sensitive to pathological brain changes (see e.g.
Whelan et al., 2018; Laansma et al., 2021). For this reason, brain

NCT04860947 for the prediction of disease progression in multiple
sclerosis, National Library of Medicine (U.S.), 2019, or NLM
NCT06155942 for the use of morphometry as a biomarker for Parkin-
son’s disease, National Library of Medicine (U.S.), 2024).

Surface based analysis (SBA) is a variant of brain morphometry, that
attempts to represent the two-dimensional geometry of the cortex by
tesselating the interface between white matter (WM) and gray matter
(GM) with a mesh and estimating region specific metrics like the GM
volume (GMV), cortical surface area (CSA) or cortical thickness (CTh).
During the last two decades, substantial efforts have been invested into
providing software to extract precise and accurate SBA metrics from MRI
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scans. For research purposes, FreeSurfer (Dale et al., 1999; Fischl et al.,
1999a, 1999b; Fischl & Dale, 2000) has become the most widely used
automated tool. Among its advantages are its free availability and
extremely high acceptance and understanding by the community, which
has led to more than 2'800 scientific publications (PubMed search on
2024/02/17).

Sensitivity of SBA metrics to pathological processes has been mostly
established through cross-sectional and longitudinal group studies (see e.
g. de Figueiredo et al., 2021; Alkan et al., 2021; Nkrumah et al., 2023;
Fortea et al., 2023 for recent examples). In contrast, normative modeling
aims at a quantitative evaluation of single subject scans by establishing
healthy developmental trajectories and prediction intervals of SBA
metrics in a reference population. It is a powerful tool to detect statis-
tical anomalies at the individual level, making it much better suited to
support personalized diagnostics and decision making (Marquand et al.,
2016, 2019; Potvin et al., 2017; Ge et al., 2023; Potvin, 2021). In the
meantime, CE-marked and FDA-approved commercial tools for clinical
decision support by brain morphometry and normative modeling have
become available for application in various forms of dementia (Pem-
berton et al., 2021) and in patients with MS (Mendelsohn et al., 2023).

To provide reliable predictions, the models should be derived from
large normative databases (Rutherford et al., 2022). In the field of MRI,
suitable datasets have recently become available as public resources and
open doors towards the application of normative models in clinical
settings. Since MRI acquisition settings like scanner type (Sinnecker
et al., 2022) or scanning protocol (Rebsamen et al., 2023b) have been
demonstrated to influence SBA estimates, control for these confounders
by harmonization procedures is required (see e.g. Fortin et al., 2018).
Our own work in the direction of normative modeling has demonstrated
screening test characteristics of automated regional SBA metrics in pa-
tients with temporal lobe epilepsy (i.e. large negative predictive values,
while positive predictive values were only moderate; Rummel et al.,
2017) and provided markers for regional atrophy progression in patients
with multiple sclerosis (Rummel et al., 2018).

One of the remaining obstacles hindering the use of SBA normative
modeling as a decision support tool in the clinical routine is the long
computation time required for tools like FreeSurfer to process a single
MRI scan, which is in the order of ten hours on the central processing
unit (CPU) of a current standard desktop computer. Indeed, to practi-
cally contribute information to clinical diagnostics, processing times
should ideally be reduced to the order of minutes, to enable patient
evaluation on demand or at least within the same shift. To overcome this
limitation, new tools leveraging deep learning (DL) and convolutional
neural networks (CNN) running on graphical processing units (GPU)
have become available for SBA, like for example FastSurfer (Henschel
et al., 2020). DL + DiReCT (Rebsamen et al., 2020, 2023a) and Cor-
texMorph (McKinley & Rummel, 2023) are alternative approaches to
DL-based estimation of CTh. A recent comparative study revealed that
not only did DL + DiReCT substantially outperform FreeSurfer in terms
of computation time required to estimate CTh, but it also provided
comparable scan-rescan reproducibility and estimated atrophy rates
(Rebsamen et al., 2020). Importantly, DL + DiReCT was shown superior
to FreeSurfer (both cross-sectional and longitudinal) in terms of sensi-
tivity to simulated cortical thinning, especially when the introduced
atrophy was weak (Rusak et al., 2022).

The purpose of this work was to explore the performance of our
normative modeling approach (“ScanOMetrics”, Rummel et al., 2017,
2018) on metrics derived from DL + DiReCT and FreeSurfer, in the
context of clinical evaluation. To achieve full reproducibility of our re-
sults, we focussed the analysis on OASIS3 (Open Access Series of Im-
aging Studies; LaMontagne et al., 2019), a large and freely available
dataset containing clinical grade high-resolution isotropic T1-weighted
MRI scans of patients with Alzheimer’s disease (AD) and healthy con-
trols (HC). This extends previous work on DL + DiReCT and normative
modelling to a reference database of several thousand scans instead of
hundreds, and to their use for the evaluation of AD scans. We restricted
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our software comparison to the jointly available SBA metrics of the
Desikan-Killiany atlas (Desikan et al., 2006), namely regional cortical
GMYV as well as regional mean and standard deviation of the CTh. The
ability to detect regional outliers was compared between the two pro-
cessing tools and the accumulation of anomalies in brain regions that are
known for atrophy in AD group studies was studied, effectively assessing
whether normative modeling based on a faster morphometry tool (DL +
DiReCT) provides evaluation metrics that are consistent with a slower
but widely used and validated tool (FreeSurfer).

Our hypotheses were the following: Based on results by Rusak et al.
(2022) and ourselves (Rebsamen et al., 2020), we expected normative
models within ScanOMetrics to provide (1) more narrow distributions of
fit residues, (2) higher scan-rescan reproducibility, as well as (3) more
pronounced and more specific atrophy patterns in patients when using
DL + DiReCT instead of FreeSurfer metrics. Based on previous work
using PET and MRI imaging (Jansen et al., 2022; Verdi et al., 2023), we
expected that (4) the AD group would yield a higher percentage of in-
dividual scans labeled as anomalous than a leave-one-out cross-valida-
tion (LOOCV) in the HC group. Finally, we hypothesized that (5)
normative modeling at the level of individual scans/patients shows
heterogeneous anomaly patterns. When averaging the individual
anomaly maps over the whole group, the shared anomaly motifs should,
however, be similar to the map obtained when testing for statistical
differences between the entire AD and HC groups (i.e. effect sizes in a
group analysis).

2. Materials and methods

All software tools used in this paper are open-source. The Python3
implementation of ScanOMetrics is available at https://github.
com/SCAN-NRAD/ScanOMetrics. A code description is given in the
Supplementary Materials and a more detailed documentation with
tutorial is available at https://scanometrics.readthedocs.io. FreeSurfer
can be downloaded from https://surfer.nmr.mgh.harvard.edu/ and DL
+ DiReCT is available at https://github.com/SCAN-NRAD/DL-DiReCT.

2.1. OASIS3 dataset

The OASIS3 dataset (Open Access Series of Imaging Studies,
LaMontagne et al., 2019) is publicly available at www.oasis-brains.org/
and contains NIFTI files of 2'643 high-resolution (voxel sizes in the order
of 1 mm x 1 mm x 1 mm) isotropic T1-weighted MRI scans from 1'038
participants. All scans were acquired at two field strengths using
Siemens MRI scanners: Magnetom Sonata and Avanto (1.5 T, 42 scans)
as well as Biograph mMR and Magnetom Trio (both 3 T, 2'601 scans).
2/014 scans are from subjects considered HCs with normal cognition
(clinical dementia rating CDR = 0), 420 scans are from undetermined
cases with CDR = 0.5, and 209 scans correspond to patients with
established AD having CDR > 1, leading to 629 scans with CDR > 0.

Of the 2'014 HC scans, 87 are from 41 subjects that had a mixture of
scans with CDR = 0 and CDR > 0.5 (“converters” between normal
cognition and suspicion or established impairment). Those scans were
excluded from building our normative model, which was therefore
based on 1’927 scans from 696 non-converting subjects, see Table 1 for
demographic information. The 41 ‘converter’ subjects were instead used
to investigate the change trajectories between the first and follow-up
scans longitudinally.

2.2. SBA metric computation and normalization

All MRI scans were processed with Ubuntu Linux 22.04.3 LTS on a
Dell Precision 7920 workstation with the following specifications. CPU:
two Intel Xeon Gold 6148, each one equipped with 20 cores and 2.4 GHz
processor base frequency, RAM: 256 GB, GPU: one NVIDIA GeForce GTX
1080 with 8 GB memory. SBA metrics were derived from FreeSurfer
(Dale et al., 1999; Fischl et al., 1999a, 1999b; Fischl & Dale, 2000),
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Table 1

Demographic characteristics of the used OASIS3 subgroups. To increase clarity,
60 scans (2.2 %) from 15 patients with CDR changing between different levels of
CDR > 0.5 are not included here.

CDR = 0, subjects with CDR = 0.5, CDR >1,
‘non- CDR=0and ‘undetermined’ ‘established’
converters’ > 0.5, cases dementia
used for ‘converters’
normative used for
models follow-up
analysis
participants 696 41 174 112
(female) (419, 60.2 (19, 46.3 %) (85, 48.9 %) (56, 50.0 %)
%)
scans 1927 167 309 180
(female) (1188, 61.7 (84, 50.3 %) (151, 48.9 %) (91, 50.6 %)
%)
age at scan 69.0 £ 9.3, 74.0 + 8.2 76.1 £7.2 74.2 + 8.4
(years, (42.7—97.0) (54.0-94.4) (51.7-94.4) (50.3-95.6)
mean +
-SD and
range)

version 6.0.0 and DL + DiReCT (Rebsamen et al., 2020, 2023a) using
default parameters. Results were exported in tabular form using the
Desikan-Killiany atlas (Desikan et al., 2006). Because the current
implementation of DL + DiReCT does not provide other SBA metrics,
only the cortical GMV, mean and standard deviation of the CTh were
included in our study. Structures with bilateral representations were
used to compute an asymmetry index. In summary, for both processing
pipelines, each scan yielded a total of 358 ‘raw’ measurements:

subcortical volumes: 8 structures (thalamus proper, caudate, puta-
men, pallidum, accumbens area, hippocampus, amygdala and
ventral diencephalon) on 2 hemispheres plus 8 asymmetry indices
3 volumes of midline structures (brain stem, 3rd and 4th ventricles)
cortical regions of the Desikan-Killiany atlas: 3 metrics for 34 regions
on 2 hemispheres plus 3x34 asymmetry indices

brain lobes: volumes for 6 lobes (frontal, parietal, occipital, tempo-
ral, cingulate and insula) on 2 hemispheres plus 6 asymmetry
indices. Mean and standard deviation of CTh were not included here,
since a size-weighted lobar aggregation requires an estimate of the
CSA, which is currently not provided by DL + DiReCT.

brain hemispheres: left/right cortex volume and mean CTh plus
asymmetry indices

whole brain: estimate for intracranial volume (ICV).

In addition to the ‘raw’ metrics, we used ‘normalized’ variants to
account for the fact that most metrics vary with brain size (Potvin et al.,
2017). All volumes were scaled to the mean ICV of the normative
dataset. Mean and standard deviation of the CTh were instead scaled
isometrically according to ICV"(1/3) to respect the geometry of the
cortex as a thin two-dimensional sheet, which is folded into three-
dimensional space, see (Rummel et al., 2017, 2018) for details. As es-
timates for ICV we used the Estimated Total Intracranial Volume (eTIV)
for FreeSurfer and an exhaustive volume sum of all intracranial seg-
mentations for DL + DiReCT. Since ICV normalized by itself has the
same value for all scans and asymmetry indices do not change under the
normalization procedure, we obtained 239 additional ‘normalized’
metrics.

2.3. Uniform age sampling

Deviating from the original procedures described in detail in
(Rummel et al., 2017, 2018), each one of the 597 SBA metrics (raw plus
normalized) extracted from all 1'927 scans with CDR = 0 was resampled
100 times by creating 10-bin-histograms of the participant age and
drawing npi, random samples from each bin, where npj, was the
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smallest bin count. For uniform age distributions, this procedure has no
effect, whereas non-uniform age distributions are rendered approxi-
mately uniform.

2.4. Normative modeling

Normative models were built for each software and metric inde-
pendently according to the pipeline of (Rummel et al., 2017, 2018). In
brief, low order polynomials were fitted to the 100 resamples of the SBA
metrics of our HCs as a function of age. The degrees of the fit poly-
nomials were adapted for each of the resamples separately by increasing
from zero until the reduction of residual variance became insignificant
(nested F tests). To exclude overfitting, the maximum degree was set as
the odd number 2*floor(In(n/10) + 1)-1, where n is the available
number of samples (Rummel et al., 2010). For example, when using all
1'927 scans with CDR = 0, the maximal allowed degree was 11. The
polynomial age trend and prediction intervals were finally computed
from the average of all fits to the 100 resamples. Before each of these fits,
outliers were removed based on whether they exceeded the 25th or 75th
percentile of the distribution by more than 1.5 inter quartile ranges. This
procedure was repeated for the fit residues, before a final age fit to the
retained data points was generated in the same manner. Metric vari-
ability at a given age was computed by a combination of metric variance
over subjects within 10 % of the age of interest, and measurement un-
certainty derived from repeated scans in the reference dataset (for more
details, see the Supplementary Materials, and Rummel et al. 2018).

2.5. Evaluating patient data against the normative models

With the normative age models available, we applied them to patient
scans and compared their fit residues to the distribution in the HCs.
Covariates other than age (i.e. sex, scanner and scanning protocol) were
accounted for by selecting matched subgroups before computing sta-
tistics. Matching for scanning protocol allows to reduce variability in
thickness estimation due to imaging parameters and corresponding
differences in WM/GM contrast (Rebsamen et al., 2023b). Since this
matching yielded variable group sizes, the probability P of finding a fit
residue of the observed size was calculated accounting for the distri-
bution in the matching HCs and the uncertainty of the measurement, see
Rummel et al. (2017, 2018) for details. For individual scans, an initial z-
score was computed to position the individual metric with respect to the
matching and scans in the reference set that were not previously flagged
as outliers. This z-score was divided by a variance estimate that takes
into account both the standard deviation of metrics within the reference
dataset, as well as the measurement uncertainty established from
repeated scans. The resulting z-score was then converted to p-value
using a standard z to p transformation, involving the cumulative dis-
tribution of a Gaussian. To account for metric and region specific mea-
surement uncertainties, these were estimated based on repeated scans of
the same HC within an age change of less than 10 %. Note that compared
to same-session rescans under identical conditions, this estimate yields
only an upper bound of the true uncertainty. Finally, log10(P), signed
positive/negative for larger/smaller than expected fit residues, were
used as the central objects to decide whether a regional metric was
classified as statistically normal or abnormal. To detect a statistical
anomaly, a significance threshold was set to q = 0.01, equivalent to
—log10(P) > 2.

2.6. Inspection of scans with extreme atrophy

DL based tools might underperform when evaluating scans that are
too different from their training set. To assess whether one of the two
used software tools systematically mislabeled scans with extreme atro-
phy, the three scans with the smallest mean log(p) score for right and left
hemisphere mean thickness were identified, for both FreeSurfer and DL
+ DiReCT and the cortical log(p) maps of both softwares were
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compared. We further inspected individual FreeSurfer and DL + DiReCT
parcellations, focusing on regions where both tools strongly disagreed
on log(p) values.

2.7. Comparison to other normative tools

Z-scores obtained when evaluating right and left mean CTh were
compared to scores obtained using the PCN toolkit (Rutherford et al.,
2022). Signed log(p) values for the average CTh were also compared to
centiles obtained from Brain Chart (Bethlehem et al., 2022), another
open-access tool for normative modelling. CTh for the HCs were sub-
mitted along the AD subjects for both PCN toolkit and BrainChart. Since
both PCN toolkit and BrainChart rely on FreeSurfer metrics, and DL +
DiReCT log(p) values correlated strongly with FreeSurfer, we refrained
from including DL + DiReCT metrics in this comparison.

2.8. ROC curves

To explore the separation of the AD and HC groups, receiver oper-
ating characteristics (ROC) and areas under the curve (AUC) were esti-
mated separately for DL + DiReCT and FreeSurfer. The percentage of
abnormal metrics per scan (p-values below 0.01) was taken to assess
scans as a whole. To focus on brain regions that are known to be affected
in AD patients, a similar analysis was repeated for the signed log10(p)
values of the CTh of the entorhinal cortex and the hippocampal GMV.

2.9. Comparing spatial patterns

Significance maps and anomaly maps of individuals or groups were
compared using normalized L2-distances. L2 was used instead of the
Pearson correlation coefficient, because the latter is invariant to shift
and scale, which we want to account for when ranking individual maps
relative to a template.

2.10. Evaluating and cleaning the normative dataset

The normative dataset was evaluated with a subject-wise leave-one-
out cross-validation (LOOCV) study, building normative polynomial
models under exclusion of a specific HC (all sessions and repeated scans)
and testing all scans of the excluded subject against that model, similar
to what was described above for patients. To test for normality of fit
residues in our LOOCV, Shapiro-Wilk tests were performed on each of
the 597 metrics separately. To test whether the number of detections
during the LOOCV was abnormally high over all subjects and ‘raw’
metrics, we performed a binomial test with the number of positives
given by the number of anomaly detections, the number of samples
given by the number of metrics times the number of scans and the ex-
pected fraction of random outliers given by the significance threshold q
= 0.01.

To clean our normative models from scans with artifacts or potential
pathologies before final application, the LOOCV analysis was in addition
used to identify anomalous scans separately for the DL + DiReCT and
FreeSurfer pipelines and remove them from the normative datasets. We
considered scans as not (entirely) normal if they yielded p-values lower
than q = 0.01 for 18 or more out of the 358 raw metrics (5 % of metrics).
As a final step, the LOOCV procedure was repeated after cleaning of the
normative dataset. The patient evaluation described in the previous
paragraph was done against the clean normative dataset.

3. Results
We first present results from the AD patient evaluation, followed by

some more technical results regarding LOOCV evaluation of HC subjects
and dataset cleaning required before patient evaluation.
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3.1. Application to AD patients

The AD dataset consisted of 209 scans with CDR > 1.0. When using
the clean HC dataset to evaluate AD scans, both processing pipelines
indicated increased proportions of anomalous scans (i.e. scans with
more than 18 abnormal raw regional metrics out of 358, equivalent to 5
%) in the AD dataset compared to HC. DL + DiReCT resulted in 117
anomalous AD scans (56.0 % of all AD scans, compared to 1 % in the
clean HC dataset), whereas more scans were classified as anomalous
using FreeSurfer (129 CE scans, 61.7 %, compared to 0.8 % in the clean
HC dataset). Details regarding anomaly detection rates in HC can be
found in the section “Anomaly detection in healthy controls (LOOCV)”
below.

Fig. 1 compares the regional percentage of statistical CTh anomalies
detected by ScanOMetrics in individual scans (with significance P < q =
0.01, not corrected for multiple comparisons) in patients with AD as well
as in the cleaned HC dataset. The patterns of preferred anomaly detec-
tion are remarkably similar between both processing tools and sym-
metric with respect to hemispheres. Comparison of the CTh reduction
map in patients with AD (third row) with the effect size map of a direct
statistical comparison between the AD and HC groups (Cohen’s d, bot-
tom row) displays remarkable agreement of the temporo-parietal atro-
phy patterns. In patients with AD, reduction of regional mean CTh is
detectable in up to 28 % of individual scans with a strong regional
preference for the bilateral entorhinal and fusiform cortex as well as in
the precuneus and supramarginal gyrus. In the frontal lobe the CTh
reduction is weakest. For HCs the peak percentage of detected CTh re-
ductions is only in the order of ~ 1.3 %, i.e. twenty-fold reduced when
compared to patients with AD. Increase of CTh is also observed in up to
~ 4.5 % of patients with AD, with peak in the bilateral medial orbito-
frontal gyrus and cuneus. Supplementary Fig. S1 shows results equiva-
lent to Fig. 1 when using raw thickness values (i.e. without scaling for
brain size). In general, the percentage of subjects with increased thick-
ness had similar spatial patterns, but atrophy in AD subjects was slightly
stronger and more widespread. When using raw values, group effects
were also slightly larger, including small regions with increased thick-
ness in AD patients.

When stratifying scans from patients with AD by the clinical de-
mentia rating (CDR), an apparent worsening of atrophy along the tem-
poral, parietal and eventually frontal lobe regions is revealed by the CTh
anomaly maps, see Fig. 2. Using DL + DiReCT, abnormal mean ento-
rhinal CTh is detected already in about 24.8 % of patients with CDR =
0.5 (N = 416), which progresses to 47.2 % of patients with CDR =1 (N
=159), and 46.0 % of patients with CDR > 2 (N = 50). In contrast, using
FreeSurfer, abnormal thickness is detected in 17.6 % of CDR = 0.5 pa-
tients, 30.2 % of CDR = 1 patients, and 32.0 % of CDR > 2 patients. For
CDR > 1, CTh reduction becomes visible in the precuneus and supra-
marginal gyrus as well. For cases with CDR > 2 also the fusiform gyrus
(20 % of cases for DL + DiReCT and 34 % of cases for FreeSurfer) and the
lateral temporal lobes are affected. In the OASIS3 dataset an increase of
CTh in the bilateral medial orbito-frontal gyrus is observable and asso-
ciated with increasing CDR, an effect which is clearer visible with
FreeSurfer than with DL + DiReCT.

Fig. 3a compares normalized L2-distances between ScanOMetrics’
individual significance maps of all scans with CDR > 0.5 and the average
significance map of all scans with CDR > 2, which was used as a tem-
plate for clear AD. Estimates from DL + DiReCT and FreeSurfer were
found highly correlated (r = 0.87, p < 1e-16). Fig. 3b shows histograms
of the L2-distances, separately for DL + DiReCT and FreeSurfer, grouped
by increasing CDR and revealing a negative association for both tools.
Fig. 3c presents examples of individual significance maps for five
different scans. Selection was made based on quantiles of the normalized
L2-distances shown in panels a and b. Interestingly, the scan closest to
the CDR > 2 template was the same one for DL + DiReCT and FreeSurfer
(corresponding to the lowest left datapoint in Fig. 3a, a scan with CDR =
0.5). Fig. 3c illustrates at the same time how diverse significance maps
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DL+DiReCT

P&

Fig. 1. Percentage of CTh anomalies in the AD and HC groups, detected with ScanOMetrics using both processing tools. AD patients with established dementia (CDR
> 1, 209 scans) are shown in rows 1 and 3, results of the LOOCYV in cleaned non-converting HCs (CDR = 0, 1’828 scans) in rows 2 and 4. Deviations towards larger
(rows 1 and 2, red-to-yellow colormap) and smaller (rows 3 and 4, blue-to-white colormap) than expected CTh are collected separately. The bottom row shows the
effect size (Cohen’s d) when contrasting the entire AD and HC groups. Positive effect sizes did not occur in this comparison. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Percentage of CTh anomalies detected by ScanOMetrics in patients with AD, stratified by cognitive impairment levels at scan time (CDR = 0.5: rows 1 and 4,
CDR = 1: rows 2 and 5, and CDR > 2: rows 3 and 6). The upper half depicts CTh increase, while the lower half shows progression of CTh reduction. Mind that the
color scales are different from the ones used in Fig. 1.

CDR=0.5
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(N=159)
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can look like in different patients (top and middle row), how similar
anomaly detection can be for both software tools (bottom row), and how
loosely individual clinical scores and corresponding significance maps in
structural MRI scans can be related (the scan closest to the AD template
generated from CDR > 2 cases has a CDR of only 0.5).

In agreement with published results (van Hoesen et al., 1991;
Gomez-Isla et al., 1996; Juottonen et al., 1999; Du et al., 2001; Price
etal., 2001; Mueller et al., 2010; Devanand et al., 2012; Igarashi, 2023),
the bilateral entorhinal gyrus was identified as one of the earliest visible
and most prominent deviations in patients with AD from the normative
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Fig. 3. Normalized L2-distances between individual significance maps and a template (i.e. the average map of all scans with CDR > 2). Significance maps are log10
(p) maps with negative sign for CTh reduction and positive sign for CTh increase. Normalized L2-distances range from O for identical maps to 2 for antisymmetric
maps, with sqrt(2) indicating orthogonal maps (marked by dotted lines in panels a and b). a) Correlation between DL + DiReCT and FreeSurfer, individual CDR scores
are symbol/color coded. b) Grouping by CDR separately for both software tools. ¢) Significance maps in individual scans, selected according to their L2-distance.
Scans on the 1st row are the 100th percentiles in the distributions (i.e. highest distance to the reference), while the lowest row are the most similar to the group
average. In the lowest row the same scan was selected for both DL + DiReCT and FreeSurfer, and corresponds to the data point closest to the origin in panel a).

model, see Figs. 1 and 2. Hippocampal volume has also been reported to
be prominently atrophic in AD (Juottonen et al., 1999; Du et al., 2001;
Sluimer et al., 2008; Devanand et al., 2012). In Fig. 4 we display the
mean normalized volume of the hippocampus (as provided as ScanO-
Metrics output based on DL + DiReCT estimates) for the scan with the
highest individual similarity with the AD group (i.e. the lowest row in
Fig. 3c) and compare with the point cloud of the cleaned normative
dataset. Hippocampal volume is in the order of only 2.5 ml on both
hemispheres, much below the 95 % prediction interval [3.2 ml, 4.5 ml]
estimated from our HCs at the same age. Furthermore, the hippocampal
volume was found to decrease bilaterally from the first to the second
scan available for this patient. Atrophy rate for the average volume of
both hemispheres was 12.4 % over a period of 2.2 years. When using

FreeSurfer (see Supplementary Fig. S2), the estimated atrophy rate was
lower (6.7 % over 2.2 years).

We used the 87 MRI scans of the 41 subjects that were excluded from
building the normative models (conversion from CDR = 0 to CDR > 0.5)
to investigate the change of thickness over time in more detail. To focus
on the clinically relevant question of early atrophy detection, we
restricted this analysis to participants where a scan with CDR = 0 was
available, excluding any progression between higher CDR levels. Dif-
ference maps of mean regional CTh (ICV normalized, later scans minus
baseline always, regardless the associated CDR values) were averaged
over all scan pairs of the selected 41 subjects and are displayed in Fig. 5.
Similar to Fig. 2, where progression is displayed by grouping according
to CDR, the most prominent atrophy progression over time occurred in
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Fig. 4. Age dependence of the brain size normalized volume of the hippocampus, as displayed by ScanOMetrics (volume estimates by DL + DiReCT). The corre-
sponding data derived from FreeSurfer is available in our Supplementary Fig. S2. Similar results were observed for the normalized CTh of the entorhinal cortex (not
shown).Patient data (blue) are the two scans of the participant closest (i.e. had the smallest L2 norm) to the AD group’s average significance map (log10(p) maps for
the second scan are shown at the lower left section of Fig. 3c). Symbols in black represent the HCs used to build the cleaned normative dataset. Crosses are estimates
flagged during outlier removal and did not contribute to statistics. Large symbols match the patient scans regarding sex, MRI scanner type and scanning protocol,
whereas small symbols differ in at least one of these characteristics. Fully drawn lines indicate the fitted age trajectory of the normative models. Significance of
statistical comparisons and the reliability of the measurement (see Rummel et al., 2017, 2018 for details) are reported in the lower left corners of the panels. Values
reported in the upper left corner are the subject average across time points, along with the expected value from normative data and its prediction interval. (For
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Fig. 5. Average change in mean normalized regional CTh in subjects converting between CDR = 0 and CDR > 0.5. In contrast to Figs. 1, 2 and 3c changes are

measured in millimeters here.

temporo-basal brain regions, like the entorhinal, parahippocampal,
fusiform and inferior temporal gyrus, where mean CTh reduced up to
0.1 mm, a change equivalent to the expected reduction of whole brain
mean CTh in 25 years of healthy aging (Lemaitre et al., 2012). Also
remarkable is the relative sparing of the somato-sensory cortex from
atrophy progression (Thompson et al., 2003; Lerch et al., 2005;
Fennema-Notestine et al., 2009; Frisoni et al., 2010; Rebsamen et al.,
2020), which becomes most transparent in the left precentral gyrus in
Fig. 5 but can be identified in individual scans of Fig. 3 and in the per-
centage maps of Figs. 1 and 2 as well.

3.2. Scan classification

Classifying scans as AD/abnormal based on the percentage of metrics
with p-value below 0.01 lead to AUCs of 0.76 for DL + DiReCT and 0.72
for FreeSurfer (Fig. 6). Sensitivity and specificity were the closest to the
top-left corner when using a threshold of 1.04 % for DL + DiReCT (FPR
= 0.29, TPR = 0.69) and 0.62 % for FreeSurfer (FPR = 0.35, TPR =
0.69). Instead, using a fixed threshold of 5 % abnormal metrics to label a
scan as abnormal (i.e. the threshold used to clean the original dataset)
lead to FPR = 0.03 and TPR = 0.28 for DL + DiReCT, while the rates
were 0.04 and 0.20 for FreeSurfer. Similar results were obtained for the
attempt to classify scans based on the signed log10(p) value of the CTh of
the entorhinal cortex (DL + DiReCT slightly better, see Supplementary
Fig. S6) or of the hippocampal GMV (FreeSurfer slightly better). Both
tools had the same discriminant power when using the suitable metric
(AUC = 0.75).

Percentage of metrics with p<0.01

1.0

—— DL+DiReCT (AUC=0.76)
Freesurfer (AUC=0.72)

Sensitivity (TPR)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

1-Specificity (FPR)

Fig. 6. Receiver operating characteristics (ROC) for classification of scans into
AD and HC, based on their percentage of abnormal metrics. Patients with AD
were evaluated against the normative model of the clean HC dataset and all HC
scans against this subject’s LOOCV model. Black crosses show thresholds for
which the points on the ROC (sensitivity and 1-specificity) were closest to the
top-left corner.

3.3. Within-subject reproducibility/homogeneity

Supplementary Fig. S3 shows an example of CTh deviations in the
patient with CDR > 2, who had the largest number of scans (OAS30902,
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four rescans during the same session). The figure consistently shows
atrophy patterns in the right parietal and temporal lobe, as well as the
characteristic reduction in CTh in the entorhinal cortex, extended to the
lingual gyrus. Interestingly, both FreeSurfer and DL + DiReCT indicate
increased CTh in several regions in the first two rescans. Visual in-
spection of these scans showed reduced image contrast, presumably due
to patient motion, explaining the need to acquire two additional scans,
which had better image quality.

Reproducibility of CTh patterns across the whole OASIS3 dataset was
assessed. Subject-wise distances of the CTh significance maps between
rescans of the same participant were estimated by calculating the
normalized L2-distance between signed log10(p) maps of mean CTh
estimates (brain size normalized). HC maps were taken from the LOOCV
analysis, whereas AD maps were taken from their evaluation against the
clean normative dataset. When using DL + DiReCT, the distance be-
tween significance maps of repeated scans was lower in patients with AD
(L2 = 0.39 £ 0.26, median =+ standard deviation) than in HCs (L2 = 0.42
+ 0.19, p = 0.05 in a Wilcoxon rank sum test to account for the large
skewness of both distributions). For FreeSurfer, there was no significant
difference between AD and HC (AD: 0.56 + 0.26; HC: 0.56 + 0.20; p =
0.66). Repeated significance maps were significantly closer for DL +
DiReCT than for FreeSurfer (p = 9.2e-57 in Wilcoxon signed rank test on
AD maps, and p = 2e-309 on HC maps).

3.4. Inspection of scans with extreme atrophy

Fig. 7 shows the correspondence between FreeSurfer and DL +
DiReCT regarding the average log(p) value for the mean thickness of the
right and left hemispheres (Pearson correlation coefficient = 0.89, p <
le-12). Cortical log(p) maps for the 3 scans with most atrophy for DL +
DiReCT or FreeSurfer are shown in Fig. 8. Except for scans sub-
OAS30373_ses-d1211 and sub-OAS31084_ses-d2319, log(p) maps of
both tools had a correlation higher than 0.8.

Most differences in log(p) values were associated with differences in
region labeling. FreeSurfer and DL + DiReCT parcellations for the
selected scans are shown in Supplementary Fig. S8, where potential
reasons for large log(p) in these scans are discussed. Both DL + DiReCT
and FreeSurfer appeared to commit errors in challenging scans, which
might have led to spuriously low log(p) of the mean CTh of the affected
tool.
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Fig. 7. Comparison of average log(p) values for the left and right hemisphere’s
mean thickness, obtained from DL + DiReCT (x-axis) and FreeSurfer (y-axis).
Both methods showed strong agreement (pearson correlation coefficient =
0.89, p < le-12), except for a few subjects with extreme values. The 3 scans
with most atrophy for both tools were visually inspected, and the corresponding
maps and parcellations reported in Fig. 8 and Supplementary Fig. S8.
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3.5. Comparison to other normative models

When evaluating cortical thickness of AD scans and using the OASIS3
reference dataset, ScanOMetrics provided z-scores and log(p) values that
corresponded to larger models like warped Bayesian linear regression
models (Rutherford et al., 2022). Fig. 9 shows the comparison of z-scores
obtained using ScanOMetrics and PCN toolkit, which were found to
follow a strong and almost linear correspondence (Pearson correlation
coefficient = 0.98 and 0.99 for the right and left hemispheres respec-
tively, p < le-12). Supplementary Fig. S7 compares log(p) values ob-
tained with ScanOMetrics to centiles obtained using BrainChart. Here, a
strong, non-linear correspondence was found (ranked Spearman coeffi-
cient 0.95, p < le-12).

3.6. Processing times

On our hardware the processing time for one MRI scan was 9h20m +
2h50m (mean =+ standard deviation) with FreeSurfer (running on CPU
only), and 23m59s + 4m30s with DL + DiReCT. This value was split into
1m55s + 13 s for segmentation on the GPU and 22m04s + 4m25s for
CTh estimation with DiReCT (Das et al., 2009; Avants et al., 2014) on the
CPU. Fitting the clean normative models on all subjects took 8m17s for
FreeSurfer and 7m04s for DL + DiReCT. Time required for evaluation of
a single scan against a normative model was 1.91 + 0.57 s for FreeSurfer
and 1.93 + 0.58 s for DL + DiReCT.

3.7. Cleaning the normative models

Among the 1'927 HC scans, that were initially used for normative
modeling, 99 scans were flagged as anomalous in the LOOCV analysis (i.
e. more than 18 metrics with P < q = 0.01), using either DL + DiReCT or
FreeSurfer. Fig. 10 shows the cumulative distributions (left) and prob-
ability densities (right) of the fraction of abnormal metrics per scan, and
details the number of rejections for both pipelines. Regions that
contributed to the large number of anomalies in these 99 scans were
widely distributed over the entire cortex, see upper part of Supple-
mentary Fig. S4. Furthermore, visual inspection of the scans with the
largest number of deviant metrics (see Supplementary Fig. S4) revealed
the following potential causes for outlier detection:

e low image quality, mainly due to susceptibility artifacts in the mouth

region (rows 1 and 2); likely caused by dental implants (Chockattu

et al., 2018)

prominent lateral ventricles and/or enlarged CSF space suggestive of

atrophy (e.g. subject OAS30662, row 3; about 20 % of DL + DiReCT’s

metrics were flagged as abnormal with respect to the expected values

at the age of the subject (87 years), despite a reported CDR score of

Zero)

e blurring and ringing artifacts due to patient motion during the scan
(rows 4 to 6)

The 99 HC scans with large number of anomalies (5.15 %) were
removed before our final normative models were built from the of 1'828
remaining HC scans. These “clean HC datasets” were subjected to a final
LOOCYV and used for all subsequent analyses of scans from patients with
AD. In these models the number of HC scans flagged as anomalous by
either DL + DiReCT or FreeSurfer decreased to 27 (1.48 % of HC scans,
Pbinom = 0.045 for fraction 1 %). Especially for DL + DiReCT the
anomalies in these scans were much more regionally specific than before
(lower part of Supplementary Fig. S4). Shapiro-Wilk tests indicated that
almost all metrics had non-normally distributed fit residues, with only
minor improvements due to the cleaning procedures (decrease from 91
% to 85 % for DL + DiReCT and from 90 % to 84 % for FreeSurfer
regarding the 358 raw metrics, and from 93 % to 90 % for DL + DiReCT
and 98 % without change for FreeSurfer regarding the 240 brain size
normalized metrics).
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Fig. 9. Comparison of z-scores obtained for the left and right Mean Thickness, using ScanOMetrics (x-axis) and PCN toolkit (y-axis). The two normative tools provide

z-scores that strongly correlate.

3.8. Anomaly detection in healthy controls (LOOCV before cleaning)

We assessed specificity of our approach to regional anomaly detec-
tion by running a subject-specific leave-one-out cross-validation
(LOOCV) on the whole HC dataset. When considering the full set of
tests made (358 raw metrics times 1’927 scans, yielding 689'866p-
values), and using a significance threshold of q = 0.01, processing the
HC dataset with DL + DiReCT resulted in 8911 significant p-values
(1.30 %, which is slightly but significantly higher than the expected 1 %,
Pbinom < le-16). When considering an alternative q = 0.05, only 4.44 %
of p-values were significant, which was lower than the expected 5 %.
Processing data with FreeSurfer, using q = 0.01 or q = 0.05 resulted in
1.16 % and 4.13 % of significant p-values, respectively, which more or
less resembled the numbers reported by Rummel et al. (2018) for a
completely different dataset. Similar to the suspicion raised there, the
reason for this observation might be due to the residues of the

polynomial age fits not being normally distributed (Shapiro-Wilk tests)
for the vast majority of metrics in our LOOCV, regardless of whether
using DL + DiReCT (305 metrics out of 358 were not normally distrib-
uted) or FreeSurfer (299 of 358 non-normally distributed sets of re-
siduals), and independently of using uniform subsampling or not.

3.9. Features of the cleaned normative models

After cleaning, using a significance threshold of g = 0.01 lead to 1.00
% of anomalous raw metrics when using FreeSurfer, and 1.06 % when
using DL + DiReCT. A threshold of 0.001 led to 0.23 % and 0.25 %
anomalous metrics, respectively. And a threshold of 0.05 led to 3.9 %
and 4.2 % of anomalous metrics. A threshold of q = 0.01 was fixed
throughout our experiments. In terms of anomalous scans, DL + DiReCT
yielded 18 anomalous scans with more than 5 % of regions detected as
anomalies (0.98 % of the 1’828 scans), while FreeSurfer detected 14
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Fig. 10. Distribution of the abnormal fraction of metrics per scan, before (top) and after (bottom) cleaning the normative dataset. Numbers in bold correspond to the
total number of scans before and after cleaning. Numbers in smaller font correspond to anomalous scans in the dataset, as detected when using either DL + DiReCT or
FreeSurfer. Cleaning consisted in removing the 99 scans detected as anomalous by either one of the two software tools.

scans (0.77 % of scans). Union of both sets yielded 27 scans (1.48 %),
and the intersection 5 (0.27 %). Values are reported in the lower part of
Fig. 7, and correspond to scans on the right of the dotted lines in the
cumulative distribution and histogram.

Since mean age was different between our participants with CDR =
0 and CDR > 1 (see Table 1, p = 3.3e-13 in a t-test), fitting age models
and working with residues rather than with the original metrics was
appropriate. Normative models for metrics estimated with DL + DiReCT
had degree d = 0 (constant) in 55 % of the fits, d = 1 (linear) in 42 % of
the fits, and d = 2 (quadratic) in 3 % of the fits. No higher degree was
selected. When using FreeSurfer, the degree was d = 0 in 25.7 % of the
fits,d = 1 in 70.3 % of the fits, d = 2 in 3.9 % of the fits, and d = 3 (cubic)
in 0.1 % of the fits.

We performed 240 one-tailed F-tests (once for either direction) for
different residual variance when fitting normative models to brain size
normalized metrics calculated with DL + DiReCT or FreeSurfer. Testing
smaller variance for DL + DiReCT than for FreeSurfer and performing
FDR correction to account for the many comparisons, 56 of the 240
metrics were significant on level ¢ < 0.01. Most of these were either
mean normalized CTh (16 of 34 on the left hemisphere and 15 on the
right) or its standard deviation (8 on the left and 11 on the right). In
contrast, only seven residual variances of normalized GMV we