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A B S T R A C T   

Over the past decades, morphometric analysis of brain MRI has contributed substantially to the understanding of 
healthy brain structure, development and aging as well as to improved characterisation of disease related pa
thologies. Certified commercial tools based on normative modeling of these metrics are meanwhile available for 
diagnostic purposes, but they are cost intensive and their clinical evaluation is still in its infancy. Here we have 
compared the performance of “ScanOMetrics”, an open-source research-level tool for detection of statistical 
anomalies in individual MRI scans, depending on whether it is operated on the output of FreeSurfer or of the 
deep learning based brain morphometry tool DL + DiReCT. When applied to the public OASIS3 dataset, con
taining patients with Alzheimer’s disease (AD) and healthy controls (HC), cortical thickness anomalies in patient 
scans were mainly detected in regions that are known as predilection areas of cortical atrophy in AD, regardless 
of the software used for extraction of the metrics. By contrast, anomaly detections in HCs were up to twenty-fold 
reduced and spatially unspecific using both DL + DiReCT and FreeSurfer. Progression of the atrophy pattern with 
clinical dementia rating (CDR) was clearly observable with both methods. DL + DiReCT provided results in less 
than 25 min, more than 15 times faster than FreeSurfer. This difference in computation time might be relevant 
when considering application of this or similar methodology as diagnostic decision support for neuroradiologists.   

1. Introduction 

Many pathological processes affecting the central nervous system 
(CNS) have an impact on its structural organization. Various forms of 
brain morphometry have made it possible to describe brain shape 
mathematically, yielding variables for statistical evaluation, which have 
made important contributions towards a better understanding of healthy 
brain development and aging as well as to disease manifestation and 
mechanisms (see e.g. Mills et al., 2021; Statsenko et al., 2022; 
McCutcheon et al., 2023; Joy et al., 2023 for recent examples). Large 
group studies have demonstrated that metrics derived from routine 
structural MRI scans are sensitive to pathological brain changes (see e.g. 
Whelan et al., 2018; Laansma et al., 2021). For this reason, brain 

morphometric variables have been included as outcome measures in 
recent clinical trials (e.g. National Library of Medicine [NLM], 
NCT04860947 for the prediction of disease progression in multiple 
sclerosis, National Library of Medicine (U.S.), 2019, or NLM 
NCT06155942 for the use of morphometry as a biomarker for Parkin
son’s disease, National Library of Medicine (U.S.), 2024). 

Surface based analysis (SBA) is a variant of brain morphometry, that 
attempts to represent the two-dimensional geometry of the cortex by 
tesselating the interface between white matter (WM) and gray matter 
(GM) with a mesh and estimating region specific metrics like the GM 
volume (GMV), cortical surface area (CSA) or cortical thickness (CTh). 
During the last two decades, substantial efforts have been invested into 
providing software to extract precise and accurate SBA metrics from MRI 
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scans. For research purposes, FreeSurfer (Dale et al., 1999; Fischl et al., 
1999a, 1999b; Fischl & Dale, 2000) has become the most widely used 
automated tool. Among its advantages are its free availability and 
extremely high acceptance and understanding by the community, which 
has led to more than 2′800 scientific publications (PubMed search on 
2024/02/17). 

Sensitivity of SBA metrics to pathological processes has been mostly 
established through cross-sectional and longitudinal group studies (see e. 
g. de Figueiredo et al., 2021; Alkan et al., 2021; Nkrumah et al., 2023; 
Fortea et al., 2023 for recent examples). In contrast, normative modeling 
aims at a quantitative evaluation of single subject scans by establishing 
healthy developmental trajectories and prediction intervals of SBA 
metrics in a reference population. It is a powerful tool to detect statis
tical anomalies at the individual level, making it much better suited to 
support personalized diagnostics and decision making (Marquand et al., 
2016, 2019; Potvin et al., 2017; Ge et al., 2023; Potvin, 2021). In the 
meantime, CE-marked and FDA-approved commercial tools for clinical 
decision support by brain morphometry and normative modeling have 
become available for application in various forms of dementia (Pem
berton et al., 2021) and in patients with MS (Mendelsohn et al., 2023). 

To provide reliable predictions, the models should be derived from 
large normative databases (Rutherford et al., 2022). In the field of MRI, 
suitable datasets have recently become available as public resources and 
open doors towards the application of normative models in clinical 
settings. Since MRI acquisition settings like scanner type (Sinnecker 
et al., 2022) or scanning protocol (Rebsamen et al., 2023b) have been 
demonstrated to influence SBA estimates, control for these confounders 
by harmonization procedures is required (see e.g. Fortin et al., 2018). 
Our own work in the direction of normative modeling has demonstrated 
screening test characteristics of automated regional SBA metrics in pa
tients with temporal lobe epilepsy (i.e. large negative predictive values, 
while positive predictive values were only moderate; Rummel et al., 
2017) and provided markers for regional atrophy progression in patients 
with multiple sclerosis (Rummel et al., 2018). 

One of the remaining obstacles hindering the use of SBA normative 
modeling as a decision support tool in the clinical routine is the long 
computation time required for tools like FreeSurfer to process a single 
MRI scan, which is in the order of ten hours on the central processing 
unit (CPU) of a current standard desktop computer. Indeed, to practi
cally contribute information to clinical diagnostics, processing times 
should ideally be reduced to the order of minutes, to enable patient 
evaluation on demand or at least within the same shift. To overcome this 
limitation, new tools leveraging deep learning (DL) and convolutional 
neural networks (CNN) running on graphical processing units (GPU) 
have become available for SBA, like for example FastSurfer (Henschel 
et al., 2020). DL + DiReCT (Rebsamen et al., 2020, 2023a) and Cor
texMorph (McKinley & Rummel, 2023) are alternative approaches to 
DL-based estimation of CTh. A recent comparative study revealed that 
not only did DL + DiReCT substantially outperform FreeSurfer in terms 
of computation time required to estimate CTh, but it also provided 
comparable scan-rescan reproducibility and estimated atrophy rates 
(Rebsamen et al., 2020). Importantly, DL + DiReCT was shown superior 
to FreeSurfer (both cross-sectional and longitudinal) in terms of sensi
tivity to simulated cortical thinning, especially when the introduced 
atrophy was weak (Rusak et al., 2022). 

The purpose of this work was to explore the performance of our 
normative modeling approach (“ScanOMetrics”, Rummel et al., 2017, 
2018) on metrics derived from DL + DiReCT and FreeSurfer, in the 
context of clinical evaluation. To achieve full reproducibility of our re
sults, we focussed the analysis on OASIS3 (Open Access Series of Im
aging Studies; LaMontagne et al., 2019), a large and freely available 
dataset containing clinical grade high-resolution isotropic T1-weighted 
MRI scans of patients with Alzheimer’s disease (AD) and healthy con
trols (HC). This extends previous work on DL + DiReCT and normative 
modelling to a reference database of several thousand scans instead of 
hundreds, and to their use for the evaluation of AD scans. We restricted 

our software comparison to the jointly available SBA metrics of the 
Desikan-Killiany atlas (Desikan et al., 2006), namely regional cortical 
GMV as well as regional mean and standard deviation of the CTh. The 
ability to detect regional outliers was compared between the two pro
cessing tools and the accumulation of anomalies in brain regions that are 
known for atrophy in AD group studies was studied, effectively assessing 
whether normative modeling based on a faster morphometry tool (DL +
DiReCT) provides evaluation metrics that are consistent with a slower 
but widely used and validated tool (FreeSurfer). 

Our hypotheses were the following: Based on results by Rusak et al. 
(2022) and ourselves (Rebsamen et al., 2020), we expected normative 
models within ScanOMetrics to provide (1) more narrow distributions of 
fit residues, (2) higher scan-rescan reproducibility, as well as (3) more 
pronounced and more specific atrophy patterns in patients when using 
DL + DiReCT instead of FreeSurfer metrics. Based on previous work 
using PET and MRI imaging (Jansen et al., 2022; Verdi et al., 2023), we 
expected that (4) the AD group would yield a higher percentage of in
dividual scans labeled as anomalous than a leave-one-out cross-valida
tion (LOOCV) in the HC group. Finally, we hypothesized that (5) 
normative modeling at the level of individual scans/patients shows 
heterogeneous anomaly patterns. When averaging the individual 
anomaly maps over the whole group, the shared anomaly motifs should, 
however, be similar to the map obtained when testing for statistical 
differences between the entire AD and HC groups (i.e. effect sizes in a 
group analysis). 

2. Materials and methods 

All software tools used in this paper are open-source. The Python3 
implementation of ScanOMetrics is available at https://github. 
com/SCAN-NRAD/ScanOMetrics. A code description is given in the 
Supplementary Materials and a more detailed documentation with 
tutorial is available at https://scanometrics.readthedocs.io. FreeSurfer 
can be downloaded from https://surfer.nmr.mgh.harvard.edu/ and DL 
+ DiReCT is available at https://github.com/SCAN-NRAD/DL-DiReCT. 

2.1. OASIS3 dataset 

The OASIS3 dataset (Open Access Series of Imaging Studies, 
LaMontagne et al., 2019) is publicly available at www.oasis-brains.org/ 
and contains NIFTI files of 2′643 high-resolution (voxel sizes in the order 
of 1 mm x 1 mm x 1 mm) isotropic T1-weighted MRI scans from 1′038 
participants. All scans were acquired at two field strengths using 
Siemens MRI scanners: Magnetom Sonata and Avanto (1.5 T, 42 scans) 
as well as Biograph mMR and Magnetom Trio (both 3 T, 2′601 scans). 
2′014 scans are from subjects considered HCs with normal cognition 
(clinical dementia rating CDR = 0), 420 scans are from undetermined 
cases with CDR = 0.5, and 209 scans correspond to patients with 
established AD having CDR ≥ 1, leading to 629 scans with CDR > 0. 

Of the 2′014 HC scans, 87 are from 41 subjects that had a mixture of 
scans with CDR = 0 and CDR ≥ 0.5 (“converters” between normal 
cognition and suspicion or established impairment). Those scans were 
excluded from building our normative model, which was therefore 
based on 1’927 scans from 696 non-converting subjects, see Table 1 for 
demographic information. The 41 ‘converter’ subjects were instead used 
to investigate the change trajectories between the first and follow-up 
scans longitudinally. 

2.2. SBA metric computation and normalization 

All MRI scans were processed with Ubuntu Linux 22.04.3 LTS on a 
Dell Precision 7920 workstation with the following specifications. CPU: 
two Intel Xeon Gold 6148, each one equipped with 20 cores and 2.4 GHz 
processor base frequency, RAM: 256 GB, GPU: one NVIDIA GeForce GTX 
1080 with 8 GB memory. SBA metrics were derived from FreeSurfer 
(Dale et al., 1999; Fischl et al., 1999a, 1999b; Fischl & Dale, 2000), 
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version 6.0.0 and DL + DiReCT (Rebsamen et al., 2020, 2023a) using 
default parameters. Results were exported in tabular form using the 
Desikan-Killiany atlas (Desikan et al., 2006). Because the current 
implementation of DL + DiReCT does not provide other SBA metrics, 
only the cortical GMV, mean and standard deviation of the CTh were 
included in our study. Structures with bilateral representations were 
used to compute an asymmetry index. In summary, for both processing 
pipelines, each scan yielded a total of 358 ‘raw’ measurements: 

• subcortical volumes: 8 structures (thalamus proper, caudate, puta
men, pallidum, accumbens area, hippocampus, amygdala and 
ventral diencephalon) on 2 hemispheres plus 8 asymmetry indices  

• 3 volumes of midline structures (brain stem, 3rd and 4th ventricles)  
• cortical regions of the Desikan-Killiany atlas: 3 metrics for 34 regions 

on 2 hemispheres plus 3x34 asymmetry indices 
• brain lobes: volumes for 6 lobes (frontal, parietal, occipital, tempo

ral, cingulate and insula) on 2 hemispheres plus 6 asymmetry 
indices. Mean and standard deviation of CTh were not included here, 
since a size-weighted lobar aggregation requires an estimate of the 
CSA, which is currently not provided by DL + DiReCT.  

• brain hemispheres: left/right cortex volume and mean CTh plus 
asymmetry indices  

• whole brain: estimate for intracranial volume (ICV). 

In addition to the ‘raw’ metrics, we used ‘normalized’ variants to 
account for the fact that most metrics vary with brain size (Potvin et al., 
2017). All volumes were scaled to the mean ICV of the normative 
dataset. Mean and standard deviation of the CTh were instead scaled 
isometrically according to ICV^(1/3) to respect the geometry of the 
cortex as a thin two-dimensional sheet, which is folded into three- 
dimensional space, see (Rummel et al., 2017, 2018) for details. As es
timates for ICV we used the Estimated Total Intracranial Volume (eTIV) 
for FreeSurfer and an exhaustive volume sum of all intracranial seg
mentations for DL + DiReCT. Since ICV normalized by itself has the 
same value for all scans and asymmetry indices do not change under the 
normalization procedure, we obtained 239 additional ‘normalized’ 
metrics. 

2.3. Uniform age sampling 

Deviating from the original procedures described in detail in 
(Rummel et al., 2017, 2018), each one of the 597 SBA metrics (raw plus 
normalized) extracted from all 1′927 scans with CDR = 0 was resampled 
100 times by creating 10-bin-histograms of the participant age and 
drawing nmin random samples from each bin, where nmin was the 

smallest bin count. For uniform age distributions, this procedure has no 
effect, whereas non-uniform age distributions are rendered approxi
mately uniform. 

2.4. Normative modeling 

Normative models were built for each software and metric inde
pendently according to the pipeline of (Rummel et al., 2017, 2018). In 
brief, low order polynomials were fitted to the 100 resamples of the SBA 
metrics of our HCs as a function of age. The degrees of the fit poly
nomials were adapted for each of the resamples separately by increasing 
from zero until the reduction of residual variance became insignificant 
(nested F tests). To exclude overfitting, the maximum degree was set as 
the odd number 2*floor(ln(n/10) + 1)-1, where n is the available 
number of samples (Rummel et al., 2010). For example, when using all 
1′927 scans with CDR = 0, the maximal allowed degree was 11. The 
polynomial age trend and prediction intervals were finally computed 
from the average of all fits to the 100 resamples. Before each of these fits, 
outliers were removed based on whether they exceeded the 25th or 75th 
percentile of the distribution by more than 1.5 inter quartile ranges. This 
procedure was repeated for the fit residues, before a final age fit to the 
retained data points was generated in the same manner. Metric vari
ability at a given age was computed by a combination of metric variance 
over subjects within 10 % of the age of interest, and measurement un
certainty derived from repeated scans in the reference dataset (for more 
details, see the Supplementary Materials, and Rummel et al. 2018). 

2.5. Evaluating patient data against the normative models 

With the normative age models available, we applied them to patient 
scans and compared their fit residues to the distribution in the HCs. 
Covariates other than age (i.e. sex, scanner and scanning protocol) were 
accounted for by selecting matched subgroups before computing sta
tistics. Matching for scanning protocol allows to reduce variability in 
thickness estimation due to imaging parameters and corresponding 
differences in WM/GM contrast (Rebsamen et al., 2023b). Since this 
matching yielded variable group sizes, the probability P of finding a fit 
residue of the observed size was calculated accounting for the distri
bution in the matching HCs and the uncertainty of the measurement, see 
Rummel et al. (2017, 2018) for details. For individual scans, an initial z- 
score was computed to position the individual metric with respect to the 
matching and scans in the reference set that were not previously flagged 
as outliers. This z-score was divided by a variance estimate that takes 
into account both the standard deviation of metrics within the reference 
dataset, as well as the measurement uncertainty established from 
repeated scans. The resulting z-score was then converted to p-value 
using a standard z to p transformation, involving the cumulative dis
tribution of a Gaussian. To account for metric and region specific mea
surement uncertainties, these were estimated based on repeated scans of 
the same HC within an age change of less than 10 %. Note that compared 
to same-session rescans under identical conditions, this estimate yields 
only an upper bound of the true uncertainty. Finally, log10(P), signed 
positive/negative for larger/smaller than expected fit residues, were 
used as the central objects to decide whether a regional metric was 
classified as statistically normal or abnormal. To detect a statistical 
anomaly, a significance threshold was set to q = 0.01, equivalent to 
− log10(P) > 2. 

2.6. Inspection of scans with extreme atrophy 

DL based tools might underperform when evaluating scans that are 
too different from their training set. To assess whether one of the two 
used software tools systematically mislabeled scans with extreme atro
phy, the three scans with the smallest mean log(p) score for right and left 
hemisphere mean thickness were identified, for both FreeSurfer and DL 
+ DiReCT and the cortical log(p) maps of both softwares were 

Table 1 
Demographic characteristics of the used OASIS3 subgroups. To increase clarity, 
60 scans (2.2 %) from 15 patients with CDR changing between different levels of 
CDR ≥ 0.5 are not included here.   

CDR = 0, 
‘non- 
converters’ 
used for 
normative 
models 

subjects with 
CDR = 0 and 
≥ 0.5, 
‘converters’ 
used for 
follow-up 
analysis 

CDR = 0.5, 
‘undetermined’ 
cases 

CDR ≥ 1, 
‘established’ 
dementia 

participants 
(female) 

696 
(419, 60.2 
%) 

41 
(19, 46.3 %) 

174 
(85, 48.9 %) 

112 
(56, 50.0 %) 

scans 
(female) 

1′927 
(1′188, 61.7 
%) 

167 
(84, 50.3 %) 

309 
(151, 48.9 %) 

180 
(91, 50.6 %) 

age at scan 
(years, 
mean +
-SD and 
range) 

69.0 ± 9.3, 
(42.7––97.0) 

74.0 ± 8.2 
(54.0–94.4) 

76.1 ± 7.2 
(51.7–94.4) 

74.2 ± 8.4 
(50.3–95.6)  
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compared. We further inspected individual FreeSurfer and DL + DiReCT 
parcellations, focusing on regions where both tools strongly disagreed 
on log(p) values. 

2.7. Comparison to other normative tools 

Z-scores obtained when evaluating right and left mean CTh were 
compared to scores obtained using the PCN toolkit (Rutherford et al., 
2022). Signed log(p) values for the average CTh were also compared to 
centiles obtained from Brain Chart (Bethlehem et al., 2022), another 
open-access tool for normative modelling. CTh for the HCs were sub
mitted along the AD subjects for both PCN toolkit and BrainChart. Since 
both PCN toolkit and BrainChart rely on FreeSurfer metrics, and DL +
DiReCT log(p) values correlated strongly with FreeSurfer, we refrained 
from including DL + DiReCT metrics in this comparison. 

2.8. ROC curves 

To explore the separation of the AD and HC groups, receiver oper
ating characteristics (ROC) and areas under the curve (AUC) were esti
mated separately for DL + DiReCT and FreeSurfer. The percentage of 
abnormal metrics per scan (p-values below 0.01) was taken to assess 
scans as a whole. To focus on brain regions that are known to be affected 
in AD patients, a similar analysis was repeated for the signed log10(p) 
values of the CTh of the entorhinal cortex and the hippocampal GMV. 

2.9. Comparing spatial patterns 

Significance maps and anomaly maps of individuals or groups were 
compared using normalized L2-distances. L2 was used instead of the 
Pearson correlation coefficient, because the latter is invariant to shift 
and scale, which we want to account for when ranking individual maps 
relative to a template. 

2.10. Evaluating and cleaning the normative dataset 

The normative dataset was evaluated with a subject-wise leave-one- 
out cross-validation (LOOCV) study, building normative polynomial 
models under exclusion of a specific HC (all sessions and repeated scans) 
and testing all scans of the excluded subject against that model, similar 
to what was described above for patients. To test for normality of fit 
residues in our LOOCV, Shapiro-Wilk tests were performed on each of 
the 597 metrics separately. To test whether the number of detections 
during the LOOCV was abnormally high over all subjects and ‘raw’ 
metrics, we performed a binomial test with the number of positives 
given by the number of anomaly detections, the number of samples 
given by the number of metrics times the number of scans and the ex
pected fraction of random outliers given by the significance threshold q 
= 0.01. 

To clean our normative models from scans with artifacts or potential 
pathologies before final application, the LOOCV analysis was in addition 
used to identify anomalous scans separately for the DL + DiReCT and 
FreeSurfer pipelines and remove them from the normative datasets. We 
considered scans as not (entirely) normal if they yielded p-values lower 
than q = 0.01 for 18 or more out of the 358 raw metrics (5 % of metrics). 
As a final step, the LOOCV procedure was repeated after cleaning of the 
normative dataset. The patient evaluation described in the previous 
paragraph was done against the clean normative dataset. 

3. Results 

We first present results from the AD patient evaluation, followed by 
some more technical results regarding LOOCV evaluation of HC subjects 
and dataset cleaning required before patient evaluation. 

3.1. Application to AD patients 

The AD dataset consisted of 209 scans with CDR ≥ 1.0. When using 
the clean HC dataset to evaluate AD scans, both processing pipelines 
indicated increased proportions of anomalous scans (i.e. scans with 
more than 18 abnormal raw regional metrics out of 358, equivalent to 5 
%) in the AD dataset compared to HC. DL + DiReCT resulted in 117 
anomalous AD scans (56.0 % of all AD scans, compared to 1 % in the 
clean HC dataset), whereas more scans were classified as anomalous 
using FreeSurfer (129 CE scans, 61.7 %, compared to 0.8 % in the clean 
HC dataset). Details regarding anomaly detection rates in HC can be 
found in the section “Anomaly detection in healthy controls (LOOCV)” 
below. 

Fig. 1 compares the regional percentage of statistical CTh anomalies 
detected by ScanOMetrics in individual scans (with significance P < q =
0.01, not corrected for multiple comparisons) in patients with AD as well 
as in the cleaned HC dataset. The patterns of preferred anomaly detec
tion are remarkably similar between both processing tools and sym
metric with respect to hemispheres. Comparison of the CTh reduction 
map in patients with AD (third row) with the effect size map of a direct 
statistical comparison between the AD and HC groups (Cohen’s d, bot
tom row) displays remarkable agreement of the temporo-parietal atro
phy patterns. In patients with AD, reduction of regional mean CTh is 
detectable in up to 28 % of individual scans with a strong regional 
preference for the bilateral entorhinal and fusiform cortex as well as in 
the precuneus and supramarginal gyrus. In the frontal lobe the CTh 
reduction is weakest. For HCs the peak percentage of detected CTh re
ductions is only in the order of ~ 1.3 %, i.e. twenty-fold reduced when 
compared to patients with AD. Increase of CTh is also observed in up to 
~ 4.5 % of patients with AD, with peak in the bilateral medial orbito- 
frontal gyrus and cuneus. Supplementary Fig. S1 shows results equiva
lent to Fig. 1 when using raw thickness values (i.e. without scaling for 
brain size). In general, the percentage of subjects with increased thick
ness had similar spatial patterns, but atrophy in AD subjects was slightly 
stronger and more widespread. When using raw values, group effects 
were also slightly larger, including small regions with increased thick
ness in AD patients. 

When stratifying scans from patients with AD by the clinical de
mentia rating (CDR), an apparent worsening of atrophy along the tem
poral, parietal and eventually frontal lobe regions is revealed by the CTh 
anomaly maps, see Fig. 2. Using DL + DiReCT, abnormal mean ento
rhinal CTh is detected already in about 24.8 % of patients with CDR =
0.5 (N = 416), which progresses to 47.2 % of patients with CDR = 1 (N 
= 159), and 46.0 % of patients with CDR ≥ 2 (N = 50). In contrast, using 
FreeSurfer, abnormal thickness is detected in 17.6 % of CDR = 0.5 pa
tients, 30.2 % of CDR = 1 patients, and 32.0 % of CDR ≥ 2 patients. For 
CDR ≥ 1, CTh reduction becomes visible in the precuneus and supra
marginal gyrus as well. For cases with CDR ≥ 2 also the fusiform gyrus 
(20 % of cases for DL + DiReCT and 34 % of cases for FreeSurfer) and the 
lateral temporal lobes are affected. In the OASIS3 dataset an increase of 
CTh in the bilateral medial orbito-frontal gyrus is observable and asso
ciated with increasing CDR, an effect which is clearer visible with 
FreeSurfer than with DL + DiReCT. 

Fig. 3a compares normalized L2-distances between ScanOMetrics’ 
individual significance maps of all scans with CDR ≥ 0.5 and the average 
significance map of all scans with CDR ≥ 2, which was used as a tem
plate for clear AD. Estimates from DL + DiReCT and FreeSurfer were 
found highly correlated (r = 0.87, p < 1e-16). Fig. 3b shows histograms 
of the L2-distances, separately for DL + DiReCT and FreeSurfer, grouped 
by increasing CDR and revealing a negative association for both tools. 
Fig. 3c presents examples of individual significance maps for five 
different scans. Selection was made based on quantiles of the normalized 
L2-distances shown in panels a and b. Interestingly, the scan closest to 
the CDR ≥ 2 template was the same one for DL + DiReCT and FreeSurfer 
(corresponding to the lowest left datapoint in Fig. 3a, a scan with CDR =
0.5). Fig. 3c illustrates at the same time how diverse significance maps 
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can look like in different patients (top and middle row), how similar 
anomaly detection can be for both software tools (bottom row), and how 
loosely individual clinical scores and corresponding significance maps in 
structural MRI scans can be related (the scan closest to the AD template 
generated from CDR ≥ 2 cases has a CDR of only 0.5). 

In agreement with published results (van Hoesen et al., 1991; 
Gómez-Isla et al., 1996; Juottonen et al., 1999; Du et al., 2001; Price 
et al., 2001; Mueller et al., 2010; Devanand et al., 2012; Igarashi, 2023), 
the bilateral entorhinal gyrus was identified as one of the earliest visible 
and most prominent deviations in patients with AD from the normative 

Fig. 1. Percentage of CTh anomalies in the AD and HC groups, detected with ScanOMetrics using both processing tools. AD patients with established dementia (CDR 
≥ 1, 209 scans) are shown in rows 1 and 3, results of the LOOCV in cleaned non-converting HCs (CDR = 0, 1′828 scans) in rows 2 and 4. Deviations towards larger 
(rows 1 and 2, red-to-yellow colormap) and smaller (rows 3 and 4, blue-to-white colormap) than expected CTh are collected separately. The bottom row shows the 
effect size (Cohen’s d) when contrasting the entire AD and HC groups. Positive effect sizes did not occur in this comparison. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Percentage of CTh anomalies detected by ScanOMetrics in patients with AD, stratified by cognitive impairment levels at scan time (CDR = 0.5: rows 1 and 4, 
CDR = 1: rows 2 and 5, and CDR ≥ 2: rows 3 and 6). The upper half depicts CTh increase, while the lower half shows progression of CTh reduction. Mind that the 
color scales are different from the ones used in Fig. 1. 
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model, see Figs. 1 and 2. Hippocampal volume has also been reported to 
be prominently atrophic in AD (Juottonen et al., 1999; Du et al., 2001; 
Sluimer et al., 2008; Devanand et al., 2012). In Fig. 4 we display the 
mean normalized volume of the hippocampus (as provided as ScanO
Metrics output based on DL + DiReCT estimates) for the scan with the 
highest individual similarity with the AD group (i.e. the lowest row in 
Fig. 3c) and compare with the point cloud of the cleaned normative 
dataset. Hippocampal volume is in the order of only 2.5 ml on both 
hemispheres, much below the 95 % prediction interval [3.2 ml, 4.5 ml] 
estimated from our HCs at the same age. Furthermore, the hippocampal 
volume was found to decrease bilaterally from the first to the second 
scan available for this patient. Atrophy rate for the average volume of 
both hemispheres was 12.4 % over a period of 2.2 years. When using 

FreeSurfer (see Supplementary Fig. S2), the estimated atrophy rate was 
lower (6.7 % over 2.2 years). 

We used the 87 MRI scans of the 41 subjects that were excluded from 
building the normative models (conversion from CDR = 0 to CDR ≥ 0.5) 
to investigate the change of thickness over time in more detail. To focus 
on the clinically relevant question of early atrophy detection, we 
restricted this analysis to participants where a scan with CDR = 0 was 
available, excluding any progression between higher CDR levels. Dif
ference maps of mean regional CTh (ICV normalized, later scans minus 
baseline always, regardless the associated CDR values) were averaged 
over all scan pairs of the selected 41 subjects and are displayed in Fig. 5. 
Similar to Fig. 2, where progression is displayed by grouping according 
to CDR, the most prominent atrophy progression over time occurred in 

Fig. 3. Normalized L2-distances between individual significance maps and a template (i.e. the average map of all scans with CDR ≥ 2). Significance maps are log10 
(p) maps with negative sign for CTh reduction and positive sign for CTh increase. Normalized L2-distances range from 0 for identical maps to 2 for antisymmetric 
maps, with sqrt(2) indicating orthogonal maps (marked by dotted lines in panels a and b). a) Correlation between DL + DiReCT and FreeSurfer, individual CDR scores 
are symbol/color coded. b) Grouping by CDR separately for both software tools. c) Significance maps in individual scans, selected according to their L2-distance. 
Scans on the 1st row are the 100th percentiles in the distributions (i.e. highest distance to the reference), while the lowest row are the most similar to the group 
average. In the lowest row the same scan was selected for both DL + DiReCT and FreeSurfer, and corresponds to the data point closest to the origin in panel a). 
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temporo-basal brain regions, like the entorhinal, parahippocampal, 
fusiform and inferior temporal gyrus, where mean CTh reduced up to 
0.1 mm, a change equivalent to the expected reduction of whole brain 
mean CTh in 25 years of healthy aging (Lemaitre et al., 2012). Also 
remarkable is the relative sparing of the somato-sensory cortex from 
atrophy progression (Thompson et al., 2003; Lerch et al., 2005; 
Fennema-Notestine et al., 2009; Frisoni et al., 2010; Rebsamen et al., 
2020), which becomes most transparent in the left precentral gyrus in 
Fig. 5 but can be identified in individual scans of Fig. 3 and in the per
centage maps of Figs. 1 and 2 as well. 

3.2. Scan classification 

Classifying scans as AD/abnormal based on the percentage of metrics 
with p-value below 0.01 lead to AUCs of 0.76 for DL + DiReCT and 0.72 
for FreeSurfer (Fig. 6). Sensitivity and specificity were the closest to the 
top-left corner when using a threshold of 1.04 % for DL + DiReCT (FPR 
= 0.29, TPR = 0.69) and 0.62 % for FreeSurfer (FPR = 0.35, TPR =
0.69). Instead, using a fixed threshold of 5 % abnormal metrics to label a 
scan as abnormal (i.e. the threshold used to clean the original dataset) 
lead to FPR = 0.03 and TPR = 0.28 for DL + DiReCT, while the rates 
were 0.04 and 0.20 for FreeSurfer. Similar results were obtained for the 
attempt to classify scans based on the signed log10(p) value of the CTh of 
the entorhinal cortex (DL + DiReCT slightly better, see Supplementary 
Fig. S6) or of the hippocampal GMV (FreeSurfer slightly better). Both 
tools had the same discriminant power when using the suitable metric 
(AUC = 0.75). 3.3. Within-subject reproducibility/homogeneity 

Supplementary Fig. S3 shows an example of CTh deviations in the 
patient with CDR ≥ 2, who had the largest number of scans (OAS30902, 

Fig. 4. Age dependence of the brain size normalized volume of the hippocampus, as displayed by ScanOMetrics (volume estimates by DL + DiReCT). The corre
sponding data derived from FreeSurfer is available in our Supplementary Fig. S2. Similar results were observed for the normalized CTh of the entorhinal cortex (not 
shown).Patient data (blue) are the two scans of the participant closest (i.e. had the smallest L2 norm) to the AD group’s average significance map (log10(p) maps for 
the second scan are shown at the lower left section of Fig. 3c). Symbols in black represent the HCs used to build the cleaned normative dataset. Crosses are estimates 
flagged during outlier removal and did not contribute to statistics. Large symbols match the patient scans regarding sex, MRI scanner type and scanning protocol, 
whereas small symbols differ in at least one of these characteristics. Fully drawn lines indicate the fitted age trajectory of the normative models. Significance of 
statistical comparisons and the reliability of the measurement (see Rummel et al., 2017, 2018 for details) are reported in the lower left corners of the panels. Values 
reported in the upper left corner are the subject average across time points, along with the expected value from normative data and its prediction interval. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Average change in mean normalized regional CTh in subjects converting between CDR = 0 and CDR ≥ 0.5. In contrast to Figs. 1, 2 and 3c changes are 
measured in millimeters here. 

Fig. 6. Receiver operating characteristics (ROC) for classification of scans into 
AD and HC, based on their percentage of abnormal metrics. Patients with AD 
were evaluated against the normative model of the clean HC dataset and all HC 
scans against this subject’s LOOCV model. Black crosses show thresholds for 
which the points on the ROC (sensitivity and 1-specificity) were closest to the 
top-left corner. 
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four rescans during the same session). The figure consistently shows 
atrophy patterns in the right parietal and temporal lobe, as well as the 
characteristic reduction in CTh in the entorhinal cortex, extended to the 
lingual gyrus. Interestingly, both FreeSurfer and DL + DiReCT indicate 
increased CTh in several regions in the first two rescans. Visual in
spection of these scans showed reduced image contrast, presumably due 
to patient motion, explaining the need to acquire two additional scans, 
which had better image quality. 

Reproducibility of CTh patterns across the whole OASIS3 dataset was 
assessed. Subject-wise distances of the CTh significance maps between 
rescans of the same participant were estimated by calculating the 
normalized L2-distance between signed log10(p) maps of mean CTh 
estimates (brain size normalized). HC maps were taken from the LOOCV 
analysis, whereas AD maps were taken from their evaluation against the 
clean normative dataset. When using DL + DiReCT, the distance be
tween significance maps of repeated scans was lower in patients with AD 
(L2 = 0.39 ± 0.26, median ± standard deviation) than in HCs (L2 = 0.42 
± 0.19, p = 0.05 in a Wilcoxon rank sum test to account for the large 
skewness of both distributions). For FreeSurfer, there was no significant 
difference between AD and HC (AD: 0.56 ± 0.26; HC: 0.56 ± 0.20; p =
0.66). Repeated significance maps were significantly closer for DL +
DiReCT than for FreeSurfer (p = 9.2e-57 in Wilcoxon signed rank test on 
AD maps, and p = 2e-309 on HC maps). 

3.4. Inspection of scans with extreme atrophy 

Fig. 7 shows the correspondence between FreeSurfer and DL +
DiReCT regarding the average log(p) value for the mean thickness of the 
right and left hemispheres (Pearson correlation coefficient = 0.89, p <
1e-12). Cortical log(p) maps for the 3 scans with most atrophy for DL +
DiReCT or FreeSurfer are shown in Fig. 8. Except for scans sub- 
OAS30373_ses-d1211 and sub-OAS31084_ses-d2319, log(p) maps of 
both tools had a correlation higher than 0.8. 

Most differences in log(p) values were associated with differences in 
region labeling. FreeSurfer and DL + DiReCT parcellations for the 
selected scans are shown in Supplementary Fig. S8, where potential 
reasons for large log(p) in these scans are discussed. Both DL + DiReCT 
and FreeSurfer appeared to commit errors in challenging scans, which 
might have led to spuriously low log(p) of the mean CTh of the affected 
tool. 

3.5. Comparison to other normative models 

When evaluating cortical thickness of AD scans and using the OASIS3 
reference dataset, ScanOMetrics provided z-scores and log(p) values that 
corresponded to larger models like warped Bayesian linear regression 
models (Rutherford et al., 2022). Fig. 9 shows the comparison of z-scores 
obtained using ScanOMetrics and PCN toolkit, which were found to 
follow a strong and almost linear correspondence (Pearson correlation 
coefficient = 0.98 and 0.99 for the right and left hemispheres respec
tively, p < 1e-12). Supplementary Fig. S7 compares log(p) values ob
tained with ScanOMetrics to centiles obtained using BrainChart. Here, a 
strong, non-linear correspondence was found (ranked Spearman coeffi
cient 0.95, p < 1e-12). 

3.6. Processing times 

On our hardware the processing time for one MRI scan was 9h20m ±
2h50m (mean ± standard deviation) with FreeSurfer (running on CPU 
only), and 23m59s ± 4m30s with DL + DiReCT. This value was split into 
1m55s ± 13 s for segmentation on the GPU and 22m04s ± 4m25s for 
CTh estimation with DiReCT (Das et al., 2009; Avants et al., 2014) on the 
CPU. Fitting the clean normative models on all subjects took 8m17s for 
FreeSurfer and 7m04s for DL + DiReCT. Time required for evaluation of 
a single scan against a normative model was 1.91 ± 0.57 s for FreeSurfer 
and 1.93 ± 0.58 s for DL + DiReCT. 

3.7. Cleaning the normative models 

Among the 1′927 HC scans, that were initially used for normative 
modeling, 99 scans were flagged as anomalous in the LOOCV analysis (i. 
e. more than 18 metrics with P < q = 0.01), using either DL + DiReCT or 
FreeSurfer. Fig. 10 shows the cumulative distributions (left) and prob
ability densities (right) of the fraction of abnormal metrics per scan, and 
details the number of rejections for both pipelines. Regions that 
contributed to the large number of anomalies in these 99 scans were 
widely distributed over the entire cortex, see upper part of Supple
mentary Fig. S4. Furthermore, visual inspection of the scans with the 
largest number of deviant metrics (see Supplementary Fig. S4) revealed 
the following potential causes for outlier detection:  

• low image quality, mainly due to susceptibility artifacts in the mouth 
region (rows 1 and 2); likely caused by dental implants (Chockattu 
et al., 2018)  

• prominent lateral ventricles and/or enlarged CSF space suggestive of 
atrophy (e.g. subject OAS30662, row 3; about 20 % of DL + DiReCT’s 
metrics were flagged as abnormal with respect to the expected values 
at the age of the subject (87 years), despite a reported CDR score of 
zero)  

• blurring and ringing artifacts due to patient motion during the scan 
(rows 4 to 6) 

The 99 HC scans with large number of anomalies (5.15 %) were 
removed before our final normative models were built from the of 1′828 
remaining HC scans. These “clean HC datasets” were subjected to a final 
LOOCV and used for all subsequent analyses of scans from patients with 
AD. In these models the number of HC scans flagged as anomalous by 
either DL + DiReCT or FreeSurfer decreased to 27 (1.48 % of HC scans, 
pbinom = 0.045 for fraction 1 %). Especially for DL + DiReCT the 
anomalies in these scans were much more regionally specific than before 
(lower part of Supplementary Fig. S4). Shapiro-Wilk tests indicated that 
almost all metrics had non-normally distributed fit residues, with only 
minor improvements due to the cleaning procedures (decrease from 91 
% to 85 % for DL + DiReCT and from 90 % to 84 % for FreeSurfer 
regarding the 358 raw metrics, and from 93 % to 90 % for DL + DiReCT 
and 98 % without change for FreeSurfer regarding the 240 brain size 
normalized metrics). 

Fig. 7. Comparison of average log(p) values for the left and right hemisphere’s 
mean thickness, obtained from DL + DiReCT (x-axis) and FreeSurfer (y-axis). 
Both methods showed strong agreement (pearson correlation coefficient =
0.89, p < 1e-12), except for a few subjects with extreme values. The 3 scans 
with most atrophy for both tools were visually inspected, and the corresponding 
maps and parcellations reported in Fig. 8 and Supplementary Fig. S8. 
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3.8. Anomaly detection in healthy controls (LOOCV before cleaning) 

We assessed specificity of our approach to regional anomaly detec
tion by running a subject-specific leave-one-out cross-validation 
(LOOCV) on the whole HC dataset. When considering the full set of 
tests made (358 raw metrics times 1′927 scans, yielding 689′866p- 
values), and using a significance threshold of q = 0.01, processing the 
HC dataset with DL + DiReCT resulted in 8′911 significant p-values 
(1.30 %, which is slightly but significantly higher than the expected 1 %, 
pbinom < 1e-16). When considering an alternative q = 0.05, only 4.44 % 
of p-values were significant, which was lower than the expected 5 %. 
Processing data with FreeSurfer, using q = 0.01 or q = 0.05 resulted in 
1.16 % and 4.13 % of significant p-values, respectively, which more or 
less resembled the numbers reported by Rummel et al. (2018) for a 
completely different dataset. Similar to the suspicion raised there, the 
reason for this observation might be due to the residues of the 

polynomial age fits not being normally distributed (Shapiro-Wilk tests) 
for the vast majority of metrics in our LOOCV, regardless of whether 
using DL + DiReCT (305 metrics out of 358 were not normally distrib
uted) or FreeSurfer (299 of 358 non-normally distributed sets of re
siduals), and independently of using uniform subsampling or not. 

3.9. Features of the cleaned normative models 

After cleaning, using a significance threshold of q = 0.01 lead to 1.00 
% of anomalous raw metrics when using FreeSurfer, and 1.06 % when 
using DL + DiReCT. A threshold of 0.001 led to 0.23 % and 0.25 % 
anomalous metrics, respectively. And a threshold of 0.05 led to 3.9 % 
and 4.2 % of anomalous metrics. A threshold of q = 0.01 was fixed 
throughout our experiments. In terms of anomalous scans, DL + DiReCT 
yielded 18 anomalous scans with more than 5 % of regions detected as 
anomalies (0.98 % of the 1′828 scans), while FreeSurfer detected 14 

Fig. 8. Comparison of cortical log(p) maps for scans with most atrophy according to DL + DiReCT (left column) and FreeSurfer (right column). For each scan, the DL 
+ DiReCT (upper row) and FreeSurfer (lower row) log(p) maps are shown. 

Fig. 9. Comparison of z-scores obtained for the left and right Mean Thickness, using ScanOMetrics (x-axis) and PCN toolkit (y-axis). The two normative tools provide 
z-scores that strongly correlate. 
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scans (0.77 % of scans). Union of both sets yielded 27 scans (1.48 %), 
and the intersection 5 (0.27 %). Values are reported in the lower part of 
Fig. 7, and correspond to scans on the right of the dotted lines in the 
cumulative distribution and histogram. 

Since mean age was different between our participants with CDR =
0 and CDR ≥ 1 (see Table 1, p = 3.3e-13 in a t-test), fitting age models 
and working with residues rather than with the original metrics was 
appropriate. Normative models for metrics estimated with DL + DiReCT 
had degree d = 0 (constant) in 55 % of the fits, d = 1 (linear) in 42 % of 
the fits, and d = 2 (quadratic) in 3 % of the fits. No higher degree was 
selected. When using FreeSurfer, the degree was d = 0 in 25.7 % of the 
fits, d = 1 in 70.3 % of the fits, d = 2 in 3.9 % of the fits, and d = 3 (cubic) 
in 0.1 % of the fits. 

We performed 240 one-tailed F-tests (once for either direction) for 
different residual variance when fitting normative models to brain size 
normalized metrics calculated with DL + DiReCT or FreeSurfer. Testing 
smaller variance for DL + DiReCT than for FreeSurfer and performing 
FDR correction to account for the many comparisons, 56 of the 240 
metrics were significant on level q < 0.01. Most of these were either 
mean normalized CTh (16 of 34 on the left hemisphere and 15 on the 
right) or its standard deviation (8 on the left and 11 on the right). In 
contrast, only seven residual variances of normalized GMV were smaller 
for DL + DiReCT than for FreeSurfer, among which five were subcortical 
regions. Testing in the other direction, 97 metrics showed smaller re
sidual variance for FreeSurfer than for DL + DiReCT. Among these, 78 
were cortical and subcortical volumes, whereas only 2 (4) were mean 
and 6 (7) were standard deviations of normalized CTh on the left (right) 
hemisphere. 

4. Summary and discussion 

In this paper we have compared identical metrics derived from two 
brain morphometry software tools, i.e. DL + DiReCT (Rebsamen et al., 
2020, 2023) and FreeSurfer (Dale et al., 1999; Fischl et al., 1999a, 
1999b; Fischl & Dale, 2000), regarding their use in the context of Sca
nOMetrics, an open-source pipeline for normative modeling and detec
tion of statistical anomalies (Rummel et al., 2017, 2018). ScanOMetrics 
processing is supposed to detect abnormal regions in individual MRI 
scans, which may support neuroradiological assessment of the cases 
with respect to many clinical questions. An implementation of ScanO
Metrics in Python3 has been made publicly available to the community 
as open source software. Together with the public availability of the 
used OASIS3 dataset, ScanOMetrics tutorials available online and the 
normative models used in the present work (specific for OASIS3), this 
makes our results completely reproducible. 

Our main findings are that regardless of the software used for 
extraction of the metrics, in patients with Alzheimer’s disease (AD) 
anomaly detections were up to twenty-fold more frequent than in 
healthy controls (HC). Cortical thickness (CTh) anomalies were mainly 
detected in regions that are known as predilection areas of cortical at
rophy in AD. Atrophy patterns extend to larger regions when stratifying 
by clinical dementia rating (CDR) was clearly observable with both 
methods. DL + DiReCT provided CTh results more than 15 times faster 
than FreeSurfer. 

4.1. Origin of statistical brain anomalies 

Detected statistical anomalies may have at least three origins, which 
influence their differential statistical properties. First, regional metrics 

Fig. 10. Distribution of the abnormal fraction of metrics per scan, before (top) and after (bottom) cleaning the normative dataset. Numbers in bold correspond to the 
total number of scans before and after cleaning. Numbers in smaller font correspond to anomalous scans in the dataset, as detected when using either DL + DiReCT or 
FreeSurfer. Cleaning consisted in removing the 99 scans detected as anomalous by either one of the two software tools. 
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of brain shape can artifactually be detected as abnormal. These de
tections depend on the measurement uncertainty of the metric and the 
image quality of the scans. They have spatial predilection regions, which 
can be identified by studying scan-rescan variabilities (see e.g. Rummel 
et al., 2018; Rebsamen et al., 2020). In ScanOMetrics the artifact 
probability and odds for valid vs. artifactual detections are reported (see 
text elements in Fig. 5) to guide the user’s judgment of reliability. Sec
ond, different individuals have different brain shapes, which yields 
highly reproducible deviations from the expectation, see Section 
“Within-subject reproducibility/homogeneity” and Rummel et al. 
(2017, 2018). Where these deviations are strong enough, they can 
trigger subject specific anomaly detections. Finally, brain pathologies 
yield anomaly detections as well, which are often concentrated in brain 
regions that have been revealed as disease specific alterations of brain 
shape in large morphometric group studies in the past. 

Importantly, when investigating an individual MRI scan (as is often 
the case for diagnostic purposes), all three sources contribute to de
tections of statistical anomalies, but only the last category is relevant to 
answer clinical questions. In consequence, the pattern of detections (e.g. 
spatial extent of alterations of brain structure, like e.g. atrophy) in an 
individual almost never matches disease specific patterns as described in 
the literature or derived by group assessment exactly. While often 
centered in these predilection areas, detections depend on image quality 
and usually reach beyond these regions, see Fig. 3c for an illustration of 
the variability in patients with AD of the OASIS3 dataset. However, 
when pooling the detections made in many individuals over groups 
representing the same clinical condition like in our Figs. 1 and 2, the first 
two causes for anomalies have a chance to level out and the expected 
group patterns usually become visible more clearly. Similarly, when 
pooling several scans of the same subject, primarily the subject- 
individual anomalies would become more clearly visible, whereas the 
same is true for disease-specific patterns only if they remain stable over 
the observation period. 

4.2. Atrophy patterns in individual patients with Alzheimer’s disease 

Our hypothesis (4) was that ScanOMetrics yields a much higher rate 
of detected anomalies in patients with AD than in HCs when using a 
leave-one-out cross-validation (LOOCV). Indeed, independently from 
the used software, about 60 % of scans were rated as abnormal in the AD 
group, compared with only ~ 1 % in the cleaned HC dataset. Compar
ison of rows 3 and 4 in Fig. 1 shows the associated rates of atrophy 
detection in individuals. Particularly in the bilateral entorhinal gyrus 
(see e.g. Gómez-Isla et al., 1996, or Mueller et al., 2010), but also in 
parieto-temporal brain regions, the rate of detected significant re
ductions in CTh was elevated in patients with AD up to twenty-fold. 
Regarding detected regional increase in CTh, the difference between 
AD and HC scans was much less pronounced (rows 1 and 2). 

The spatial pattern of detected CTh reductions was consistent with 
the temporo-parietal predilection areas of atrophy in patients with AD 
obtained from a group comparison in the same data (see Fig. 1, rows 3 
and 5) or existing literature like (Whitwell et al., 2011, Harper et al., 
2017, Ferreira et al., 2017), confirming the second part of our hypoth
esis (5). A similar correspondence between pooled detections in in
dividuals and results of a group study was recently found by Verdi et al. 
(2023). 

Fig. 2 reveals that the rate of detected brain atrophy (rows 4 to 6) 
increased with clinical dementia rating (CDR). Using DL + DiReCT, the 
mean CTh of the bilateral entorhinal gyrus was detected as significantly 
reduced already in one fourth of patients with CDR = 0.5, a value that 
almost reached half of the scans in cases with CDR ≥ 1. Using FreeSurfer 
the progression with CDR was observable as well, but detection rates 
were lower (i.e. only about one sixth for CDR = 0.5 and in one third in 
CDR ≥ 1). A similar association between atrophy detection in scans of 
patients with AD and their total scores from the Mini-Mental State Ex
amination (MMSE) has been observed recently by Verdi et al. (2023). 

Furthermore, our Fig. 2 showcases what would appear to be a cross- 
sectional snapshot of the posterior-to-anterior atrophy progression re
ported by Contador et al. (2021). 

Regional CTh increase for higher CDR (rows 1 to 3 of Fig. 2) was 
observed only for the medial orbito-frontal gyrus (predominantly on the 
right hemisphere, more pronounced for FreeSurfer than for DL +
DiReCT). Interestingly, this is exactly the region in which increased CTh 
was detected in individual scans with reduced image quality due to 
patient motion (see rows 1 and 2 of Supplementary Fig. S3 for an 
example). Regions with increased thickness in these motion- 
contaminated scans were not highlighted anymore in the two 
following scans (acquired during the same session) which had a better 
image quality. In addition, Supplementary Fig. S3 reveals that the 
medial orbito-frontal gyrus was one of the more frequently made false 
positive detections in HCs after cleaning of the normative dataset. Given 
these observations, and since we do not have any plausible biological 
interpretation underlying the observed CTh increase, we hypothesize 
that increased thickness might be related to motion artifacts (e.g. ring
ing). However, additional and thorough tests should be conducted to 
verify this hypothesis.. 

Compared to the large fraction of entire scans rated as anomalous in 
patients with AD (~60 % for both software tools), the peak effect of CTh 
reduction (detectable in the entorhinal gyrus in “only” about half of 
scans of the general AD group, see Fig. 1, row 3) was relatively small, 
indicating that the anomaly patterns detectable in the individual patient 
with AD are largely non-overlapping. This observation confirms the first 
part of our hypothesis (5) and is consistent with recent observations by 
Verdi et al. (2023), who have also reported widespread detection pat
terns with only moderate peak proportions of detections in the basal 
temporal lobes. 

4.3. Value for clinical decision support 

Normative modeling of healthy brain shape, its development and 
aging have great potential to support clinical routine assessment of 
suspected pathologies in neuroradiological MRI exams. It is important to 
stress that we envision the automated detection of statistical anomalies 
in individuals (like shown for example in Fig. 3 or S3) as a trigger for 
secondary inspection by the human expert, rather than as an automated 
disease classification tool. Used as a screening tool for further regional 
image analysis (Rummel et al., 2017), normative modeling could indeed 
provide valuable decision support to the neuroradiologist. 

In contrast, classifying entire scans as anomalous based on a 
threshold on the accepted rate of abnormal metrics is not sufficiently 
reliable. The same is true for classifying scans into AD or HC based on the 
accepted degree of anomaly in selected regional SBA metrics, which are 
known as frequently compromised in dementia (like e.g. the hippo
campal GMV or the entorhinal CTh). In our study, both approaches lead 
to areas under the ROC curve below 0.8, without greater difference 
between the evaluated software tools. 

CE-marked and FDA-approved commercial tools for clinical decision 
support by brain morphometry have meanwhile become available for 
application in patients with multiple sclerosis and various forms of de
mentia. Despite formal approval for diagnostic purposes, a deficiency of 
these tools is that validation, especially in clinical terms, in many cases 
still is an open topic of research (Pemberton et al., 2021; Mendelsohn 
et al., 2023) due to a multitude of factors (Haller et al., 2022; Leming 
et al., 2023; Hedderich et al., 2023). This is remarkable, since an in
ternational survey among practitioners investigating their application of 
(commercial or scientific) brain morphometry tools has clearly shown 
that user acceptance is associated with the availability of technical and 
clinical validation studies (Vernooij et al., 2019). 

4.4. DL + DiReCT vs. FreeSurfer 

Our comparison between using DL + DiReCT and FreeSurfer for 
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metrics estimation was motivated by the question, whether one of the 
two methods yielded more stable or more plausible spatial patterns of 
statistical anomaly detections than the other, see our hypotheses (1), (2) 
and (3). Our findings show that this question cannot be answered so 
clearly. In general, the group aggregations in Figs. 1, 2 and 5 reveal very 
similar patterns for both software tools. The lowest row in Fig. 3c and 
Supplementary Fig. S3 show that the same can be true for the degree of 
regional CTh anomaly detected in rescans of an individual patient. 

Our results showed that at the level of hemispheres, log(p) values 
obtained from FreeSurfer and DL + DiReCT correlated strongly. Sca
nOMetrics also provided evaluation metrics that highly agreed with 
other more complex normative tools (e.g. BrainChart and PCN toolkit). 
Since for the given age range of the OASIS3 dataset most polynomials 
fitted by ScanOMetrics had a low degree, the strong correspondence 
with other normative models might be due to a smooth and gradual 
thickness decrease. Datasets with a larger and less linear age dependence 
would be required to investigate the relation between different ap
proaches to normative modelling under more general circumstances. 

Our hypothesis (1) that fit residues are in general more narrowly 
distributed for DL + DiReCT than for FreeSurfer could not be confirmed 
by our study. Rather, this was true only for one fourth of the normalized 
metrics (56 of 240), whereas 97 showed the opposite behavior. 
Remarkably, we observed that metrics with smaller residual variance for 
DL + DiReCT were predominantly thickness measures, whereas volume 
metrics dominated the group where residual variance was smaller for 
FreeSurfer. More narrow distribution of CTh fit residues when using DL 
+ DiReCT is in line with recent observations by Rusak et al. (2022), who 
have found that the DL-based tool is more sensitive and more repro
ducible at weak synthetic reduction of CTh than FreeSurfer’s cross- 
sectional or longitudinal pipelines. For GMV the situation is different: 
DL + DiReCT counts voxels and thus is prone to uncertainties introduced 
by its voxel-wise hard classification into one of several brain regions or 
tissue classes. By contrast, FreeSurfer’s GMV estimates are based on the 
volumes enclosed inside its much smoother surface meshes, which likely 
explains the more narrow distribution of volume fit residues. 

Similarity of deviations from the normative models between rescans 
of the same participant (assessed by normalized L2-distance of 
thickness-based signed log10(p) maps) was large in general. This is in 
line with the observation that ScanOMetrics’ deviations from the 
expectation are subject specific (Rummel et al., 2017, 2018) and 
remarkably reproducible, also see Supplementary Fig. S2 for an 
example. Confirming our hypothesis (2), L2-distances of CTh signifi
cance maps between rescans were significantly smaller for DL + DiReCT 
than for FreeSurfer and a similar effect was observed for cortical GMV 
(not shown). This is consistent with the interpretation that rescan errors 
and disturbance by artifacts depending on image quality are smaller for 
DL + DiReCT than for FreeSurfer. The L2-distances were in addition 
smaller in patients with AD than in HCs when using DL + DiReCT. We 
interpret this finding as a sign that subject-specific signed log10(p) 
values derived using DL + DiReCT are small and spatially unspecific for 
HC subjects, whereas those of patients with AD have additional disease 
related and spatially specific deviations from the normative model that 
are larger in size and thus determine the L2-distance. 

In Fig. 4 we have detected an annual hippocampal atrophy rate of 
almost 6 % in an individual patient using DL + DiReCT, which is in 
agreement with group estimates found in the literature (Sluimer et al., 
2008). Using FreeSurfer the annual atrophy rate was only half as large 
(see Supplementary Fig. S2). This might indicate a higher sensitivity of 
DL + DiReCT to atrophy progression in the individual, supporting our 
hypothesis (3). Since sensitivity to atrophy and reproducibility of pat
terns has mainly been compared for CTh and not for GMV so far 
(Rebsamen et al., 2020, 2023; Rusak et al., 2022), this hypothesis re
quires additional investigation in subsequent work. 

Processing with DL + DiReCT (<25 min) yielded comparable results 
for mean CTh more than 15 times faster than the full FreeSurfer pipeline. 
However, DL + DiReCT’s output is drastically reduced, currently 

focusing on some of the most frequently used SBA metrics of brain 
morphometry, namely mean and standard deviation of regional CTh, 
GMV and volumes of some subcortical segmentations. Using the OASIS3 
dataset with 1′828 HCs after cleaning, fitting a normative model to the 
set of regional brain metrics used in this paper took less than 10 min. 
Importantly, this procedure has to be performed only once for each 
normative dataset. Despite the expectation of statistical post-processing 
with ScanOMetrics to only depend on the number of metrics and scans 
and not on the software used for metrics estimation, we observed a 
minimally smaller processing time for DL + DiReCT than for FreeSurfer. 
We explain this minor discrepancy by a different number of outliers 
rejected during the fitting procedures. Application of the normative 
models to a new case required less than two seconds computation time 
for both tools, almost three orders of magnitude quicker than the 
calculation of the metrics with DL + DiReCT and practically not 
contributing to the entire computation time. 

Inspecting individual scans, in particular those with highest atrophy, 
did not reveal a systematic bias in any of the two methods. However, 
such inspection of outlier scans sporadically highlighted segmentation 
and parcellation errors when the two methods disagreed on the corre
sponding log(p) value. In Supplementary Fig. S8, FreeSurfer showed 
what one could call “indexing” or “offset” errors and which might be 
related to the reliance of FreeSurfer on an atlas to identify different gyri. 
In the figure, scan sub-OAS30373_ses-d1211 has several mislabeled gyri 
in the right temporal lobe. Mislabeling part of the inferior-temporal 
gyrus as fusiform could have driven FreeSurfer into labeling the fusi
form gyrus as entorhinal gyrus, and the entorhinal gyrus as temporal 
pole. This effect can lead to the evaluation of CTh against the wrong 
reference. DL + DiReCT on the other hand seemed more prone to seg
mentation errors, failing at capturing the whole extent of a region, likely 
due to challenging WM/GM contrast. 

Since DL + DiReCT provided similar results to the widely used and 
validated FreeSurfer software (both in terms of evaluation and classifi
cation), but was about 15 times faster, we tend to recommend using DL 
+ DiReCT for clinically oriented morphometry evaluation and norma
tive modelling, when time and computing power are limiting factors. If 
the aim is to compare features to normative models developed based on 
FreeSurfer, we recommend continuing with this software, for the sake of 
reproducibility. 

4.5. Outlook 

Future work should combine residues from normative modeling with 
proportional hazard models for AD conversion (e.g. Devanand et al., 
2012), AD classifiers (e.g. logistic regression as used in Bobinski et al., 
1999, linear discriminant analysis as in Juottonen et al., 1999, support 
vector classifiers as in Schmitter et al., 2014; Gupta et al., 2019, random 
forests or K-nearest neighbor classifiers as in Gupta et al., 2019, prob
abilistic multi-kernel classifiers as in Popuri et al., 2020) or disease 
progression models (Fonteijn et al., 2012; Sivera et al., 2019; Planche 
et al., 2022; Saint-Jalmes et al., 2023) to thoroughly investigate if 
improved diagnostic accuracy can be obtained at the subject level. 
Special care should be devoted to avoid data leakage (Kapoor and 
Narayanan, 2023), and into addressing the heterogeneity/similarity of 
atrophy patterns across dementia subtypes. 

Atrophy patterns have been shown to differ between early and late 
onset dementia (Harper et al., 2017), to be similar between AD subjects 
with and without amnestic clinical syndromes (Whitwell et al., 2011), or 
even to be undetectable with current methodology in some AD patients 
(Ferreira et al., 2017). Grouping subtypes with different atrophy pat
terns might impair the accuracy of clinical decision support models, 
while splitting datasets in too many groups will reduce statistical power. 
Further work should explore if individual normative metrics could be of 
interest for certain dementia subtypes, or if multivariate and disease 
progression models are required in order to properly classify subtypes of 
dementia. 
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Recently, first clinical evaluation studies have become available for 
non-commercial, research-level and open-source tools for brain 
morphometry. In small case-control studies focusing on hippocampal 
sclerosis in temporal lobe epilepsy, Goodkin et al. (2021) and Rebsamen 
et al., (2023c) have compared expert ratings without and with avail
ability of quantitative reports (QReports). Both found that with QRe
ports available the accuracy and rater confidence for presence of 
hippocampal sclerosis increased, whereas disagreement among experts 
reduced. An obvious next step of our research will be to conduct similar 
studies with our open-source tool ScanOMetrics. Depending on the 
clinical question and suspected disease, different quantitative findings 
are in the center of the user’s interest. To ease ScanOMetrics usage, we 
will develop a graphical user interface (GUI) and design disease specific 
QReports. 

Code availability 

All software tools used in this paper are open source. The Python3 
implementation of ScanOMetrics is available at https://github. 
com/SCAN-NRAD/ScanOMetrics. A code description is given in the 
Supplementary Materials and a more detailed documentation with 
tutorial is available at https://scanometrics.readthedocs.io. FreeSurfer 
can be downloaded from https://surfer.nmr.mgh.harvard.edu/ and DL 
+ DiReCT is available at https://github.com/SCAN-NRAD/DL-DiReCT. 
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Sinnecker T, Schädelin S, Benkert P, Ruberte E, Amann M, Lieb JM, Naegelin Y, Müller J, 
Kuhle J, Derfuss T, Kappos L, Wuerfel J, Granziera C, Yaldizli Ö (2022). Brain 
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Kälviäinen, R., Kochunov, P., Kwan, P., Labate, A., McDonald, C.R., Meletti, S., 
O’Brien, T.J., Ourselin, S., Richardson, M.P., Striano, P., Thesen, T., Wiest, R., 
Zhang, J., Vezzani, A., Ryten, M., Thompson, P.M., Sisodiya, S.M., 2018 Feb 1. 
Structural brain abnormalities in the common epilepsies assessed in a worldwide 
ENIGMA study. Brain 141 (2), 391–408. https://doi.org/10.1093/brain/awx341. 
PMID: 29365066; PMCID: PMC5837616. 

Whitwell, J.L., Jack Jr, C.R., Przybelski, S.A., Parisi, J.E., Senjem, M.L., Boeve, B.F., 
Knopman, D.S., Petersen, R.C., Dickson, D.W., Josephs, K.A., 2011. Temporoparietal 
atrophy: a marker of AD pathology independent of clinical diagnosis. Neurobiol. 
Aging 32 (9), 1531–1541. https://doi.org/10.1016/j.neurobiolaging.2009.10.012. 

D. Romascano et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.neuroimage.2023.120279
https://doi.org/10.1016/j.neuroimage.2023.120279
https://doi.org/10.1016/j.nicl.2014.11.001
https://doi.org/10.1016/j.neuroimage.2019.05.040
https://doi.org/10.1016/j.neuroimage.2019.05.040
https://doi.org/10.1212/01.wnl.0000311446.61861.e3
https://doi.org/10.1212/01.wnl.0000311446.61861.e3
https://doi.org/10.3389/fnagi.2021.713680
https://doi.org/10.1523/JNEUROSCI.23-03-00994.2003
https://doi.org/10.1002/hipo.450010102
https://doi.org/10.1002/hipo.450010102
https://doi.org/10.1212/WNL.0000000000207298
https://doi.org/10.1007/s00234-019-02188-y
https://doi.org/10.1093/brain/awx341. PMID: 29365066; PMCID: PMC5837616
https://doi.org/10.1093/brain/awx341. PMID: 29365066; PMCID: PMC5837616
https://doi.org/10.1016/j.neurobiolaging.2009.10.012

	Cortical thickness and grey-matter volume anomaly detection in individual MRI scans: Comparison of two methods
	1 Introduction
	2 Materials and methods
	2.1 OASIS3 dataset
	2.2 SBA metric computation and normalization
	2.3 Uniform age sampling
	2.4 Normative modeling
	2.5 Evaluating patient data against the normative models
	2.6 Inspection of scans with extreme atrophy
	2.7 Comparison to other normative tools
	2.8 ROC curves
	2.9 Comparing spatial patterns
	2.10 Evaluating and cleaning the normative dataset

	3 Results
	3.1 Application to AD patients
	3.2 Scan classification
	3.3 Within-subject reproducibility/homogeneity
	3.4 Inspection of scans with extreme atrophy
	3.5 Comparison to other normative models
	3.6 Processing times
	3.7 Cleaning the normative models
	3.8 Anomaly detection in healthy controls (LOOCV before cleaning)
	3.9 Features of the cleaned normative models

	4 Summary and discussion
	4.1 Origin of statistical brain anomalies
	4.2 Atrophy patterns in individual patients with Alzheimer’s disease
	4.3 Value for clinical decision support
	4.4 DL ​+ ​DiReCT vs. FreeSurfer
	4.5 Outlook

	Code availability
	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	Appendix A Supplementary data
	References


