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Purpose: This study aims to enhance the clinical use of automated sleep-scoring algorithms by incorporating an uncertainty 
estimation approach to efficiently assist clinicians in the manual review of predicted hypnograms, a necessity due to the notable inter- 
scorer variability inherent in polysomnography (PSG) databases. Our efforts target the extent of review required to achieve predefined 
agreement levels, examining both in-domain (ID) and out-of-domain (OOD) data, and considering subjects’ diagnoses.
Patients and Methods: A total of 19,578 PSGs from 13 open-access databases were used to train U-Sleep, a state-of-the-art sleep- 
scoring algorithm. We leveraged a comprehensive clinical database of an additional 8832 PSGs, covering a full spectrum of ages (0–91 
years) and sleep-disorders, to refine the U-Sleep, and to evaluate different uncertainty-quantification approaches, including our novel 
confidence network. The ID data consisted of PSGs scored by over 50 physicians, and the two OOD sets comprised recordings each 
scored by a unique senior physician.
Results: U-Sleep demonstrated robust performance, with Cohen’s kappa (K) at 76.2% on ID and 73.8–78.8% on OOD data. The 
confidence network excelled at identifying uncertain predictions, achieving AUROC scores of 85.7% on ID and 82.5–85.6% on OOD 
data. Independently of sleep-disorder status, statistical evaluations revealed significant differences in confidence scores between 
aligning vs discording predictions, and significant correlations of confidence scores with classification performance metrics. To 
achieve κ ≥ 90% with physician intervention, examining less than 29.0% of uncertain epochs was required, substantially reducing 
physicians’ workload, and facilitating near-perfect agreement.
Conclusion: Inter-scorer variability limits the accuracy of the scoring algorithms to ~80%. By integrating an uncertainty estimation 
with U-Sleep, we enhance the review of predicted hypnograms, to align with the scoring taste of a responsible physician. Validated 
across ID and OOD data and various sleep-disorders, our approach offers a strategy to boost automated scoring tools’ usability in 
clinical settings.
Keywords: automated sleep scoring, uncertainty quantification, explainable AI, polysomnography, sleep medicine

Introduction
Sleep, often dubbed as the third pillar of health alongside diet and exercise, plays a critical role in our well-being. 
Polysomnography (PSG), a comprehensive sleep monitoring technique, captures detailed biosignals – primarily the 
electroencephalogram (EEG), the electrooculogram (EOG), and the electromyogram (EMG). Adhering to guidelines of 
American Academy of Sleep Medicine (AASM),1 physicians score PSG recordings into specific sleep stages, on 30- 
second windows (epochs). Such structured scoring, called hypnogram, divides sleep into five distinct stages: W, REM, 
N1, N2, and N3, each representing a unique physiological state.2 The proportions of sleep stages, as well as patterns in 
their transitions, are basic indicators of sleep health,3,4 and also biomarkers of certain disorders.5–7
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While manual scoring remains the gold standard, the procedure may be labor-intensive, often demanding up to 2 
hours for a comprehensive evaluation of a single PSG recording.8 Research into automatic sleep scoring, which aims to 
support the manual scoring of physicians by computational algorithms, dates back to the 1960s.9 Recent advancements in 
Artificial Intelligence (AI) have significantly improved automatic scoring solutions, especially those based on Machine 
and Deep Learning (ML/DL) methodologies. Notably, the U-Sleep algorithm introduced by Perslev et al,10 and further 
investigated by Fiorillo & Monachino et al,11 stands at the forefront due to its balance between performance rivaling 
human scorers and the diversity of its training data.

Supervised automated sleep scoring algorithms can reach considerable performance but are to-date not able to overcome 
an intrinsic problem. The different interpretations of AASM scoring standards by physicians result in an inter-scorer 
agreement of about 76%.12–14 This human-based variability in the annotations introduces approximately 20% noise-level, 
technically limiting the performance of scoring algorithms optimized in a supervised way, as the ability of an AI algorithm can 
hardly be better than the quality of its training data. Consequently, despite the breadth of training databases available, the 
ceiling for ML/DL model generalizability is limited by this prevailing inter-scorer agreement. Therefore, despite the 
technological advancements AI has brought to sleep scoring, physicians – who are still irreplaceable and responsible for 
clinical decisions – must subject the predicted hypnograms to a thorough review and compare whether the algorithm-proposed 
predictions are consistent with their personal interpretation of patterns present in the original PSG biosignals. While some 
level of error in sleep-scoring models is deemed clinically acceptable,15 the review process of predicted hypnograms can be 
time-consuming and costly. Specifically, if physicians lack prior insights into problematic segments of the biosignal, the 
review might be as resource-intensive as conducting manual scoring without any algorithmic assistance.

Given the limits posed by inter-scorer variability, a subset of research has pivoted towards quantifying prediction 
uncertainty to elevate model performance by enabling review of the least confident predictions. Such semi-automated 
approaches combining predictions proposed by algorithms with physician’s expertise represent a promising solution for 
integration of sleep scoring tools in clinical settings.9 Van Gorp et al delved into the theoretical aspects of such (un)certainty.16 

Kang et al advanced this notion by proposing an uncertainty detection mechanism via Shannon’s entropy of the softmax output 
of a statistical classifier.17 By allowing physicians to correct uncertain predictions, they managed to substantially enhance the 
agreement (K-score) between classifier and physician’s scoring taste. In the realm of DL-based algorithms, Fiorillo et al 
employed a query procedure targeting a predetermined percentage of the most uncertain predictions based on the maximum 
and variance of the softmax output.18 Hong et al presented a novel method, Dropout-Correct-Rate, and showcased its potential 
to boost model performance with targeted human review.19 Meanwhile, Phan et al utilized a transformer-based sleep scoring 
model and identified uncertain epochs through normalized entropy scores, demonstrating that a substantial fraction of 
misclassified predictions were within the most uncertain epochs.20 Most recently, Rusanen et al evaluated several softmax- 
based measures of aSAGA, a convolutional neural classifier, and reported effective identification of predictions in the 
mismatch to the consensus-scoring of 5 scorers.21

The integration of sleep-scoring algorithms into clinical practice demands a deep understanding of the physician’s real 
needs and expectations. However, these are seldom considered in existing work, which approaches this problem in isolation 
from the human experts. Our study builds upon the U-Sleep algorithm, a state-of-the-art DL-based sleep scoring model trained 
on a broad spectrum of open-access clinical databases. Considering the intrinsic limitations of sleep scoring, rather than just 
aiming to improve the model’s epoch-wise performance, which might already be at its ceiling level due to the inter-scorer 
variability, our study seeks to integrate this established system in a manner that actively involves physicians.

By investigating various strategies for pinpointing the least confident predictions and streamlining their review, we aim to 
redefine the collaboration between sleep-scoring algorithms and clinicians. Utilizing clinically rich Berner Sleep Data Base 
(BSDB),22 we systematically investigate (i) the optimal strategies to gather uncertain sleep stage predictions for the 
physicians’ review and based on that we (ii) quantify the volume of predictions that need to be reviewed (ie, physician’s 
effort) to reach certain agreement benchmarks. Leveraging details on physicians involved in scoring of individual BSDB 
PSGs, we robustly assess the efficacy of our combined system integrating the sleep-scoring algorithm with uncertainty 
estimation, considering both in-domain (ID), and potentially more challenging out-of-domain (OOD) test data.

Semi-automated approaches for sleep staging have been explored in various modalities and frameworks.9,16–21 

However, comprehensive testing of these methods against their limitations has been relatively sparse. To the best of 
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our knowledge, our study is the first one extensively addressing a wide range of challenges specific to semi-automated 
scoring. This includes an in-depth examination and adaptation to individual scoring tastes of single (OOD) physicians, 
the impact of different sleep-disorder diagnoses on our approach’s validity, the metrics employed, as well as the 
dimensions and diversity of the datasets involved.

Materials and Methods
Dataset
For our primary evaluations, we exploited the Berner Sleep Data Base (BSDB) from our partner clinic, Inselspital, 
University Hospital Bern. A total of 8832 PSGs have been collected from 2000 to 2021 on individuals covering the 
whole spectrum of age (0–91 years), sleep disorders, as well as healthy controls. The signals were recorded at 200 Hz 
and, across 20 years of data collection, scored manually by more than 10 senior and 50 assistant physicians according to 
the AASM rules. To match older recordings scored according to Rechtschaffen and Kales with AASM standard, the N3 
and N4 stages were merged into a single-stage N3. Secondary usage of the dataset was approved by the local ethics 
committee (KEK-Nr. 2020–01094). Participants provided written general consent upon its introduction at Inselspital in 
2015, and data were maintained with confidentiality. Most individuals underwent PSG due to the suspicion of a sleep 
disorder. Together 66 individuals represented healthy subjects that took part as controls in clinical trials. The BSDB 
provides various levels of diagnoses based on individual tests (eg, actigraphy- or PSG-based). For our evaluations, we 
considered the clinically most relevant conclusive diagnoses made by physicians considering all test-based diagnoses, 
clinical anamnesis, and the context. The amount of available conclusive diagnoses is compared to the test-based ones 
smaller but provides the most reliable and highly trustworthy information.

For the purpose of our research, we divided the BSDB into three parts: one in-domain (ID) subset – consisting of 
training, validation, and test data splits consisting of PSGs, each scored by one of >50 physicians – used for optimization 
and baseline evaluation of the algorithmic approaches adopted – and, utilizing the information about the scorers, we 
created two out-of-domain (OOD) held-out subsets, each containing PSGs scored by a unique senior physician not 
presented in ID data with potentially different “scoring taste” than the population of ID-included physicians. Hence, such 
stratified evaluations on OOD subsets represent a more robust generalizability assessment close to the scenario happening 
in clinics, where typically a single physician takes decisions (eg, about scoring, diagnosis). As one patient can have 
multiple PSGs recorded, all data splits were done per subject, assuring that the individual’s data are present only in one 
subset. A summary of data splits with respect to the number of PSGs, physicians involved, and demographic character-
istics of subjects is provided in Table 1. Moreover, Table 2 provides details on the occurrence of different classes of sleep 
disorders among conclusive diagnoses of subjects.

Table 1 Demographic Characteristics of BSDB Subjects with Respect to Individual Data Splits

Domain Scorers involved Split Number of PSGs Age µ (σ) - median - min - max Gender % ♂- ♀

ID > 8 SP,  

> 50 AP

Train 4245 49.22 (16.40) - 51 - 2 - 88 64.28–35.72

Validation 226 52.66 (21.45) - 60 - 8 - 84 67.71–32.29

Test 423 50.48 (20.32) - 55 - 2 - 86 65.57–34.43

OOD1 1 SP Test 1966 48.90 (18.60) - 52 - 0 - 91 64.65–35.35

OOD2 1 SP Test 1972 46.93 (20.06) - 50 - 0 - 86 60.92–39.08

TOTAL >10 SP, 
>50 AP

– 8832 48.82 (18.25) - 51 - 0 - 91 63.76–36.24

Abbreviations: PSG, polysomnography; µ, average age per group; σ, standard deviation of the age per group; min, minimum age per group; max, 
maximum age per group; %, percentage; ♂, male; ♀, female; ID, in-domain; OOD, out-of-domain; SP, senior physician; AP, assistant physician.
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In addition to BSDB, part of our work replicated the training of the sleep-scoring algorithm U-Sleep, using 19,578 
PSGs from 13 open-access databases. A detailed description of these data, including demographic characteristics, is 
provided in the original publication.11

U-Sleep: The Sleep Scoring Algorithm
The U-Sleep, introduced by Perslev et al,10 is a deep convolutional neural network for sleep stage classification inspired 
by the U-Net, an architecture originally used for image segmentation.23 The U-Sleep takes as its input at least one pair of 
EEG-EOG channels (re)sampled at 128 Hz and outputs an array of softmax values quantifying the plausibility of each 
signal window (epoch) of a specified length, usually 30 seconds, to represent one of the 5 sleep stages. If more input 
channel-pairs are available, the U-Sleep averages the softmax outputs over all of them. The architecture of U-Sleep 
consists of an encoder-decoder part – compressing and decompressing the input signal using convolutional operations – 
followed by a classifier layer.

In-depth technical details on the U-Sleep architecture, including the preprocessing steps implemented to unify signals 
from different devices, and the training process, are thoroughly described in the original work.10 This study also reports 
the state-of-the-art performance on 16 databases of more than 15,000 participants, achieving an average F1-score of 79%. 
The robustness of U-Sleep was confirmed even after its original implementation was corrected for a channel-derivation 
bug, achieving an average F1-score of 76.5%.11

Table 2 Occurrence of Different Classes of Sleep Disorders Among Conclusive Diagnoses of Subjects per Individual 
Data Splits of BSDB

Diagnosis class Domain ALL

ID train ID Validation ID test OOD1 test OOD2 test

HE 27 2 3 12 22 66

INS 106 + 15 8 + 1 17 + 2 31 + 5 43 + 4 205 + 27

SDB 247 + 156 16 + 8 34 + 17 91 + 33 124 + 18 512 + 232

CDH 171 + 30 10 + 2 22 + 5 54 + 1 115 + 10 372 + 48

CRD 11 + 1 0 + 0 2 + 0 1 + 0 5 + 0 19 + 1

PSD 75 + 9 7 + 0 6 + 0 22 + 1 44 + 0 154 + 10

SMD 74 + 5 5 + 0 7 + 0 18 + 1 33 + 0 137 + 6

IS 227 + 11 13 + 1 26 + 1 77 + 1 127 + 1 470 + 15

DSS 26 + 0 1 + 0 2 + 0 7 + 0 16 + 0 52 + 0

Multiple disorders 418 26 52 128 205 829

Single disorders 227 12 25 42 33 339

Other or unknown 3573 186 343 1784 1712 7598

TOTAL 4245 226 423 1966 1972 8832

Notes: Columns indicate individual data subsets: ID (training, validation, testing) and two OOD test sets (OOD1, OOD2), summing up to ALL. Rows 
indicate the number of subjects according to conclusive diagnoses class indicated by abbreviations described below. Row Multiple disorders indicates the 
number of subjects with multiple classes of sleep-disorders, Single disorder the number of subjects with a single sleep disorder, and Other or unknown the 
number of subjects with no or unknown conclusive diagnosis. TOTAL is equal to HE + Multiple disorders + Single disorder + Other or unknown. At the 
cell level of rows (INS to DSS), the sum refers to the number of subjects having multiple disorders including that given class plus the number of subjects 
having that specific class only. 
Abbreviations: ID, in-domain; OOD, out-of-domain; HE, healthy controls; INS, insomnia disorders; SDB, sleep-disordered breathing; CDH, central 
disorders of hypersomnolence; CRD, circadian rhythm sleep-wake disorders; PSD, parasomnia-related sleep disorders; SMD, sleep-related rhythmic 
movement disorders; IS, isolated symptoms and normal variants; DSS, findings specific to day-time sleep studies.
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Our work replicated the training run on 13 open-access databases of 19,578 PSGs using the most recent implementa-
tion of U-Sleep.11 Based on that, we exploit the rich BSDB and fine-tune (re-train) the U-Sleep using training and 
validation ID-splits as described in Table 1. Finally, we use such fine-tuned U-Sleep as a basis for the selection of the 
most suitable approach of uncertainty estimation to enable an efficient review of predicted hypnograms by physicians. 
The generalizability of both sleep scoring and predictive uncertainty-quantification approaches were rigorously evaluated 
on the ID test set and two single-scorer OOD subsets of the BSDB.

Estimation of Predictive Uncertainty
In advancing sleep scoring algorithms for clinical practice, one crucial component is the quantification of predictive 
uncertainty, which encompasses both epistemic and aleatoric aspects. Epistemic uncertainty, in a sleep-scoring context, 
arises from the variability in how physicians interpret AASM guidelines, leading to ~20% noise in sleep-stage labels due 
to ~80% inter-scorer agreement. On the other hand, aleatoric uncertainty, inherent in the variability of sleep patterns 
themselves, represents a natural randomness that cannot be mitigated.

In this section, we elaborate on our approach with the U-Sleep classifier. First, we detail measures of predictive uncertainty 
based on the classifier’s softmax output. Next, we describe adapting an auxiliary confidence network, specifically designed for 
sleep-related time-series representations derived from the U-Sleep, to estimate confidence in its predictions. The terms 
uncertainty and confidence can be understood as complementary and will be used according to the appropriateness of the 
context. The integration of uncertainty quantification is pivotal not only in elevating the trustworthiness of the automated 
sleep-scoring solutions but also in enabling physicians to efficiently review and verify algorithm-proposed predictions.

Softmax-Based Measures
The confidence level of a classifier’s predictions can be gauged from its softmax output, which can be graphically represented 
as hypnodensity.24 This can be analyzed either visually or, when uncertain epochs should be automatically gathered, by 
numerical assessment of the softmax values. At its simplest, the maximum value of the predicted softmax can be perceived as 
a representation of the epoch’s likelihood of belonging to a specific class (ie, sleep-stage). The closer the max-softmax is to 1, 
the higher the confidence, while lower values indicate uncertainty. There are a variety of measures, rooted in softmax outputs, 
that can be employed to discern these uncertainties. For instance, several works employed entropy-based measures because as 
entropy rises, the distribution of softmax values becomes more uniform.17,20,21

Regardless of the chosen measure, uncertain predictions from each predicted hypnogram can be highlighted in two 
ways: (i) by showcasing a fixed percentage of the most uncertain epochs or (ii) by indicating epochs that surpass 
a specific value threshold. The latter is more advocated as it may consider the sampling distribution of classification 
accuracy. Moreover, the fixed-percentage approach has greater potential to introduce undesired results (false positives/ 
negatives) if the predetermined percentage does not coincide with the actual amount of misclassified epochs. In our 
research, we sought methods that adeptly identify uncertain predictions for subsequent review by clinical experts. 
A comprehensive mathematical detailing of all measures employed in our work is provided in Table 3, whereas 
a comparison in terms of their ability to discern predictions discordant with human scoring is presented in Results.

Uncertainty Quantification Using an Auxiliary Confidence Network
Neural networks, while powerful, often exhibit overconfidence, manifested as a disparity between the predicted softmax 
value and the actual probability of an observation belonging to a specific class.25 This may limit the use of softmax-base 
measures to gather uncertain predictions accurately. To counteract this issue, Corbiere et al proposed an auxiliary 
confidence network, which aims to estimate the True Class Probability (TCP) score, designed to work in tandem with 
an already-trained classifier network.26 The TCP is defined as the value of the predicted softmax that aligns with the true 
label, meaning, for misclassified predictions, it diverges from the softmax maximum value. Upon the completion of 
classifier training, the TCP scores are extracted from training and validation data and serve as a target for the confidence 
network. This positions the training of the confidence network as a regression problem, where the objective is to predict 
the TCP – a single float value within the (0, 1) range – for each observation. In the original work, the confidence network 
was applied to image data, supplementing a convolutional network classifier, which involved reusing the classifier’s 
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architecture and its pre-trained weights, adding additional layers to facilitate the prediction of the TCP outcome, and 
finally optimizing the modified architecture.26

Our contribution extends this idea specifically to PSG time-series data. Leveraging the U-Sleep output, we designed 
a lightweight sequence-to-sequence long-short-term-memory (LSTM) confidence network.27 For each EEG-EOG input 
channel-pair of U-Sleep, our confidence network is fed by representations extracted from U-Sleep layers, including the 
5-dimensional softmax output, the binary code of the same dimensionality as softmax indicating the predicted class, and the 
five-dimensional hidden features extracted from the layer preceding the softmax. The adoption of a bidirectional-LSTM-based 
architecture was driven by our beliefs that the uncertainty in predicting sleep stages is intrinsically tied to sequential 
information – namely, the representations preceding and succeeding a given epoch. Recognizing the functional dependencies 
in the softmax output (that sums up to 1), we applied to it the additive log-odds ratio (ALR) transformation, which reduces the 
dimension by one (ie, to 4) and decreases the co-linearity.28 Building on the premise that combined data offers a richer 
perspective for identifying the most uncertain predictions, we fed the confidence network with all such extracted features 
simultaneously. The final architecture of our confidence network had 35,628 parameters and consisted of three main parts: an 
input layer with batch normalization; 4 hidden layers (LSTM of 50 neurons, bidirectional-LSTM of 30 neurons enabling 
information flow from the past as well as future states, two LSTMs of 10 and 5 neurons) returning sequences, with tanh 
activation function and 25% drop-out; and a final layer with an output LSTM neuron with the custom activation function, 
(tanh(x)+1)/2, returning a sequence in desired (0, 1) range, corresponding to the predicted sequence of TCP confidence scores 
for each PSG-epoch. These are then, consistent with U-Sleep’s mechanism, averaged across all input channel-pairs used.

The TCP confidence score using a more complex input information processed by a specifically designed neural 
network extended the set of rather simpler softmax-based measures. Our evaluations focused on their in-depth compar-
ison in terms of identifying U-Sleep-predicted epochs that do not align to the physician’s scoring, forming a basis for 
creating a system that allows physicians to effectively utilize automatic sleep scoring algorithms.

Utilizing Uncertainty Estimates for an Efficient Review of Predicted Hypnograms
Our analysis, tailored towards the efficient use of uncertainty estimates for the review of predicted hypnograms, was guided by 
a three-tiered evaluation approach: (i) selection of the best-suited uncertainty measure; (ii) statistical evaluations of its 
discriminative power; and (iii) the impact-evaluation when physicians rescore the most uncertain predictions gathered. 

Table 3 Measures Evaluating Prediction’s Uncertainty Using U-Sleep Softmax 
Output

Measure Notation Mathematical formula

I Average softmax-entropy �pentr
� 1

M ∑
M

m¼1
∑
5

k¼1
pmklog2pmk

II Average softmax-ratio ρ 1
M ∑

M

m¼1

1
5 ∑

5

k¼1

pmk
max pmð Þ

III Average softmax-standard-deviation �σ 1
M ∑

M

m¼1
SD pmð Þ

IV Maximum of majority-softmax µ
MAX 1

M ∑
M

m¼1
pm

� �

V Standard deviation of majority-softmax σ
SD 1

M ∑
M

m¼1
pm

� �

VI Fixed % according to µ µ% –

VII Fixed % according to σ σ% –

Notes: Uncertainty measures adapted for majority-voting mechanism of the U-Sleep classifier. 
Abbreviations: M, total number of input channel-pairs used; m, index over M; k, index over 5 classes (ie, sleep 
stages); pmk , probability (ie, softmax-value) of the k-th class based on the m-th input channel pair; Pm, probability 
vector (ie, softmax) of 5 classes based on the m-th input channel pair; MAX, maximum; SD, standard deviation.
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While the first two aspects focus on the technical aspects, the conclusive part evaluates the practical implications, comparing 
the physician’s effort – quantified as the amount of epochs reviewed – in relation to the boost of the agreement between their 
scoring taste and partially reviewed predictions of the scoring algorithm.

Best-Suited Uncertainty Measure
Initially, in order to pinpoint the most suitable uncertainty measure, we treated identifying epochs diverging from human 
scoring as a binary classification task. The diverging epochs from human scoring, ie, the U-Sleep-misclassified predic-
tions, were considered a positive class. Using this setup, we selected the most apt measure based on their Receiver 
Operating Characteristic (ROC) and Precision-Recall (PR) curve performances. The choice of ROC and PR curves stems 
from their ability to handle class imbalances and effectively comparing the true-positive against false-positive rates.

Statistical Tests to Assess the Discriminative Power of the Superior Uncertainty Metric
Upon identifying the superior metric, we further sought to statistically assess its efficacy in two distinct manners. Firstly, 
we proposed the null hypothesis H01:

There is no significant difference between the on-subject mean-aggregated uncertainty scores of epochs congruent with human 
scoring and those diverging from it. 

In other words, this would imply that the uncertainty in correctly scored epochs would be the same as for the 
misclassified ones. With H01, we aimed to test whether predictions in line with human scoring systematically differed 
from those diverging in terms of their uncertainty score, effectively probing the metric’s ability to distinguish between 
correctly versus incorrectly classified epochs.

Further, the null hypothesis H02 postulated: 

There is no significant correlation between the mean-aggregated on-subject uncertainty scores and the on-subject classification 
performance metrics. 

In other words, that would imply that, eg, classification accuracy is not associated with uncertainty levels. The H02 aimed to 
assess the relationship between the uncertainty attached to predictions and the classification performance on a per-subject basis.

Both assessments were conducted separately for ID and OOD data, with consideration of sleep-disorder status of 
individuals. Given the skewed non-normal nature of the uncertainty measures with bounded value ranges, the non- 
parametric bootstrap was employed to calculate confidence intervals (CI) to assess both hypotheses.29

Impact-Evaluation of Physician Intervention on Uncertain Epochs
The culmination of our analysis revolved around varying the threshold employed to discern the uncertain epochs for the 
superior uncertainty metric identified. Under each threshold specification from a predefined grid, a physician review was 
enacted, with discordant predictions being rectified and agreeing epochs being kept. Subsequently, the classification metrics 
were recalculated to encapsulate this simulated physician’s intervention. While the relation between increased reviewed 
epochs and monotonic performance improvement is evident, our objective was to quantify the rescoring effort required to 
meet distinct performance benchmarks. This examination was undertaken across both ID and OOD test data splits, fortifying 
the robustness of our conclusions. Further, in order to make fair comparisons with existing research, we enumerated the 
performance improvements across diverse metrics: accuracy (Acc), weighted F1-score (F1w), and Cohen’s kappa (K).

Results
In this section, we provide the main findings with respect to the algorithmic methods exploited and developed (U-Sleep 
algorithm along with the auxiliary confidence neural network), and their validation on individual data domains, as 
depicted within the workflow in Figure 1.
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U-Sleep Classification Performance
As a sleep scoring classifier, we employed U-Sleep and replicated the training experiment of its most recent implementation 
using 13 open-access databases of 19,578 PSGs.11 Next, the model was fine-tuned on the BSDB, leveraging the ID training and 
validation splits as elaborated in Table 1. The U-Sleep optimization based on minimization of the categorical cross-entropy loss 
converged after 539 training epochs. To ensure a comprehensive comparison with existing research, we enumerated three 
distinct classification performance metrics: Acc, F1w, and K, computed in three different ways: epoch-wise (pertaining to all 
30-second windows in the relevant data split), as well as subject-wise mean- and median-aggregated. Table 4 summarizes the 

Figure 1 Schematic overview of datasets used, their size, and purpose. 
Notes: A set of 13 open-access datasets (in blue) was used for the baseline training of the U-Sleep. The middle and right parts of the schema relate to the evaluations on 
BSDB. Its ID part refers to PSGs each scored by one of more than 50 assistants and 10 senior physicians. The ID training and validation splits (in yellow) were used to fine- 
tune U-Sleep and, subsequently, to train the confidence network. Baseline evaluation of both algorithmic approaches was performed on the ID-test data (in orange). Their 
robustness was further evaluated on two OOD test sets (in red), each containing PSGs scored by a unique SP. 
Abbreviations: ID, in-domain; OOD, out-of-domain; SP, senior physician; AP, assistant physician; PSG, polysomnography.

Table 4 Classification Performance of U-Sleep on Individual Data Splits

Domain Metric Epoch- 
Wise

Subject-wise 
mean

Subject-wise 
Median

ID-test Acc 82.5 82.1 84.5

F1w 82.8 82.4 85.3

Κ 75.0 71.2 76.2

OOD1 Acc 84.2 84.5 86.4

F1w 85.0 85.5 87.4

Κ 77.6 76.0 78.8

OOD2 Acc 80.7 80.8 82.7

F1w 80.5 81.4 83.4

Κ 73.3 71.1 73.8

Notes: Epoch-wise performance calculated over all 30-second windows present in 
individual data splits. Mean and median subject-wise metrics are calculated as perfor-
mance achieved on individual-specific hypnograms. 
Abbreviations: ID, in-domain; OOD, out-of-domain; Acc, accuracy; F1w, weighted F1- 
score; K, Cohen’s kappa.
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performance across the ID and the two OOD test data. The results indicate that the epoch-wise performance on ID (test) slightly 
exceeded that of the OOD2 and was marginally inferior to OOD1, with a maximum difference of 2.9% in the F1w between ID 
vs OOD1. These findings were consistent for on-subject metrics. Noteworthy, on the ID test split, which contains “tastes” of 
more than 50 different physicians involved in scoring of PSGs, U-Sleep reached the subject-wise agreement level of κ = 76.2% 
that corresponds to the interscorer agreement of K = 76% reported in the literature.12–14 This points to the robustness of 
U-Sleep’s scoring ability in line with the theoretically justifiable performance ceiling that can be achieved on human-scored 
hypnograms. Marginal over- and under-performance on OOD data splits can be attributed to the greater or lesser consistency of 
the given (split-specific) senior physician with the “overall” population scoring pattern encoded in U-Sleep.

Evaluation of Approaches for Uncertainty Estimation
The primary objective in this phase was to pinpoint the best approach that adeptly identifies U-Sleep-predicted epochs 
that deviate from human scoring. This consisted of two main strands of investigation: comparing softmax-based 
uncertainty metrics and evaluating the confidence scores based on the adapted confidence neural network.

Softmax-Based Measures
We initially took into consideration all the softmax-based metrics, as delineated in Table 3. The metrics (i–v) identify 
uncertain epochs based on a distributional threshold, while metrics (vi–vii) are designed to accumulate a predetermined 
percentage of the most uncertain predictions. The fixed-percentage strategies do not include an approach based on the 
softmax ratio (ρ) as it is monotonically dependent on the maximum of the softmax (µ) and would lead to the same results. 
Calculation of these metrics was straightforward, as they involved only the U-Sleep softmax output based on each input 
channel-pair. The performance of individual measures in terms of identifying predictions discordant from human scoring 
is listed in Table 5. The majority of the metrics achieved comparable results with the superiority of the distributional- 
threshold-based metrics over the fixed-percentage strategies, confirming the need for a flexible approach adapting to 
possibly different amounts of difficult-to-score (uncertain) epochs per PSG. The best performing approach was µ – the 
maximum of the majority-softmax (= softmax averaged over all input channel pairs) – reaching AUROC of 76.5% on the 
ID-test and 82.4–81.1% on the two OOD sets.

Auxiliary Confidence Network
Our evaluations continued with the auxiliary confidence network leveraging the joint information of the transformed 
softmax output and the hidden representations extracted from U-Sleep to predict the True Class Probability (TCP) score. 

Table 5 Performance of Uncertainty Measures to Identify U-Sleep Predictions 
Discerning from Human Scoring on Individual Data Splits

Domain Evaluation metric Uncertainty Measure

pentr ρ σ µ σ µ% σ% TCP*

ID-test AUROC 76.4 75.7 76.2 76.5 64.3 59.1 56.5 85.7*

AUPR 39.7 41.3 41.0 42.9 30.2 36.5 31.4 63.1*

OOD1 AUROC 80.1 82.0 81.6 82.4 75.4 60.6 57.2 85.6*

AUPR 38.8 42.0 41.0 43.5 41.0 33.3 26.8 53.6*

OOD2 AUROC 79.6 80.8 80.6 81.1 75.0 59.9 57.1 82.5*

AUPR 43.2 45.0 44.6 45.8 34.1 36.9 31.4 50.7*

Notes: Performance assessment as the % of the AUROC and AUPR curves for the softmax-based measures 
from Table 3 and the True Class Probability (TCP) score based on confidence network. Bold font highlights the 
best performance obtained among compared metrics. 
Abbreviations: ID, in-domain; OOD, out-of-domain; AUROC, area under receiver operating characteristic 
(curve); AUPR, area under precision-recall (curve); �pentr , Average softmax-entropy; ρ, average softmax-ratio; �σ, 
average softmax-standard-deviation; µ, maximum of majority-softmax; σ, standard deviation of majority-softmax; 
µ%, fixed % according to µ; σ%, fixed % according to σ, TCP, true class probability; *, outperforming measure.
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We trained the confidence network on the ID training and validation splits, targeting the actual TCP scores calculated 
based on predictions of the already trained U-Sleep classifier. The training was based on minimizing the mean-absolute- 
error (MAE) loss, adopting mini-batches of U-Sleep-derived features for one PSG channel pair (EEG-EOG) at the same 
time, and adhering to the default configurations of the Adam optimizer in Tensorflow 2.6.0. The training process 
achieved convergence after 16 epochs, marking a validation MAE of 0.0827. This indicates the confidence network’s 
capability to predict the TCP with an average error of 8.27% in probabilistic terms. It is worth noting that the training set 
incorporated epochs labeled as “unknown” by physicians, reflecting the inherent challenges in scoring such signals, often 
due to untouched electrodes yielding constant (zero) signal. These particular epochs were assigned a target TCP of 0, 
given that none of the softmax values would match the correct class (ie, sleep-stage).

Having the trained confidence network, we evaluated how its predicted TCP-score performs to detect discordant 
epochs. Focusing on the last column of Table 5, we observe its superiority in comparison to all simpler softmax-based 
approaches across all test data subsets. It outperformed the other approaches in terms of both ROC and PR assessments, 
reaching AUROC of 85.7% on ID, 85.6–82.5% on the two OOD sets, and AUPR of 63.1% for ID and 52.3–50.7%, 
respectively. Furthermore, the robustness of the confidence network was confirmed, as it delivered comparable perfor-
mance on both ID and OOD splits, highlighting its generalizability to potentially different scoring patterns introduced by 
different senior physicians. Given its demonstrated efficacy, the TCP confidence score was selected as the key metric for 
the following evaluations simulating physician’s interventions, focusing on the review and eventual correction of the 
most uncertain predictions.

Confidence-Supplemented Hypnogram
Using the TCP as the most reliable uncertainty quantification measure, Figure 2 depicts the combined output of the 
U-Sleep-predicted hypnogram (in white) with the estimated confidence TCP-scores as a green-red color scale in the 
background. This dual output is a result of our final pipeline, depicted as a diagram in Figure 3, detailing the process of 
transforming original biosignals into a joint presentation of predicted sleep stages and their associated confidence levels. 
Such visual representation is designed to guide the physician in identifying specific segments of the PSG that deserve 
closer review. For demonstration, the actual physician’s scoring on given PSG, referred to as true, is depicted in blue. 
A close examination reveals that segments with lower predicted TCP scores often (eg, 1:30–2:30h of sleep) predomi-
nantly align with U-Sleep misclassifications. In contrast, regions with higher scores (eg, from 3:30h onwards) mostly 
point to accurately scored epochs. It is important to note that since the estimated TCP scores are model-derived, 

Figure 2 Combined output of the predicted hypnogram (in white) and the associated confidence. TCP-scores (in the background), supplemented with the physician-scored 
hypnogram (in blue). 
Notes: Combined output for a 44-year-old female diagnosed with hypersomnolence. On-subject (Acc, F1w, K) of (79.2, 72.2, 61.5)%, respectively. On-subject average TCP 
of 0.74. For correctly and incorrectly classified epochs, the average on-subject TCP was 0.87 and 0.41, respectively. 
Abbreviation: TCP, true class probability.
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occasional discrepancies can arise. For instance, around 1:45h, a brief period marked with high confidence corresponds to 
discordant scoring. Even though this segment erroneously indicates high confidence, its neighborhood areas of low 
confidence might draw physician’s attention for a review. Despite occasional inconsistencies, the results from Table 5 
indicate that TCP-score has the best ability to identify discordant epochs.

Statistical Tests of on-Subject TCP Scores with Respect to Clinical Diagnosis
Further, we investigated in-depth the discriminative power of the TCP-score to reveal discordant predictions. Firstly, to 
evaluate H01, we calculated the on-subject difference between averaged TCP-scores of predictions that align and those that 
disagree with human scoring: di ¼ TCPi;correct � TCPi;incorrect. Next, for the evaluation of H02, the on-subject performance 
metrics (Acci, F1w,i, Ki) and the overall average TCP score (TCPi), for each subject’s predicted hypnogram were calculated. 
The TCPi can be understood as an assessment of the confidence over the entire predicted hypnogram of a given subject. We 
employed a non-parametric bootstrap approach, with 5000 repetitions, for both hypotheses to compute confidence intervals 
(CIs). Having a database rich in sleep-disorder diagnoses enabled us to assess both hypotheses considering individual 
classes of diagnoses, as described in Table 2. To assess the generalizability of our findings, we considered subjects from the 
ID-test and the two OOD test data with confirmed conclusive diagnoses. Since the subjects – except for healthy controls – 
suffer in many cases from several sleep disorders, we always included in a given class all who have at least one 
corresponding diagnosis. Both hypotheses were assessed on disorder classes of at least 10 subjects, separately on the ID 
test data, and – to achieve a larger sample size in each class – the pooled OOD data.

Table 6 gives an overview of bootstrapped 95% CIs and the medians related to H01 for each diagnosis class 
considered. Based on the CIs obtained, H01 can be rejected (p-value < 0.05 in all cases), and one can conclude that 
the difference between the mean-aggregated TCP-scores of aligning and discordant predictions significantly differs and is 
consistently greater than 0. All that across the entire diagnosis spectrum, on both ID and OOD test domains. The median 
differences ranged as 0.20–0.23 and 0.19–0.26, for ID and OOD, respectively, which affirms that the TCP-score was in 
terms of a probability about 20% lower for the discordant predictions. In an extension of our analysis, we conducted the 
same evaluation on a subgroup of 76 children under 6 years old, using pooled OOD data. Compared to the mean 
classification metrics presented in Table 4, U-Sleep demonstrated lower scoring performance with Acc of 71.28%, F1w of 
73.15%, and K of 59.19%. This performance drop is likely attributable to specific AASM scoring rules applied to 
children. Nonetheless, the average on-subject difference between aligning and discordant TCP scores was significantly 
greater than zero, indicating a mean difference of 0.19 with a 95% CI of (0.17, 0.22). These findings suggest that the 

Figure 3 Schematic overview of the implemented pipeline. 
Notes: An EEG-EOG channel-pair is used as an input for the U-Sleep classifier. Using the trained U-Sleep, several representations are extracted (softmax; binary code 
indexing the predicted class; hidden representations - hiddens - from the layer preceding softmax) and used as an input for the confidence network evaluating the True Class 
Probability (TCP) confidence score. The hypnogram predicted by U-Sleep (y) is provided jointly with the assessment of predictive uncertainty (1-TCP) to guide an efficient 
review by physician. 
Abbreviations: N, number of epochs; TCP, true class probability; y, U-Sleep predicted sleep-stages.
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confidence network and the resulting TCP score can efficiently guide physicians on hypnogram and respective PSG 
sections needing review and potential correction, regardless of subject’s diagnosis status, including pediatric cases.

Further, Table 7 relates to H02 and details the bootstrapped 95% CIs for the correlation between the average on-patient 
TCP score and the classification performance metrics. Based on the CIs obtained, we conclude that for all diagnoses of 

Table 6 Bootstrap Confidence Intervals for Difference of on-Subject Mean- 
Aggregated Confidence TCP-Scores of Aligning Vs Discordant Predictions

Diagnosis Class ID-test Pooled OOD

Median 95% CI N Median 95% CI N

HE NA 0.26 (0.22, 0.30) 34

INS 0.21 (0.18, 0.24) 19 0.23 (0.21, 0.25) 83
SDB 0.20 (0.17, 0.22) 51 0.21 (0.20, 0.22) 266

CDH 0.23 (0.20, 0.27) 27 0.23 (0.21, 0.24) 180

PSD NA 0.19 (0.16, 0.21) 67

SMD NA 0.20 (0.18, 0.23) 52

IS 0.21 (0.18, 0.25) 27 0.22 (0.21, 0.23) 206

DSS NA 0.25 (0.21, 0.29) 23

Notes: Evaluations on ID-test data and pooled OOD data. Median stands for the estimate of the 
mean-difference and corresponding 95% CI are calculated as 2.5% and 97.5% quantiles of bootstrap 
resamples. 
Abbreviations: ID, in-domain; OOD, out-of-domain; CI, confidence interval; N, number of 
subjects; NA, not available; HE, healthy controls; INS, insomnia disorders; SDB, sleep-disordered 
breathing; CDH, central disorders of hypersomnolence; CRD, circadian rhythm sleep-wake dis-
orders; PSD, parasomnia-related sleep disorders; SMD, sleep-related rhythmic movement disor-
ders; IS, isolated symptoms and normal variants; DSS, findings specific to day-time sleep studies.

Table 7 Bootstrap Confidence Intervals for Correlation Between on-Subject Mean-Aggregated 
Confidence TCP-Scores and the Performance Metrics

Diagnosis Class Performance Metric ID-test Pooled OOD

Median 95% CI N Median 95% CI N

HE Acc NA 0.74 (0.59, 0.91) 34
K 0.67 (0.50, 0.89)

F1w 0.60 (0.41, 0.84)

INS Acc 0.67 (0.46, 0.91) 19 0.58 (0.46, 0.78) 83
K 0.56 (0.28, 0.88) 0.59 (0.47, 0.78)

F1w 0.63 (0.39, 0.91) 0.49 (0.36, 0.72)

SDB Acc 0.71 (0.62, 0.85) 51 0.71 (0.66, 0.80) 266
K 0.69 (0.58, 0.85) 0.68 (0.62, 0.77)

F1w 0.57 (0.44, 0.78) 0.65 (0.59, 0.75)

CDH Acc 0.72 (0.55, 0.90) 27 0.75 (0.69, 0.84) 180
K 0.64 (0.45, 0.86) 0.72 (0.66, 0.82)

F1w 0.58 (0.35, 0.85) 0.68 (0.61, 0.79)

PSD Acc NA 0.81 (0.74, 0.89) 67
K 0.81 (0.74, 0.90)

F1w 0.78 (0.70, 0.87)

(Continued)
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both ID and OOD test data, the correlation with any performance metric was consistently significant (p-value < 0.05 in 
all cases) and positive. The TCP correlated – on average – the most with the accuracy with a range of 0.67–0.74 across 
individual diagnosis classes of ID test data, and of 0.58–0.81 for OOD data. Consistent findings were identified even for 
the 76 OOD children aged under 6 years, where TCP was significantly positively correlated with all the performance 
metrics: 0.62 with 95% CI of (0.43, 0.76) for Acc, 0.56 (0.36, 0.72) for F1w, and 0.60 (0.41, 0.75) for K. These findings 
suggest that the aggregated TCP score can efficiently pinpoint subjects whose biosignals are challenging to classify and 
also those with high prediction performance, including children with different AASM scoring rules applied.

Performance Boost Under Physician’s Intervention
In the final part of our evaluations, we aimed to quantify the potential improvement in sleep-scoring classification 
performance when the most uncertain predictions underwent physician’s review. We simulated an intervention in which 
predictions with a TCP confidence score falling below a designated threshold, incremented in 0.01 steps across the [0,1] 
range, were set aside for human assessment. Within this set, predictions that did not align with the physician’s assessment 
were subsequently adjusted to reflect the physician’s scoring evaluation. Alongside observing the uplift in performance, 
we also monitored the amount of predictions subjected to review. This amount is indicative of the physician’s time spent 
on re-scoring, prompting us to quantify the effort needed to reach specific performance benchmarks.

Figure 4 depicts the impact of the physician’s review on the classification performance for the ID-test and the two 
OOD test data. The lower x-axis depicts the TCP-score threshold used to gather uncertain predictions, whereas the upper 
x-axis to the corresponding total % of the epochs re-scored (ie, the physician’s effort). The % refers to the aggregate over 
all PSGs in a given data split, as from each PSG were extracted only epochs below a given threshold and so, the 
individual % differed. At a TCP-threshold of 0, when no uncertain epochs are extracted, the performance as depicted on 
the vertical axis corresponds to the original epoch-wise performance as shown in Table 4. From Figure 4, we can observe 
a monotonic improvement in all the performance metrics with the increasing amount of epochs gathered for the review. 
Based on that, we can identify, that to reach, eg, at least 90% in all the evaluation metrics, a rescoring effort of about 26% 
for ID-test, 19% for OOD1, and 27% for OOD2 is needed, respectively, whereas the corresponding TCP threshold lies 
consistently around 0.75.

Further, based on Figure 4 and Table 8 summarizes the % of epochs needed to be reviewed to achieve the 
performance benchmarks of at least (80, 85, 90, 95)% for each evaluation metric, which we use for the comparison 

Table 7 (Continued). 

Diagnosis Class Performance Metric ID-test Pooled OOD

Median 95% CI N Median 95% CI N

SMD Acc NA 0.63 (0.47, 0.84) 52
K 0.54 (0.37, 0.79)

F1w 0.55 (0.39, 0.79)

IS Acc 0.74 (0.58, 0.90) 27 0.70 (0.64, 0.80) 206
K 0.74 (0.59, 0.90) 0.64 (0.57, 0.76)

F1w 0.62 (0.40, 0.87) 0.63 (0.56, 0.75)

DSS Acc NA 0.62 (0.34, 0.92) 23

K 0.62 (0.36, 0.93)
F1w 0.49 (0.21, 0.86)

Notes: Evaluations on ID-test data and pooled OOD data. Median stands for the estimate of correlation with a performance 
metric and corresponding 95% CI are calculated as 2.5% and 97.5% quantiles of bootstrap resamples. 
Abbreviations: ID, in-domain; OOD, out-of-domain; CI, confidence interval; N, number of subjects; NA, not available; K, 
Cohen’s kappa; Acc, accuracy; F1w, weighted F1-score; HE, healthy controls; INS, insomnia disorders; SDB, sleep-disordered 
breathing; CDH, central disorders of hypersomnolence; CRD, circadian rhythm sleep-wake disorders; PSD, parasomnia-related 
sleep disorders; SMD, sleep-related rhythmic movement disorders; IS, isolated symptoms and normal variants; DSS, findings 
specific to day-time sleep studies.
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with other existing works in the Discussion. For example, to reach at least 90% in K, a physician’s review of 25.6% of 
epochs is needed on the ID-test, and 18.8–29.0% on the two OOD datasets.

Finally, Figure 5 compares the rescoring effort based on an appropriate TCP-threshold in comparison to the % of all 
the misclassified epochs detected (ie, the true positive rate) per individual test data splits. The diagonal depicts a “random 
strategy”, where physician’s review would be conducted without any prior guidance on uncertain epochs. We observe 
that independently of the data domain, less than 50% of epochs need to be reviewed in order to detect at least 90% of all 
misclassified epochs. Similarly, to detect more than 95% of all misclassified epochs, a review of less than 60% of all 
epochs is needed. At a hypothetical 20% error rate, the 50% review effort with a corresponding detection of 90% out of 
all the discordant predictions leads to a boost of 18% resulting in a scoring performance of 98%, conforming with 
proposed clinical standards and being far beyond acceptable scoring error rates.15 Since in our case is the error rate less 
than 20% for all domains (accuracy is always >80%) (as indicated in Table 4), the 50% review effort corresponds to 
obtaining almost perfectly aligned hypnograms with agreement above 98%.

Discussion
Our study was motivated by a key clinical application in the field of sleep medicine, where physicians reach a consensus 
of about 76% when scoring PSG into sleep stages.12–14 This level of agreement sets a technical limit on the accuracy 
metrics attainable when training scoring algorithms on multiple domains (scorers/databases). Consequently, when 

Figure 4 Performance boost with physician’s review of epochs having confidence TCP-score lower than a given threshold. 
Abbreviations: ID, in-domain; OOD, out-of-domain; K, Cohen’s kappa; Acc, accuracy; F1w, weighted F1-score.

Table 8 Rescoring Amounts Needed to Achieve Desired 
Levels of Sleep-Scoring Performance

Domain Metric Desired Scoring Performance Level

80% 85% 90% 95%

ID-test K 7.6 15.7 25.6 41.5

Acc 0 6.0 16.5 32.2

F1w 0 6.2 17.2 33.7
OOD1 K 2.3 9.1 18.8 32.9

Acc 0 1.1 9.8 25.5

F1w 0 0.1 10.5 25.5
OOD2 K 8.3 17.3 29.0 44.0

Acc 0 6.7 19.0 37.0

F1w 0 8.3 21.9 39.1

Abbreviations: ID, in-domain; OOD, out-of-domain; K, Cohen’s kappa; Acc, 
accuracy; F1w, weighted F1-score.
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incorporating a scoring algorithm into clinical practice, its predictions must be subjected to a rigorous review by a human 
expert. If this is not guided to the uncertain regions of the predicted hypnogram and the respective PSG biosignals, such 
review may require a similar time effort as manual scoring done from scratch. Motivated by these challenges, we 
designed a pipeline where a state-of-the-art scoring algorithm is combined with an uncertainty estimation to guide the 
human review of the predicted hypnograms, with a particular focus on the quantification of the effort required to achieve 
certain performance benchmarks. We took advantage of the rich clinical database (BSDB) and evaluated our approach on 
both in-domain (ID) and the two out-of-domain (OOD) test data, considering individuals’ conclusive sleep-disorder 
diagnoses. Such stratified analysis subjected our pipeline to a dual robustness test. In the case of the ID data, counting 
PSGs scored by >50 physicians, the evaluations related to the expected generalizability on an “average” pattern of sleep- 
scoring based on a broad population of physicians involved. On the other hand, the evaluations on OOD single-scorer 
splits were essential, because they assessed how well our system adapts to a real clinical setting, where PSG-scoring is 
performed by a single expert with a unique interpretation of the AASM rules.

As a sleep scoring classifier within our pipeline, we exploited the well-established U-Sleep, which we trained on 13 open- 
access databases and fine-tuned on ID (training and validation) data of BSDB. Such trained U-Sleep reached a robust 
performance of Κ = 76.2% for ID test data and Κ = (78.8, 73.8)% on the two single-scorer OOD sets, respectively.

Following that, we extensively investigated different uncertainty estimation approaches and assessed their perfor-
mance on both ID and OOD datasets. Remarkably, our designed confidence network, specifically trained for PSG time- 
series data working in tandem with the U-Sleep, emerged as the superior approach, adeptly identifying predictions 
discordant with human scoring across both ID (AUROC = 85.7%) and the two OOD test data (AUROC of 85.6–82.5%). 
Identifying an approach that accurately pinpoints disagreeing predictions was a key prerequisite to enabling efficient 
review of predicted hypnograms by physicians.

Furthermore, our research extended into statistical examinations of the predicted uncertainty estimates, namely confidence 
scores based on our auxiliary network, leading to two pivotal conclusions: (i) the on-subject confidence scores were 
significantly different and lower for epochs discordant with human scoring, and (ii) the on-subject aggregated confidence 

Figure 5 Review amounts (% of epochs exported) versus the % of all discordant predictions gathered. 
Abbreviations: ID, in-domain; OOD, out-of-domain.
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scores significantly and positively correlated with all on-subject classification performance metrics. Both findings were 
consistent over the entire spectrum of sleep diagnoses present in both ID and OOD test data. Additional evaluations confirmed 
these conclusions even on 76 OOD children under 6 years of age, highlighting the generalizability of the predicted confidence 
scores for subjects with slightly different AASM scoring rules applied. These insights not only validate the efficacy of our 
approach for physician’s review but also highlight its capacity to pinpoint sections of PSG biosignals that are inherently 
challenging to score, independently of the subject’s diagnosis status, including pediatric cases.

As a pivotal component of our evaluations, we examined the extent to which guiding physicians in reviewing uncertain 
epochs could augment the efficacy of sleep staging. To attain a commendable classification performance of at least 90% in (Κ, 
Acc, F1w) metrics, our approach necessitated physicians to examine under 25.6% for Κ, 16.5% for Acc, and 17.2% for F1w of 
the epochs on ID test data. For both OOD data, these figures were less than 29.0%, 19.0%, and 21.9%, respectively. These 
outpace the findings by Hong et al,19 where about 35% and 25% of epochs needed a review to achieve a similar 90% rate in (Κ, 
F1w) on ID data primarily from sleep-disordered subjects. In the broader context, the review effort of our approach closely 
mirrors that of Phan et al.20 In their study on the Sleep-EDF dataset of healthy subjects, they reported a requirement to review 
50% of epochs to identify 90% of all misclassified epochs. In our setup, with a dataset predominantly featuring sleep- 
disordered subjects, our efforts resonated closely, demanding a review of 45–50% of epochs, on both ID and OOD test data. 
Notably, the review of 50% of all the epochs leads, in our case, to an agreement of >98% for all ID and OOD test datasets. 
Furthermore, aiming for a more stringent identification of 95% of all misclassifications, our approach stands out, demanding 
a review of less than 60% of epochs on both ID and OOD test data - a subtle improvement over the 61.4% reported by Hong 
et al.19 In addition, our efforts are in line with the findings of the most recent work of Rusanen et al,21 who identified about 90% 
of all misclassified cases by reviewing 50% of all epochs on consensus-hypnograms of the DOD database of 81 subjects (56 
OSA + 25 healthy), where each PSG was scored by multiple experts. In our case, the level of this performance was achieved on 
ID as well as on two OOD single-scorer datasets of a considerably larger size containing subjects from a full spectrum of sleep- 
disorders. We consider results on our OOD datasets to be remarkably positive since the adaptation of the approach to the 
scoring taste of a single scorer is expected to be more difficult for algorithms (U-Sleep, confidence network) trained on data 
containing scorings of different physicians, as it represents a change of domain from multiple- to single-scorer ones. Adapting 
to the single-scorer’s taste is closer to the current setup in clinical practice, where obtaining multiple-scorers’ consensus is 
costly, and a single physician evaluates the PSG and makes the final clinical decisions. These results spotlight not only the 
efficacy of our approach and its robustness to OOD data with different diagnosis statuses but also underscore the potential to 
reduce the physicians’ workload on manual sleep staging, which is paramount in practical scenarios.

Yet, our work is not without limitations. The field of uncertainty quantification for sleep staging is relatively new, and 
it does not include well-established baselines that would also incorporate publicly available data covering the full 
spectrum of sleep disorders. The data in the BSDB are mostly observational, ie, subjects undergo sleep studies due to 
suspicion or symptoms, and so, the presence of different diagnoses is not randomized or balanced. The training of both 
classification and uncertainty-estimation algorithms was done without explicit control for gender, ethnicity, age, and 
clinical diagnosis, which may – together with non-randomized data – contribute to computational bias.

Conclusion
The significant challenges in automatic sleep staging, such as noise-amounts due to inter-scorer disagreement, and 
heterogeneity in PSG databases – reflecting the large inter-individual variability in sleep manifestation – underscore the 
complexities in achieving an AI model that could perfectly generalize to data from different domains. While automated 
sleep scoring algorithms have achieved excellent performances despite these hurdles, they are still bound by the 
limitations inherent to the quality of their training labels. Consequently, despite the technological advancements, the 
critical role of physicians in reviewing and verifying predicted hypnograms remains – so far – irreplaceable and 
imperative. With the increasing prevalence of sleep-wake disorders, and with the massive amounts of data present in 
PSGs, it is therefore necessary to drive research efforts to optimize physician’s review by directing them to potential 
areas of uncertainty, while ensuring an efficient examination compliant with clinical needs.

In this study, we developed a pipeline aimed at enhancing the use of automated sleep-scoring algorithms in clinical 
practice. By retraining of the U-Sleep algorithm on 19,578 PSGs coming from 13 open-access databases, we reached 
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state-of-the-art performance (F1w ≥80.5% on all test data) and encoded the sleep-scoring expertise of a broad range of 
physicians. Utilizing the comprehensive BSDB database of 8832 additional PSGs, we compared various approaches for 
uncertainty quantification, including a novel confidence network that we designed to work in tandem with U-Sleep. 
Compared to softmax-based measures, our confidence network demonstrated its superiority for identifying predictions 
discordant from physician’s scoring (AUROC ≥ 82.5% on all test data) and built a prerequisite for successful 
implementation of a system that efficiently incorporates physician’s insights.

Our study makes a significant contribution to sleep science by demonstrating the potential of incorporating a semi- 
automated approach into clinical settings. This is achieved through a unique combination of the U-Sleep robustness, the 
precision of an added confidence network, and the richness of the BSDB database, enabling in-depth validations with respect 
to individuals’ diagnoses and accommodating the scoring preferences of different physicians. The combined approach of our 
pipeline ensures that while insights from the automatic sleep-scoring tool are utilized, physicians can concentrate their efforts 
on reviewing segments of biosignals where potential disagreements or algorithmic errors may occur. This has a great potential 
to significantly reduce the workload in the analysis of sleep studies. Moreover, the design of our pipeline can be applied 
beyond the sleep-scoring framework, for any use case where expert verification of algorithmic predictions is needed.

We believe that the adoption of scoring algorithms for clinical practice does not consist in replacing the physician’s 
expertise with an algorithm, but mainly in enabling the effective use of the algorithm’s insights and their thorough validation.
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