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Vortex‑like vs. turbulent mixing 
of a Viscum album preparation 
affects crystalline structures 
formed in dried droplets
Maria Olga Kokornaczyk 1,2*, Carlos Acuña 3, Alfonso Mier y Terán 3, Mario Castelán 3 & 
Stephan Baumgartner 2,4

Various types of motion introduced into a solution can affect, among other factors, the alignment 
and positioning of molecules, the agglomeration of large molecules, oxidation processes, and the 
production of microparticles and microbubbles. We employed turbulent mixing vs. laminar flow 
induced by a vortex vs. diffusion‑based mixing during the production of Viscum album Quercus L. 
 10−3 following the guidelines for manufacturing homeopathic preparations. The differently mixed 
preparation variants were analyzed using the droplet evaporation method. The crystalline structures 
formed in dried droplets were photographed and analyzed using computer‑supported image analysis 
and deep learning. Computer‑supported evaluation and deep learning revealed that the patterns 
of the variant succussed under turbulence are characterized by lower complexity, whereas those 
obtained from the vortex‑mixed variant are characterized by greater complexity compared to the 
diffusion‑based mixed control variant. The droplet evaporation method could provide a relatively 
inexpensive means of testing the effects of liquid flow and serve as an alternative to currently used 
methods.
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Investigating the impact of succussion on a pharmaceutical preparation, detecting the succussion’s modality, 
or proving its occurrence represent challenging tasks for research and quality control of medicinal products.

Interestingly, different branches of medicine hold varying views on the importance of succussing medicinal 
solutions. In allopathic medicine, even an accidental agitation of a preparation is avoided, as it is considered a 
risk factor for reducing the therapeutic properties of the solution by altering the protein structure or increasing 
oxidation  processes1–3. In contrast, in homeopathy, as also in anthroposophical pharmaceutics, which employ 
the potentization procedure (i.e., subsequent dilutions and succussions performed until reaching the desired 
potency), agitation represents an integral part of the production protocol that is believed to determine the thera-
peutical properties of the  preparation4–6, rather of reducing them.

The succussion performed during the potentization process may be characterized by its (1) modality, which 
refers to the type of movement used to induce motion into the solution; (2) duration, indicating the time or 
quantity of movements performed during one potentization step; and (3) performance, distinguishing between 
handmade or machine-made agitation, or  sonication6.

Among the different producers of homeopathic and anthroposophic preparations, the applied succussion 
techniques vary greatly regarding the abovementioned characteristics. Generally, producers following the Hah-
nemannian guidelines perform turbulent agitation by hitting the flask against an elastic surface, which can be 
done by hand or  machine7,8. In contrast, producers of anthroposophical products induce an ordered motion, 
such as vortex- or lemniscate-like flow, or an alteration of ordered and turbulent motion (i.e., ordered vortex-like 
flow interrupted by turbulence and then continuing, or a sequence of vortexes turned into left and right with 
turbulence while changing direction)9. Additionally, it can be generalized that low potencies, primarily used 

OPEN

1Society for Cancer Research, 4144 Arlesheim, Switzerland. 2Institute for Complementary and Integrative 
Medicine, University of Bern, Freiburgstrasse 40, 3010 Bern, Switzerland. 3Robotics and Advanced Manufacturing, 
Center for Research and Advanced Studies of the National Polytechnic Institute, 25900 Ramos Arizpe, 
Mexico. 4Institute of Integrative Medicine, University of Witten-Herdecke, 58313 Herdecke, Germany. *email: 
maria.kokornaczyk@unibe.ch

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-63797-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12965  | https://doi.org/10.1038/s41598-024-63797-z

www.nature.com/scientificreports/

in anthroposophic medicine, are potentized by ordered motions, while high and ultra-high potencies, mainly 
applied in classical homeopathy, are produced using turbulent flow.

A series of previous experiments demonstrated that self-assembled patterns formed in droplets during drying 
serve as a suitable tool for investigating low dilutions. Characteristics of the self-assembled structures, such as 
grey level distribution, texture, and fractal features, were used as output parameters. The parameters proved to 
be substance-specific, allowing differentiation between dilutions prepared from different substances up to their 
fourth decimal  dilution10. They were also sensitive to the effects of vertical vigorous  shaking5 and interactions 
occurring among the components of complex  preparations11.

In the present study, we applied the droplet evaporation method to obtain patterns from Viscum album 
Quercus L.  10−3 (VaQ 3×) produced following the guidelines for manufacturing homeopathic  preparations7 
by applying three different mixing modalities following each of the three decimal dilution steps: (1) turbulent 
vertical machine-made succussions (variant T), (2) laminar flow induced by a handmade vortex (variant L; Sup-
plement 1) and (3) diffusion-based mixing (unsuccussed control, variant D).

The obtained patterns underwent evaluation using computer software and deep learning algorithms. 
Advanced semi-supervised and unsupervised deep learning models were employed, known for their proficiency 
in understanding and identifying intricate patterns that may elude classical analysis methods. The semi-super-
vised algorithm showcased its versatility by accommodating the mixing modalities into three predetermined 
clusters. On the other hand, the unsupervised learning model exhibited its capability to distinguish a broader 
array of pattern families with shared texture similarities. It leveraged advanced texture feature extraction from 
Deep Texture Representation matrices and automatically determined 13 clusters. This allowed for a more pre-
cise characterization and differentiation of the mixing modalities compared to the semi-supervised approach.

Results
Visual pattern assessment
The droplet residues from all tested variants of differently mixed Viscum album Quercus L. 3× (VaQ 3×) variants 
exhibited dendritic, fractal structures in their central regions, most likely formed during the diffusion-limited 
aggregation of particles occurring during droplet evaporation (Fig. 1). These central structures appeared bright, 
with no other shapes visible within the droplet remnants. In most patterns, there was a distinct crystallization 
center or region from which the longest and thickest first-order branches extended toward the outer region 
of the structure. In addition, there were shorter and thinner higher-order branches. These branches appeared 
bushy and were covered with needles. In most cases, variant T (mixed by induction of turbulent flow; see Fig. 1a) 
formed smaller and less complex central structures compared to variants L and D (mixed by laminar flow and 
diffusion-based mixing, respectively). The difference between the latter two variants was difficult to detect visu-
ally (see Fig. 1b,c).

Computerized pattern evaluation
The results of the computerized pattern evaluation are shown in Table 1. All analyzed pattern evaluation param-
eters describing the grey level distribution, texture, and fractality of the structures were able to differentiate 
significantly between variant T and the other two variants, whereas four parameters, mass fractal dimension, 
fractal dimension of structures with highest value r2, ascending second moment and inverse difference moment 
were able to differentiate significantly between all three variants. In these cases, the most significant difference 
was observed between variants T and L, while variant D exhibited minor differences compared to either L or T.

The systematic control experiments detected no significances between the control groups for six out of ten 
(6/10) analyzed parameters or detected significances with p-values much smaller than those of the corresponding 
main experiments for 4/10 parameters. Thus, it can be assumed that the experimental system was reasonably sta-
ble, and the differences observed in the main experiments were primarily due to the applied mixing procedures. 
In the main experiments, the factor day (i.e., the influence of the experimentation day) was strongly significant 

Figure 1.  Examples of central structures formed inside dried droplets of Viscum album Quercus L. 3× variants 
prepared by different mixing techniques: machine-made turbulent succussions (a), laminar flow induced by 
handmade vortex (b), and diffusion-based mixing (c). Images with local connected fractal dimension equal to 
or similar to that of the variant’s mean are presented. Photographs were taken in darkfield and magnification of 
100×.
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for all ten parameters; the interaction between day and mixing procedure was also significant, however, with a 
much smaller p-value than that of the factor mixing procedure.

Deep learning based pattern evaluation
The pattern evaluation results based on deep learning deriving from the supervised and unsupervised approach 
are described in detail  elsewhere12,13.

Summarizing, both approaches revealed that the patterns obtained from dried droplets of the turbulently 
mixed variant T had a less fractal composition in comparison to the diffusion-based mixed control variant D. 
In contrast, the patterns obtained from variant L, mixed using the laminar flow, had a more fractal composition 
when compared to the control variant (Figs. 2, 3, 4).

Figure 5 depicts the results of the fully automated pattern classification employing the unsupervised pattern 
evaluation approach based on deep learning. The patterns obtained from VaQ 3×  could be correctly classified 
into the applied mixing procedures for the turbulently mixed variant for 72% of patterns, for the variant mixed 
using the laminar flow for 60% of patterns, and for the diffusion-based mixed control variant for 33% of pat-
terns. The control variant was most frequently confounded with the turbulently mixed variant (43% of cases).

Table 1.  On the left side: Mean values of analyzed pattern evaluation parameters for the three differently 
mixed Viscum album Quercus L. 3× variants (T: turbulent, L: laminar, and D: diffusion-based) analyzed 
in the main experiments and three control groups analyzed in the systematic control experiments. On the 
right side: results of the 2-way analysis of variance with independent factors mixing procedure (Mixing) and 
experimentation day (Day). Mean values with different letter codes (a, b, c) are significantly different (p < 0.05). 
LCFD—local connected fractal dimension; MFD—mass fractal dimension; LAC—lacunarity; ASM—
ascending second moment; IDM—inverse difference moment; SCE—systematic control experiments; *p < 0.05; 
**p < 0.001; ***p < 0.0001; ns—not significant.

Parameter Mixing

Main 
experiments SCE Main experiments SCE

n Mean n Mean F p F p

LCFD

T 202 0.85 (b) 181 0.74 (a) Mixing 55.9 <0.0001*** 1.37 0.2557 ns

L 193 1.21 (a) 179 0.82 (a) Day 24.06 <0.0001*** 19.26 <0.0001***

D 204 1.17 (a) 182 0.81 (a) Mixing*Day 3.8 0.0002*** 2.99 0.0027**

MFD

T 202 − 1.54 (a) 181 − 1.45 (ab) Mixing 33.59 <0.0001*** 4.72 0.0093**

L 193 − 1.69 (c) 179 − 1.47 (b) Day 20.87 <0.0001*** 32.38 <0.0001***

D 204 − 1.65 (b) 182 − 1.4 (a) Mixing*Day 5.82 <0.0001*** 4.45 <0.0001***

D with highest r2

T 202 1.24 (c) 181 1.08 (a) Mixing 42.44 <0.0001*** 2.46 0.0862 ns

L 193 1.58 (a) 179 1.18 (a) Day 14.08 <0.0001*** 27.7 <0.0001***

D 204 1.5 (b) 182 1.13 (a) Mixing*Day 3.51 0.0006*** 3.01 0.08626**

LAC

T 202 0.37 (a) 181 0.36 (a) Mixing 26.39 <0.0001*** 0.35 0.7035 ns

L 193 0.28 (b) 179 0.36 (a) Day 17.42 <0.0001*** 5.66 0.0002***

D 204 0.27 (b) 182 0.34 (a) Mixing*Day 6.11 <0.0001*** 1.32 0.2305 ns

GLD

T 206 11.84 (b) 198 11.74 (a) Mixing 37.95 <0.0001*** 2.95 0.0532 ns

L 196 16.18 (a) 197 13.08 (a) Day 41.96 <0.0001*** 25.06 <0.0001***

D 204 16.46 (a) 198 11.64 (a) Mixing*Day 3.24 0.0013** 3.43 0.0007***

ASM

T 206 0.021 (a) 198 0.022 (b) Mixing 16.98 <0.0001*** 5.02 0.0069**

L 196 0.016 (c) 197 0.021 (b) Day 84.67 <0.0001*** 56.66 <0.0001***

D 204 0.018 (b) 198 0.024 (a) Mixing*Day 6.59 <0.0001*** 2.07 0.0368*

Contrast

T 206 518.27 (b) 198 547.68 (a) Mixing 32.47 <0.0001*** 2.26 0.1053 ns

L 196 752.57 (a) 197 637.62 (a) Day 36.8 <0.0001*** 21.05 <0.0001***

D 204 810.62 (a) 198 557.88 (a) Mixing*Day 5.71 <0.0001*** 4.71 <0.0001***

Correlation

T 206 0.0015 (a) 198 0.0023 (a) Mixing 19.27 <0.0001*** 0.24 0.7824 ns

L 196 0.0010 (b) 197 0.0021 (a) Day 11.08 <0.0001*** 37.55 <0.0001***

D 204 0.0008 (b) 198 0.0023 (a) Mixing*Day 4.59 <0.0001*** 1.23 0.2786 ns

IDM

T 206 0.38 (a) 198 0.40 (b) Mixing 22.36 <0.0001*** 4.78 0.0087**

L 196 0.35 (c) 197 0.39 (b) Day 119.01 <0.0001*** 42.98 <0.0001***

D 204 0.36 (b) 198 0.41 (a) Mixing*Day 4.99 <0.0001*** 1.81 0.0728 ns

Entropy

T 206 5.64 (b) 198 5.49 (ab) Mixing 31.23 <0.0001*** 3.69 0.0256*

L 196 6.17 (a) 197 5.57 (a) Day 42.14 <0.0001*** 43.95 <0.0001***

D 204 6.06 (a) 198 5.34 (b) Mixing*Day 4.05 <0.0001*** 2.48 0.0118*
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Discussion
The findings of the present study suggest that the mixing method employed during the production of the Viscum 
album Quercus L. 3× (VaQ 3×) preparation affects the complexity of patterns formed in drying droplets (Sup-
plement 1). A comparison of three differently mixed preparation variants reveals that turbulent flow (variant 
T) decreased the fractality of the patterns. Conversely, laminar flow (variant L) increased the fractality of the 
patterns compared to an unmixed, diffusion-based mixed sample (variant D).

Figure 2.  Distribution of image patches grouped after applying a semi-supervised deep learning approach for 
categories less fractal, medium fractal, and more fractal found in the patterns from dried droplets of Viscum 
album Quercus 3× produced with different mixing procedures: diffusion-based mixing (D), turbulent vertical 
succussions (T), and laminar flow induced by handmade vortex (L). The patches obtained from the L mixing 
procedure show the highest fractal composition, having 56.60% of the patches in the “more fractal” category. 
The patches obtained from the T mixing procedure exhibit the lowest fractal composition, having 65.2% of the 
patches in the “less fractal” category.

Figure 3.  Distribution of image patches grouped after applying an unsupervised deep learning approach for 
categories less fractal (closer to 0 along the x-axis), medium fractal (closer to 7 along the x-axis), and more 
fractal (closer to 13 along the x-axis) found in the patterns from dried droplets of Viscum album Quercus 
3× produced with different mixing procedures: D—diffusion-based mixing (middle), T—turbulent vertical 
succussions (left), L—laminar flow induced by handmade vortex (right). The 13 groups obtained from the 
unsupervised approach emphasize the fractal tendency already exhibited in Fig. 2 for the different mixing 
methods.
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In previous studies, the droplet evaporation method (DEM) was already proposed as a tool to test the influ-
ence of the number of vertical succussion strokes performed during the mixing of  dilutions4,5; here, we demon-
strate that not only the succussion number but also the mixing modality has an impact on the DEM patterns.

As indicated by other authors, the flow modality affects the behavior of molecules in suspension. Laminar flow 
leads to the alignment of longer  molecules14,15, whereas turbulent flow promotes coagulation, particle formation, 
and oxidation of proteins, resulting in a more disordered and chaotic arrangement of suspended  molecules15. 
Various studies have  predicted16 and  measured17 the influence of mixing on particle formation and crystallization 
processes. Additionally, it has been observed that flow regimes affect the shapes of particles formed in solutions, 
with simple-shaped particles formed under laminar flow and more complex particles under turbulent  flow18.

Figure 4.  Patch distribution at image level for images obtained from unsupervised deep learning applied on 
dried droplets of Viscum album Quercus 3× produced by means of diffusion-based mixing (variant D) (a), 
turbulent mixing (variant T) (b), and laminar flow induced by a handmade vortex (variant L) (c). The bias 
toward more and less fractal behavior of the dried droplet is visible for the laminar and turbulent modalities, 
while the diffusion modality presents both biases.

Figure 5.  Confusion matrix. Results of the classification task using support vector machine on images 
characterized as feature vectors obtained from unsupervised deep learning applied on dried droplets of Viscum 
album Quercus 3× preparation produced through diffusion-based mixing, turbulent succussing, or laminar flow. 
These results provide more profound insights into the separability of the different mixing procedures.
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At this point, we may hypothesize that in the experimentation presented here, the application of laminar 
mixing following each of the three decimal dilution steps of VaQ 3× likely contributed to a greater alignment of 
molecules in suspension and the creation of small and simple-shaped particles. Conversely, turbulent vertical 
succussions likely led to the agglomeration of molecules and increased formation of more complex particles and 
 microbubbles19. In turn, during drying, droplets of the differently mixed VaQ 3× variants formed patterns of 
different complexity degrees. In variant L, the aligned molecules self-assembled into highly complex patterns, 
with the small and simple-shaped particles and low microbubble content not significantly disrupting the pattern 
formation process. Whereas, in variant T, the pattern formation process was likely hindered by the presence 
of agglomerated molecules, large and complex-shaped particles, and a high content of microbubbles, resulting 
in a decrease in pattern complexity. Further, it can be hypothesized that the changes induced by mixing were 
relatively stable and could not be altered or nullified by pipetting the differently mixed variants for droplet 
deposition on substrates.

Patterns resulting from the droplet evaporation method (DEM) and other methods based on evaporation-
induced pattern formation are often evaluated solely through visual assessment, which can introduce subjectiv-
ity and bias into the  results20,21. Utilizing deep learning for the evaluation of patterns formed in dried solution 
droplets has emerged as an effective alternative in various  models22–27, offering rapid and objective image classi-
fication. In our study, we demonstrate that DEM images obtained from a VaQ 3× solution mixed using turbulent 
or laminar flow exhibit differences from a diffusion-based mixed control when subjected to semi- and fully-
automated deep learning pattern  classification12,13. Notably, all applied pattern evaluation approaches (i.e., visual 
inspection, computer-assisted analysis, and deep learning-based classification) yielded consistent conclusions 
regarding the impact of different mixing methodologies. Adopting deep learning facilitates the swift evaluation 
and comparison of large image databases for DEM patterns, offering substantial support for advancing further 
DEM  applications28–31.

Materials and methods
Workflow
Three variants of Viscum album Quercus L. (VaQ) 3× (i.e., third decimal dilution prepared in decimal dilution 
steps, each followed by a succussion) were prepared using either (1) turbulent succussions by a machine per-
formed for 2.5 min (variant T), (2) laminar flow induced by a series of handmade vortexes for 2.5 min (variant 
L), or (3) diffusion-based mixing (variant D). Variants T, L, and D were blinded and analyzed in a series of five 
droplet evaporation method (DEM) experiments, resulting in a total of 606 patterns. Each pattern was captured 
using a darkfield microscope at a magnification of 100×. The image database of 606 patterns was then analyzed 
using ImageJ software to assess grey-level distribution, texture, and fractality. Statistical analysis was conducted 
to compare the differences between the image evaluation parameters of the variants.

To ensure the stability of the experimental system, five systematic control experiments were conducted using 
only variant T, following the same experimental setup as the corresponding main experiments. The systematic 
control experiments yielded a total of 593 patterns. Insignificant results from these control experiments indicate 
a stable experimental system.

Additionally, the database from five main experiments was shared with the Pattern Analysis Lab at CIN-
VESTAV, Mexico, and analyzed using supervised and unsupervised deep learning algorithms. The results of 
deep-leaning-based pattern evaluation are published  elsewhere12,13; here, we provide a brief overview of the 
main outcomes.

Viscum album Quercus L.
The utilization of plants in the present study adhered to international institutional guidelines. The Viscum album 
Quercus tincture was prepared by ISCADOR AG (Arlesheim, Switzerland). The plants were harvested from 
Quercus robur growing in natural habitats in Switzerland (owned by ISCADOR AG) and were identified by Mirio 
Grazi (Society for Cancer Research, Arlesheim, Switzerland). A voucher specimen (C.H. Quaresma 18.329) 
was deposited at the Herbarium of the Faculdade de Formação de Professores, Universidade Estadual do Rio 
de Janeiro,  Brazil32–34.

Potentization
Purified water according to Pharm. Eur. 9.47 (“purified water in bulk”, X-SEPTRON LINE 10 VAL, BWT AQUA 
AG, Aesch, Switzerland) containing 2 ×  10−5 g/ml NaCl and 2 ×  10−5 g/ml KCl was used as the dilution medium. 
The salt addition served to enhance the pattern-forming capacities. In the first dilution step, a ratio of 1:20 
was employed. Specifically, into each of the three 50ml capacity Erlenmeyer flasks, 1 ml of the Viscum album 
Quercus extract and 19 ml of the dilution medium were added. The contents of the first flask were gently stirred 
with a glass stirrer without inducing any vortex or foam formation. This flask was then closed with a tap and 
left undisturbed for 15 min (variant D, diffusion-based mixing). The remaining two flasks were also closed 
with taps; one was subjected to succussion on a succussion machine, performing vertical vigorous strokes for 
2.5 min (variant T, turbulent mixing), while the other was mixed manually by repeatedly turning the flask in a 
circular movement to create a vortex and then allowing it to settle (variant L, laminar flow; see Supplement 1). 
The potentization to 2 × and 3× was carried out using dilution ratios of 1:10. For variants L and D, Erlenmeyer 
flasks with a capacity of 250 ml were filled up to 40 ml, whereas for variant T, 50 ml Erlenmeyer flasks were filled 
up to 30 ml. The choice of flask size and solution volume was determined experimentally to optimize vortex and 
turbulence formation for each variant.
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Droplet evaporation method
For each of the ten experiments (five main and five systematic control experiments), 12 microscope slides (76 × 26 
mm, pre-cleaned, cut edges; Thermo Scientific, Gerhard Menzel B.V. & Co. KG, Braunschweig, Germany) were 
used. The slides were degreased by washing them with a dishwasher liquid and thoroughly rinsed under hot tap 
water following four consecutive purified water baths. Cleaned slides were wiped dry with a laboratory wiper 
(KIMTECH science, Kimberly-Clark Professional, Roswell, Canada) just before droplet deposition. In the main 
experiments, 3 μl droplets of variants T, L, and D were deposited on four slides each. Each slide contained two 
parallel rows, with each row having seven droplets. Droplets were deposited using a micro-pipette with a capacity 
of 2–20 μl (Eppendorf Research Plus, Eppendorf, Hamburg, Germany). For the systematic control experiments, 
all 12 slides were covered with droplets of variant T. Droplet desiccation occurred in an incubator (KBF 720, 
cooled incubator with controlled humidity system, WTB Binder Labortechnik GmbH, Tuttingen, Germany) with 
an inner plexiglass chamber covered with a semi-permeable cover and placed on a vibration-absorbing base. 
The 12 slides with droplets were positioned in the inner chamber, arranged in 4 rows of 3 slides each, following a 
quasi-randomization design to ensure uniform distribution of the tested T, L, and D variants within the chamber. 
The slides were left at 26 °C and 44% relative humidity until dry.

Acquisition of patterns
The dried droplet residues were examined and photographed in darkfield at 100-fold magnification (100×) 
using an optical microscope (Zeiss Lab.A1; Carl Zeiss Microscopy GmbH, Jena, Germany) equipped with an 
attached camera (Moticam 5.0 MP; CMOS; Motic Electric Group Co., Ltd, Xiamen, China). The photographs 
were captured to encompass the dendritic structures that emerged within the droplet residues. Residues exhibit-
ing disturbed pattern formation due to contaminating particles or edge effects on the slide were excluded from 
consideration. The images were saved in JPEG format with a resolution of 2592 × 1944 pixels. The five main 
experiments resulted in a total of 606 images (206, 196, and 204 for variants T, L, and D, respectively), while the 
five systematic control experiments produced a total of 593 images (198, 197, and 198 for the control groups of 
variant T, treated as control-T, control-L, and control-D, respectively).

Computerized pattern evaluation
Image analysis was conducted using the software ImageJ (v. 1.50b)35 with installed plug-ins GLCM Texture and 
Frac-Lac36. The following steps were performed:

Background extraction: all images underwent background extraction using a sliding paraboloid with a roll-
ing ball radius set at 50 pixels. This process ensured a uniform background throughout the image database 
and reduced glares.
Grey-level distribution analysis: Images were analyzed using the ImageJ tool "measure" to assess grey-level 
distribution.
Texture analysis: After conversion into the 8-bit type, images were analyzed using the GLCM algorithm with 
distances between pixel pairs set to 4 pixels and angles of 90°. Parameters ascending second moment, contrast, 
correlation, inverse difference moment, and entropy were extracted to characterize texture.
Fractal analysis: Images were resized to 500 × 375 pixels and converted into binary format. Fractal analysis was 
performed using Frac-Lac’s DLC tool with the odd sizes scaling method and size limits for the grid caliber of 
4–40 pixels. Parameters describing local connected fractal dimension, such as box count fractal dimension, 
mass fractal dimension, fractal dimension of structures with the highest r2, and lacunarity, were extracted.

Due to errors occurring in the image background after conversion to binary, some images were excluded 
from the fractal analysis. Specifically, for the main experiments, 4 images of variant T and 1 image of variant 
L were excluded. For the systematic control experiments, 14 images of variant control-D, 17 images of variant 
control-T, and 18 images of variant control-L were excluded.

Statistical analysis
The data of the computerized image evaluation were transferred to Excel and analyzed by means of a two-way 
analysis of variance (CoStat, v. 6.311) (CoHort Software, Monterey, USA) at alpha = 0.05 with independent fac-
tors mixing method and day. The interaction between the factors was considered to assess the reproducibility 
within experiments performed on different days. Data distribution was checked visually; slight deviations from 
normality were irrelevant due to the central limit theorem. The global significance was determined using F-tests, 
whereas pairwise mean comparison was run two-tailed with the protected Fisher’s least significant difference 
test (pairwise comparisons were evaluated only if the global F-test was significant at p < 0.05). This procedure 
ensures a good safeguard against type I and II errors and thus balances well between false-positive and false-
negative  conclusions37.

Deep‑learning‑based pattern evaluation
Supervised and unsupervised deep-learning-based methodologies for evaluating the DEM pattern database of 
the main experiments were developed for the purpose of this project; the protocols of these methodologies and 
obtained results are described in detail  elsewhere12,13. In short: Images were subjected to background subtrac-
tion and converted to binary. From each image, patches were automatically selected in order to have the whole 
area covered with uniform structures and not contain any background, obtaining 705 patches from each mix-
ing procedure of size 128 × 128 pixels. In the semi-supervised approach, based on their  textures38, the patches 
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were assigned to three pre-defined clusters (more fractal, medium fractal, and less fractal). We employed the 
DenseNet-121 architecture, utilizing a learning rate of 0.01 (describing the size of parameter updates), executing 
30 epochs (i.e., iterations through the dataset), and employing a batch size of 32. In the unsupervised approach, 
which entails encoding texture information through generating a Deep Texture Representation matrix, the num-
ber of clusters was chosen automatically by the elbow method under a hierarchical clustering  framework39 used to 
group the patterns obtained through the network. We leveraged the VGG-19 network (a specific neural network 
architecture whose weights have been previously learned) with a batch size of 16 (i.e., the number of samples 
processed simultaneously during training) and a learning rate of 0.01. We also conducted training over 30 epochs.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request. Requests for programming codes should be addressed to M.C.
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