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Abstract 
Context: Sex-specific prevalence and incidence of type 2 diabetes (T2D) have been reported, but the underlying mechanisms are uncertain.
Objective: In this study, we aimed to investigate whether iron biomarkers mediate the association between biological sex and glucose 
metabolism and the incidence of T2D.
Methods: We used data from the general population enrolled in the prospective Prevention of REnal and Vascular ENd-stage Disease study in 
Groningen, The Netherlands. We measured ferritin, transferrin saturation (TSAT), hepcidin, soluble transferrin receptor (sTfR), fasting plasma 
glucose (FPG), fasting plasma insulin (FPI) levels, and incidence of T2D. We used multivariable regression and mediation analyses to 
investigate our hypothesis. All iron biomarkers, FPG, and FPI were log-transformed.
Results: The mean (SD) age of the 5312 (51.3% female) individuals was 52.2 (11.6) years. Compared with males, females had lower FPG 
(β = −.01; 95% CI −0.02, −0.01) and FPI (β = −.03; 95% CI −0.05, −0.02) levels. Ferritin, hepcidin, and sTfR showed potential mediating effects on 
the association between sex and FPG, 21%, 5%, and 7.1%, respectively. Furthermore, these variables mediated 48.6%, 5.7%, and 3.1% of the 
association between sex and FPI, respectively. Alternatively, TSAT had a suppressive mediating role in the association of sex with FPG and FPI. 
The incidence of T2D was lower in females than in males (hazard ratio 0.58; 95% CI 0.44, 0.77), with 19.2% of this difference being mediated by ferritin.
Conclusion: Iron biomarkers may partially mediate the association between sex and glucose homeostasis. Future studies addressing the causality of 
our findings are needed.
Key Words: glucose hemostasis, iron biomarkers, sex, type 2 diabetes
Abbreviations: AID, absolute iron deficiency; BMI, body mass index; CV, coefficient of variation; CVD, cardiovascular disease; eGFR, estimated glomerular 
filtration rate; FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-IR, homeostasis model assessment of insulin resistance; hs-CRP, 
high-sensitivity C-reactive protein; MR, Mendelian randomization; ROS, reactive oxygen species; SBP, systolic blood pressure; sTfR, soluble transferrin 
receptor; T2D, type 2 diabetes; TSAT, transferrin saturation. 
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Type 2 diabetes (T2D) is a common metabolic disorder, and 
emerging evidence suggests that the incidence and prevalence 
of it differ by sex [1]. The prevalence of T2D is lower in 

females than males for the same age and the underlying mech
anisms behind these biological sex differences are not well 
understood [2, 3]. Additionally, the prevalence of diabetes 
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varies depending on the stage of reproductive life, with a lower 
prevalence before menopause in females [4].

Several studies suggest that iron metabolism indicators (eg, 
ferritin, hepcidin, soluble transferrin receptor [sTfR]) have 
roles in the development of diabetes [5-8]. Iron is a powerful 
pro-oxidant that raises the risk of diabetes by increasing react
ive oxygen species (ROS) and oxidative stress, contributing to 
tissue damage [9]. The elevated level of serum ferritin, a bio
marker of iron stores, is associated with glucose intolerance 
and insulin resistance, and is a risk factor for diabetes in 
healthy people [5, 10]. A Mendelian randomization (MR) 
study further suggested a causal role of iron metabolism in 
the development of T2D [11]. In line with these findings, clin
ical studies have shown that both iron chelation therapy and 
oral iron can alter glucose metabolism [12, 13].

Concerning iron parameters, the development of diabetes, 
and sex differences, studies up until now are rather inconsist
ent. Some studies indicate that ferritin levels are more strongly 
associated with diabetes in females compared with males [7, 
14, 15]. These discrepancies in literature can potentially be ex
plained by differences in iron according to sex, age, and meno
pause status. Levels of iron biomarkers are generally lower in 
females of fertile age. After menopause, the level of iron in the 
body may not reach the levels of iron stores that are found in 
men, but it increases substantially [16-19]. In addition, little is 
known about the mediating role of iron in the associations be
tween sex and cardiometabolic risk factors [20], which under
lines the need for more studies in this area. We therefore 
hypothesized that differences in iron parameters may partly 
explain the sex differences observed in T2D. We conducted 
the present study with the following objectives: (1) to evaluate 
cross-sectionally the association of sex with markers of glu
cose homeostasis; (2) to explore the longitudinal associations 
of sex with the incidence of T2D, and (3) to investigate the po
tential mediating role of iron biomarkers in the association of 
sex with glucose homeostasis and T2D.

Methods and Materials
Study Design
We used data from community-dwelling individuals enrolled 
in the prospective Prevention of REnal and Vascular 
ENd-stage Disease (PREVEND) study in Groningen, The 
Netherlands. Details have been described elsewhere [21]. 
Briefly, all inhabitants of Groningen aged 28 to 75 years 
(n = 85 421) were invited to participate between 1998 and 
1999. The response rate was 47.8%. Pregnant women and pa
tients with insulin-dependent diabetes were excluded. 
Individuals with a urinary albumin concentration ≥10 mg/L 
(n = 6000) and a randomly selected control group with 
urinary albumin concentration <10 mg/L (n = 2592), in total 
8592 subjects, completed an extensive first screening. We used 
the second screening round data (2001-2003, n = 6894), since 
glucose, insulin, and iron biomarkers were available only 
for this survey. We excluded patients with missing data 
on glucose and insulin (n = 388), iron biomarkers (n = 560), 
prevalent T2D, a fasting glucose level of ≥7.0 mmol/L 
(126 mg/dL), a nonfasting glucose level of ≥11.1 mmol/L 
(200 mg/dL), or self-reported use of antidiabetic drugs 
(n = 437); iron supplement users (n = 27); and those with high- 
sensitivity C-reactive protein (hs-CRP) > 10 mg/L (n = 170). 
Hence, data from 5312 participants were used for the cross- 
sectional analysis. In prospective analysis, an additional 712 

participants with missing data on the incidence of diabetes and 
those who were lost to follow-up were excluded (Fig. S1 [22]). 
The local institutional review board approved the PREVEND 
study protocol (MEC 96/01/022). All subjects provided written 
informed consent and study procedures were conducted ac
cording to the Declaration of Helsinki.

Laboratory Measurements
A fasting blood sample was taken from each participant in the 
morning. All hematologic measurements were measured in 
fresh venous blood and stored immediately at −80 ˚C for fur
ther analysis. Serum ferritin was measured by immunoassay, 
serum iron by colorimetric assay, and serum transferrin by im
munoturbidimetric assay (all Roche Diagnostics, Mannheim, 
Germany). Transferrin saturation (TSAT) was calculated as 
(serum iron ÷ (25× transferrin)) × 100 [23]. Serum hepcidin 
was measured with a competitive enzyme-linked immunosorb
ent assay with interassay and intra-assay coefficients of vari
ation (CVs) of 16.2% and 8.6%, respectively [23]. An 
automated homogenous immunoturbidimetric assay with 
intra-assay and interassay CVs <2% and <5% respectively 
was used to quantify sTfR [23]. Fasting plasma glucose 
(FPG) was measured by dry chemistry (Eastman Kodak, 
Rochester, NY, USA) and fasting plasma insulin (FPI) with 
an immunoturbidometric assay (Diazyme Laboratories, 
Poway, CA, USA). We calculated the homeostasis model as
sessment of insulin resistance (HOMA-IR) as FPI (mU/L) × 
FPG (mmol/L)/22.5 and homeostasis model assessment of 
β-cell function (HOMA-B) as 20 × FPI (mU/L)/[FPG (mmol/L) 
− 3.5] [1]. HOMA-B and HOMA-IR values are estimates of 
β-cell function and insulin resistance of the glucose metabol
ism, respectively [1, 24]. Concentrations of total cholesterol 
were measured with standard methods. Creatinine-based esti
mated glomerular filtration rate (eGFR) was evaluated by 
Chronic Kidney Disease Epidemiology Collaboration equa
tion [25]. Hemoglobin was measured using a Coulter 
Counter STKS sum (Coulter Corporation, Miami, FL, USA). 
hs-CRP was measured using nephelometry with a threshold 
of 0.175 mg/L and intra-assay and interassay CVs of <4.4% 
and 5.7%, respectively [26].

Clinical Measurements
The height and weight of the participants were measured while 
standing, without shoes or heavy clothes. We considered sex a 
biological variable (rather than gender) and determined it as 
self-reported. Body mass index (BMI) was defined by dividing 
weight in kilograms by squared height in meters. Smoking 
(none, former, or current), alcohol consumption (abstinent, 
1-4 units/month, 2-7 units/week, 1-3 units/day, or ≥3 units/ 
day), and use of lipid-lowering and antihypertensive medica
tions was based on self-reports [26]. Systolic blood pressure 
(SBP) was recorded based on the mean of 2 measurements. A 
history of myocardial infarction or stroke was investigated 
as the presence of cardiovascular disease (CVD) if the subject 
was hospitalized for at least 3 days due to that condition [21].

Type 2 Diabetes Ascertainment
Follow-up time was defined as the period between the date of 
iron biomarkers measurement and the date of ascertainment 
of T2D, the date of the loss to follow-up, or the end of the 
follow-up period, which came first. T2D was determined if 
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1 or more of the following criteria were encountered: (1) FPG 
≥7.0 mmol/L (126 mg/dL); (2) random sample plasma glucose 
≥11.1 mmol/L (200 mg/dL); (3) self-reporting of physician 
diagnosis of diabetes; and (4) starting glucose-lowering medi
cation use, obtained from a central pharmacy registration [1].

Statistical Analyses
Baseline characteristics were expressed as mean (SD), median 
(25th-75th percentile), or count (%) for normally distributed, 
skewed, and categorical data, respectively. Characteristics of 
participants, according to sex differences, were investigated 
using an independent-sample t-test, Mann–Whitney U test, 
or chi-squared test, as appropriate. Skewed variables (iron bi
omarkers, FPG, FPI, HOMA-IR, and HOMA-β) were natural
ly log-transformed. Multiple linear regression models were 
used to assess the cross-sectional association of sex with iron 
biomarkers and the effect of sex and iron biomarkers on glu
cose, insulin, HOMA-IR, and HOMA-B. Multivariable Cox 
proportional hazards models were used to examine the effect 
of sex and iron biomarkers on incident T2D. Potential viola
tion of the proportional hazard assumption was evaluated by 
using the Schoenfeld residuals test. No violations of the pro
portionality assumption were identified. All main analyses 
were adjusted for age (model 1) and additionally for BMI, al
cohol, and smoking (model 2). We considered total choles
terol, use of lipid-lowering and antihypertensive drugs, 
hs-CRP, eGFR, SBP, CVD (model 3), and hemoglobin (model 
4) as potential confounding and mediating factors in the asso
ciation between sex, iron biomarkers, and glucose homeosta
sis, and included them in further exploratory analyses by 
adding these variables to model 2 (Fig. S2) [22]). Thus, model 
2 was the main model in subsequent mediation analysis.

As a sensitivity analysis, we computed the absolute mean 
difference of iron biomarkers and glucose markers between 
males and females in model 2. Furthermore, we included phys
ical activity measures in another sensitivity analysis within 
model 2, classified as ≤1 per week or >1 per week.

To account for and reduce potential bias due to missing data 
[27], multiple imputations of incomplete covariates using fully 
conditional specification were performed to obtain 5 complete 
data sets. Analyses were performed in each of the data sets and 
results were pooled using Rubin’s rules [28]. Potential multi
collinearity was ruled out by the assessment of variance infla
tion factors. Potential interactions between iron biomarkers 
and age were explored by adding the product term age and 
iron biomarkers into the main model. Natural cubic splines 
with 4 degrees of freedom were used to model the potential 
nonlinear effects of iron biomarkers on the incidence of dia
betes. In sensitivity analyses, we investigated whether iron sta
tus can play a mediating role as a categorical variable. Thus, 
instead of using continuous iron biomarkers, were created a 
variable of body iron status based on clinical cut-offs; absolute 
iron deficiency (AID) as ferritin level ≤15 µg/L in females and 
≤30 µg/L in males; iron overload as the fourth quartile of 
TSAT (30.7%) and ferritin (168 µg/L), and the rest of the par
ticipants as normal iron status [23, 29, 30].

Mediation analyses
Finally, we carried out mediation analyses based on ordinary 
least squares in linear models to evaluate if the sex differences 
in glucose homeostasis were mediated by the levels of iron bio
markers. In this method, X (sex) indicates the exposure 

variable, Y (glucose hemostasis) indicates the outcome vari
able, and M (iron biomarkers) indicates the mediator (Fig. S2 
[22]). To conduct the mediation analyses, we specified the fol
lowing paths: direct effect of the exposure on the outcome; in
direct effect of the exposure, via a mediator on the outcome; 
total effect as the sum of direct effect and indirect effect; and 
proportion mediated (indirect effect/total effect) for bio
markers whose indirect and total effects were in the same dir
ection [31]. To perform mediation analysis, the association 
of exposure with the mediator and the association of the medi
ator with the outcome should be statistically significant. 
Additionally, we used mediation analysis within a survival 
context to assess the mediating role of iron biomarkers when 
T2D is the outcome variable. In this study, we used the suppres
sive mediator role, when the indirect and total effects of the ex
posure variable on the outcome variable display opposite signs. 
A 2-sided P < .05 was considered to be statistically significant 
in all analyses. Data were analyzed using IBM SPSS software, 
version 27.0, PROCESS v4.1 by Andrew F. Hayes, and R soft
ware version 4.2.1 (R packages: survival and splines).

Results
Baseline characteristics of the participants are shown in 
Table 1. Mean age was 52.2 (11.6) years, and 51.3% were fe
male. Among 5312 participants at risk, 235 (4.4%) developed 
T2D during a follow-up of 7.3 (IQR 6.2-7.7) years. Median 
FPG and FPI levels were lower in females than in males. 
Females had significantly lower levels of HOMA-IR and higher 
levels of HOMA-B. Females were less likely to have T2D, 
CVD, and left ventricular hypertrophy. Compared with males, 
females had lower ferritin, hepcidin, sTfR, and TSAT concen
trations (P < .001), and AID was more prevalent in females.

Association Between Sex, Iron Biomarkers, 
and Glucose Homeostasis
In model 2, adjusted for age, BMI, smoking, and alcohol, 
(Table 2), females compared with males had lower levels 
of ferritin (β = −.36; 95% CI  −0.38, −0.34), hepcidin 
(β = −.21; 95% CI −0.23, −0.19), sTfR (β = −.009; 95% CI 
−0.01, −0.005), and TSAT (β = −.07; 95% CI −0.08, 
−0.06). In models 1 and 2, females had lower levels of FPG, 
FPI, and HOMA-IR, and higher levels of HOMA-B than males 
(Table 3). Higher ferritin, hepcidin, and sTfR but lower TSAT 
were associated with higher FPG and FPI levels. Higher ferritin 
(β = .05; 95% CI 0.04, 0.07) and sTfR (β = .13; 95% CI 0.10, 
0.18) and lower levels of TSAT (β = −.12, 95% CI −0.15, 
−0.08) were associated with higher HOMA-IR. Similarly, 
higher levels of ferritin and sTfR were associated with higher 
levels of HOMA-B (Table 3). Like the results above, females 
had lower levels of all markers except HOMA-B than males 
when looking at the absolute mean difference (Table S1 [22]).

The Mediating Role of Iron Biomarkers in the 
Association Between Sex and Glucose Homeostasis
In the main model, the association of the female sex with low
er glucose levels was mediated by ferritin, hepcidin, and sTfR 
(proportion mediated of 21%, 5%, and 7.1%, respectively), 
while TSAT suppressed this effect (Table 4). Similarly, ferritin, 
hepcidin, and sTfR mediated the association of sex with FPI 
by 48.6%, 5.7%, and 3.1%, respectively; however, TSAT 
suppressed this association. The mediating role of ferritin 
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and sTfR on HOMA-IR was 40.3% and 2.4%, respectively, 
but TSAT had a suppressive mediating role. Hepcidin did 
not mediate the association of sex with HOMA-IR. Ferritin 
and sTfR had a suppressive mediating role on HOMA-B.

Sex, Incidence of Type 2 Diabetes and the Mediating 
Role of Iron Biomarkers
In the main model, female sex was associated with a lower risk 
of T2D (HR 0.58; 95% CI 0.44, 0.77) (Table S2 [22]). TSAT 
was negatively associated with diabetes (HR 0.46; 95% CI 
0.22, 0.94), but hepcidin and sTfR did not show any associa
tions. When investigating nonlinearity, we observed a 
U-shaped association of ferritin with T2D (likelihood ratio 

test = 248.3, P < .001; Fig. S3 [22]). However, the association 
of ferritin with diabetes was significantly modified by age (Pint  

< .05). No significant interactions with age were observed for 
the other biomarkers.

In mediation analysis, the differences in ferritin levels be
tween males and females were estimated to contribute to 
19.2% of the additional cases of diabetes observed in males 
(Table S3) [22]). TSAT was not found to be a mediator.

Association of Iron Status With Glucose 
Homeostasis
In model 2, using body iron status, AID, and iron overload vs 
the normal group, we found no association between iron 

Table 1. Baseline characteristics of participants by sex

Characteristics Total Female Male P value
n = 5312 (100%) n = 2726 (51.3%) n = 2586 (48.7%)

Demographic and clinical
Age (years) 52.2 ± 11.6 52 ± 11.3 53.5 ± 12.3 <.001
BMI, kg/m2 25.9 (23.5-28.7) 25.4 (22.9-28.5) 26.3 (24.2-28.7) <.001
Systolic blood pressure, mmHg 122 (112-135) 116 (107.5-130) 127 (116.3-139) <.001
Prevalent CVD (n, %) 282 (5.3) 85 (3.1) 197 (7.6) <.001
Left ventricular hypertrophy (n, %) 183 (3.5) 69 (2.4) 114 (4.4) <.001
Type 2 diabetes incidence (n, %) 235 (4.4) 90 (3.3) 145 (5.6) <.001

Alcoholic behavior
Abstinent 1254 (23.8) 817 (30.2) 437 (17.1) <.001
1-4 units/month (n, %) 912 (17.3) 542 (20) 370 (14.5)
2-7 units/week (n, %) 1703 (32.3) 818 (30.2) 885 (34.6)
1-3 units/day (n, %) 1182 (22.4) 478 (17.6) 704 (27.5)
≥4 units/day (n, %) 217 (4.1) 54 (2) 163 (6.4)

Smoking behavior
Never 1563 (29.7) 894 (33.1) 669 (26.2) <.001
Former 2218 (42.2) 1040 (38.5) 1178 (46.1)
Current 1473 (28) 766 (28.4) 707 (27.7)
Use of antihypertensive drugs (n, %) 996 (18.8) 473 (17.4) 523 (20.3) .007
Use of lipid-lowering drugs (n, %) 440 (8.3) 188 (6.9) 252 (9.8) <.001

Laboratory
Fasting plasma glucose, mmol/L 4.7 (4.4-5.2) 4.6 (4.3-5.1) 4.8 (4.5-5.3) <.001
Fasting plasma Insulin, mU/L 7.9 (5.7-11.6) 7.5 (5.5-10.9) 8.4 (6-12.3) <.001
Total cholesterol, mmol/L 5.4 (4.7-6.1) 5.4 (4.7-6.1) 5.4 (4.7-6.1) .61
HOMA-IR, (mU/L2)/22.5 1.7 (1.2-2.6) 1.6 (1.1-2.4) 1.8 (1.3-2.8) <.001
HOMA-B, % 132.3 (90.6-199.5) 135 (92.7-202.3) 131 (88.3-195.1) .005
hs-CRP, mg/L 1.2 (0.6-2.6) 1.2 (0.6-2.8) 1.2 (0.6-2.5) .036
eGFR, mL/min per 1.73 m2 92.1 (78.1-107.7) 106.0 (93.6-115.2) 79.9 (69.3-90.1) <.001
TSAT (%) 24.3 (19.1-30.5) 23.1 (17.6-28.6) 26 (20.8-32.3) <.001
Serum ferritin, µg/L 93 (46-167) 57 (29-106) 141 (85-225) <.001
Serum hepcidin, nmol/L 3 (1.6-4.8) 2.3 (1.1-3.9) 3.7 (2.3-5.5) <.001
Plasma sTfR, mg/L 2.5 (2.1-3) 2.4 (2-3) 2.5 (2.1-3) .023
Hemoglobin, g/L 137.2 (128.9-146.6) 129.9 (124.1-135.3) 144.7 (138.6-151.5) <.001

Iron status
Normal group 4032 (75.9) 1946 (71.4) 2086 (80.7) <.001
Absolute iron deficiency 799 (15) 693 (25.4) 106 (4.1)
Iron overload 481 (9.1) 87 (3.2) 394 (15.2)

Abbreviations: BMI, body mass index; CVD, cardiovascular disease; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; HOMA-B, homeostasis model 
assessment of β-cell function; eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity C-reactive protein; TSAT transferrin saturation; sTfR, soluble 
transferrin receptor.
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status and glucose homeostasis or incidence of T2D (Table S4 
[22]). Therefore, mediation analysis was not performed due to 
the lack of associations between the assumed mediators and 
the outcome.

Additional Analyses
Analyses were repeated for all potential intermediate factors 
(ie, total cholesterol, hs-CRP, SBP, eGFR, lipid-lowering 
drugs, antihypertensive drugs, and CVD) in model 3 and mod
el 4 (plus hemoglobin) (Tables S5-S8 [22]). In summary, in 
model 3, the effect sizes on the association between sex and 
iron biomarkers did not materially change, except for sTfR, 
while in model 4 sex was not associated with sTfR and 
TSAT (Table S5 [22]). In model 3, the association of sex 
with FPI disappeared, but after adjusting for hemoglobin 
(model 4), females had higher insulin levels (Table S6 [22]). 
Compared with the main model, the association between fer
ritin and glucose homeostasis did not change, but hepcidin 

became nonsignificant. STfR and TSAT preserved their asso
ciations in these models (except for nonsignificance of sTfR 
with FPG in model 4). The mediating role of ferritin between 
sex and glucose was maintained in both models. The mediat
ing role of TSAT was also maintained in the association be
tween sex with glucose and HOMA-IR in model 3. In model 
4, unlike model 2, females show higher insulin, and, further, 
the mediating role of ferritin between sex and insulin becomes 
suppressive (Table S7 [22]). In models 3 and 4 the effect size 
between sex and iron biomarkers with incidence of T2D did 
not materially change (Table S8 [22]). Additional adjustment 
for physical activity as a potential confounder (categorized as 
once a week or less or more than once a week) in model 2 did 
not materially change the results (data not shown).

Discussion
Our study investigated the potential mediating role of iron bi
omarkers on the association of sex with glucose homeostasis 
and the incidence of T2D. Females had lower levels of glucose 
and insulin than males, and these sex differences were partial
ly explained by ferritin, hepcidin, sTfR, and TSAT. Ferritin 
could also play a mediating role in the association between fe
male sex and the incidence of T2D. In addition, lower levels of 
ferritin and sTfR in females resulted in a greater reduction of 
HOMA-IR and HOMA-B compared with males.

Association of sex and Glucose Hemostasis
In line with our study, previous evidence showed that females 
have lower glucose levels and better insulin sensitivity than 
males [2-4, 32]. Nuutila et al showed that whole-body insulin 
sensitivity was 41% greater in females than in males [33]. We 
used HOMA-IR and HOMA-B as intricately interdependent 
estimates of insulin resistance and β-cell function, respectively. 
Studies have shown the importance of pancreatic β-cell in the 
regulation of glucose metabolism and the prevention of dia
betes [34, 35]. Our results agree with a previous study, which 
found HOMA-IR to be lower in females than in males [24]. 
Sheu et al found that adjusted HOMA-IR differed by sex 
and was positively correlated with ferritin in females. 

Table 2. Comparison of iron biomarkers between sexes

β (95% CI)c

Model 1a

Ferritin, µg/L −0.39 (−0.50, −0.37)
Hepcidin, nmol/L −0.22 (−0.24, −0.20)
sTfR, mg/L −0.003 (−0.007, 0.000)
TSAT, % −0.07 (−.08, −0.06)

Model 2b

Ferritin, µg/L −0.36 (−0.38, −0.34)
Hepcidin, nmol/L −0.21 (−0.23, −0.19)
sTfR, mg/L −0.009 (−0.01, −0.005)
TSAT, % −0.07 (−0.08, −0.06)

All iron biomarkers were log-transformed. 
Abbreviations: sTfR, soluble transferrin receptor; TSAT, transferrin saturation. 
aModel 1 was adjusted for age. 
bModel 2 was adjusted for age, BMI, smoking, and alcohol use. 
cReference category for sex is males.

Table 3. Association between sex and iron biomarkers with markers of glucose homeostasis (insulin, FPG, FPI, HOMA-IR, and HOMA-B)

Sex (ref = m) 
β (95% CI)

Ferritin (µg/L) 
β (95% CI)

Hepcidin (nmol/L) 
β (95% CI)

sTfR (mg/L) 
β (95% CI)

TSAT (%) 
β (95% CI)

Model 1a

FPG −0.02 (−0.02, −0.01) 0.01 (0.01, 0.02) 0.009 (0.005, 0.01) 0.02 (0.009, 0.03) −0.03 (−0.04, −0.02)
FPI −0.04 (−0.05, −0.03) 0.10 (0.08, 0.12) 0.06 (0.05, 0.08) 0.22 (0.18, 0.26) −0.15 (−0.19, −0.12)
HOMA-IR −0.06 (−0.07, −.04) 0.11 (0.09, 0.13) 0.07 (0.05, 0.09) 0.24 (0.20, 0.28) −0.18 (−0.22, −0.14)
HOMA-B 0.02 (0.008, 0.04) 0.05 (0.03, 0.07) 0.03 (0.01, 0.05) 0.16 (0.11, 0.21) −0.04 (−0.08, 0.003)

Model 2b

FPG −0.01 (−0.02, −0.01) 0.007 (0.004, 0.01) 0.003 (0.002, 0.005) 0.01 (0.003, 0.02) −0.02 (−0.03, −0.02)
FPI −0.03 (−0.05, −0.02) 0.05 (0.03, 0.06) 0.01 (0.006, 0.02) 0.13 (0.09, 0.16) −0.09 (−0.12, −0.06)
HOMA-IR −0.05 (−0.06, −0.04) 0.05 (0.04, 0.07) 0.01 (−0.001, 0.31) 0.13 (0.10, 0.18) −0.12 (−0.15, −0.08)
HOMA-B 0.02 (0.005, 0.03) 0.02 (0.003, 0.04) 0.002 (−.02, 0.02) 0.09 (0.04, 0.13) 0.00 (−0.04, 0.04)

All iron biomarkers, FPG, FPI HOMA-IR, and HOMA-B were log-transformed. 
Abbreviations: FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-B, homeostasis model assessment of β-cell function; HOMA-IR, Homeostatic Model 
Assessment for Insulin Resistance; sTfR, soluble transferrin receptor; TSAT, transferrin saturation. 
aModel 1 was adjusted for age. 
bModel 2 was adjusted for age, body mass index, smoking, and alcohol use. 
cAnalyses of iron biomarkers were additionally adjusted for sex.
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Finally, they concluded ferritin concentrations were related to 
the degree of insulin resistance [36].

Association of Iron Biomarkers and Glucose 
Hemostasis
We found that females have lower levels of iron biomarkers 
than males. The lower levels of ferritin in females could be 
partly explained by their continual losses of iron in menstrual 
blood, pregnancies, and deliveries, but iron stores increase sig
nificantly after menopause. Some studies have shown an asso
ciation between physical activity and iron biomarkers which 
differed between sexes. Zamelska et al in 2023 found that 
lower serum ferritin concentration concerns men with regular 
physical activity [37]. In our study, further adjustment for 
physical activity did not materially change our findings.

The role of iron has been proposed in the pathogenesis of 
chronic disorders like diabetes [18]. As observed in our study, 
epidemiologic observations have also demonstrated an associ
ation between elevated serum ferritin and the development of 
T2D in the general population [10, 14, 38]. A systematic 
meta-analysis of 15 prospective studies explored the associ
ation of higher ferritin with greater T2D risk, which appeared 
stronger among females than males [38]. Genetic evidence, us
ing an MR study, supports a causal link between increased se
rum iron, ferritin, and TSAT with increased risk of T2D [11]. 
Inversely, Liang et al in a recent MR study showed that 

although a positive association of serum iron with T2D is pos
sible, it is unlikely that iron biomarkers affect T2D [39]. The 
MR study would be especially interesting if the genes explain a 
substantial amount of variation. Otherwise, a very large sam
ple size would be necessary to confidently establish a causal as
sociation. Although a genetic connection may not exist, our 
study demonstrated a clinical relationship. Additionally, it is 
important to recognize that MR studies, reliant on linear asso
ciations, may not yield the desired outcomes when non-linear 
relationships are at play, as we observed in our study [40].

One could assume that elevated serum ferritin levels may re
flect systemic inflammation besides high iron stores [6]. 
However, ample evidence supports that high ferritin causes 
diabetes, and not vice versa [5, 41]. We excluded participants 
with hs-CRP >10 mg/L to account for inflammatory effects, 
and additionally adjusted for hs-CRP in models 3 and 4, 
which did not materially change the results.

Ferritin can induce insulin resistance and affect the risk of 
diabetes through several mechanisms. First, iron is a catalyst 
in the formation of ROS, which may be toxic for pancreatic 
β-cells and subsequently affect the synthesis and secretion of 
insulin [6, 14, 15]. We did not have available data on ROS 
to assess its role in insulin resistance. Furthermore, studies 
have shown a complex bidirectional relationship between 
iron metabolism with body fat, glucose, and lipid metabolism 
[42]. Excess iron may affect glucose uptake in adipose tissue 
by reducing glucose utilization in muscle, leading to insulin 

Table 4. Mediation analyses of iron biomarkers on the association between sex and FPG, FPI, insulin, HOMA-IR, and HOMA-B

Model 1a Model 2b

Indirect effect Total effect Proportion 
mediated

Indirect effect Total effect Proportion 
mediated

β (95% CI)×10−2 β (95% CI)×10−2 (%) β (95% CI)×10−2 β (95% CI)×10−2 (%)

Sex and FPG
Ferritin, µg/L −0.53 (−0.60, −0.47) −2 (−18, −1.50) 26.5 −0.30 (−0.20, −0.30) −1.40 (−1.50, −1.30) 21.0
Hepcidin, nmol/L −0.20 (−0.24, −0.16) −2 (−18, −1.50) 10.0 −0.07 (−0.11, −0.03) −1.40 (−1.50, −1.30) 5.0
sTfR, mg/L — — — −0.10 (−0.2, −0.1) −1.40 (−1.50, −1.30) 7.1
TSAT, %c 0.21 (0.19, 0.24) −2 (−18, −1.50) — 0.17 (0.15, 0.20) −1.40 (−1.50, −1.30) —

Sex and FPI
Ferritin, µg/L −3.75 (−4.48, −3.08) −4.13 (−5.39, −2.86) 91 −1.70 (−2.00, −1.5) −3.50 (−4.00, −3.10) 48.6
Hepcidin, nmol/L −1.38 (−1.79, −0.99) −4.13 (−5.39, −2.86) 33.4 −0.20 (−0.40, −0.10) −3.50 (−4.00, −3.10) 5.7
sTfR, mg/L — — — −.11 (−.16, −.07) −3.50 (−4.00, −3.10) 3.1
TSAT, %c 1.06 (0.79, 1.37) −4.13 (−5.39, −2.86) — 0.60 (0.50, 0.70) −3.50 (−4.00, −3.10) —

Sex and HOMA-IR
Ferritin, µg/L −4.35 (−5.11, −3.59)x −5.84 (−7.22, −4.47) 74.5 −2.03 (−2.64, −1.42) −5.03 (−6.23, −3.83) 40.3
Hepcidin, nmol/L −1.62 (−2.07, −1.17) −5.84 (−7.22, −4.47) 27.7 — — —
sTfR, mg/L — — — −0.12 (−0.27, −0.02) −5.03 (−6.23, −3.83) 2.4
TSAT, %c 1.27 (0.96, 1.61) −5.84 (−7.22, −4.47) — 0.80 (0.55, 1.07) −5.03 (−6.23, −3.83) —

Sex and HOMA-B
Ferritin, µg/Lc −1.91 (−2.68, −1.13) 2.33 (0.82, 3.85) — −0.79 (−1.5, −0.09) 1.95 (0.45, 3.45) —
Hepcidin, nmol/Lc −0.74 (−1.2, −0.29) 2.33 (0.82, 3.85) — — — —
sTfR, mg/Lc — — — −0.08 (−0.18, −0.01) 1.95 (0.45, 3.45) —

All iron biomarkers, FPG, FPI HOMA-IR, and HOMA-B were log-transformed. 
Abbreviations: FPG, fasting plasma glucose; FPI, fasting plasma insulin; HOMA-B, homeostasis model assessment of β-cell function; HOMA-IR, Homeostatic Model 
Assessment for Insulin Resistance; sTfRm soluble transferrin receptor; TSAT, transferrin saturation; . 
aModel 1 was adjusted for age. 
bModel 2 was adjusted for age, BMI, smoking, and alcohol use. 
cProportion mediated was not reported due to the different directions of indirect effect and total effect.
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resistance [38]. Likewise, glucose, lipids, and insulin can affect 
iron regulatory pathways [42]. In addition, ferritin may inter
act with serum adiponectin, an insulin-sensitizing adipokine, 
in modulation of the risk of diabetes [43]. A prospective 
Finish Diabetes Prevention Study investigated an inverse asso
ciation of adiponectin to ferritin ratio with diabetes risk, con
cluding an inverse association between serum ferritin and 
adiponectin [44]. We did not have body fat mass data in our 
study, but a detailed understanding of the mechanisms linking 
iron metabolism and metabolic risks should be suggested as a 
focus of future research.

Second, hemoglobin can also be involved, since in our study 
we found that after adjusting for hemoglobin, females showed 
higher insulin levels than males. A Chinese study showed that 
both higher hemoglobin and ferritin were associated with a 
high risk of diabetes, predominantly in females [45]. 
Elevated hemoglobin can increase blood viscosity, which can 
potentially decrease the supply of oxygen, glucose, and insulin 
to vital tissues, ultimately leading to insulin resistance [46].

Third, the “estrogen–iron” axis could also have implica
tions for diabetes pathophysiology. Estrogen levels affect 
iron metabolism and may play a supportive role by increasing 
iron requirements in premenopausal and decreasing iron re
quirements in postmenopausal females [47]. High estrogen 
thus may also play a role in insulin sensitivity by balancing 
iron levels, since high iron can increase insulin resistance [2]. 
Our study did not have data on estrogen levels to explore 
whether estrogen could play a role in the association between 
sex, iron, and glucose homeostasis.

Sex Differences in the Association Between Ferritin 
and Diabetes
Contradictory results have been published regarding sex dif
ferences in the association between ferritin and diabetes [14, 
15, 36]. Some have only shown an association between ferritin 
and diabetes incidence in females, some in males, and others in 
both sexes [14, 15, 36, 48]. Kim and colleagues found in 13  
848 adults that the age-adjusted odds ratio for diabetes in 
the fourth quartile of ferritin vs first was increased in both sexes 
[15]. In a study of 1444 ethnic Dutch, African, and South Asian 
Surinamese, and 162 Chinese patients with newly diagnosed 
T2D, ferritin was positively associated with T2D among fe
males, but not in males [7, 14]. The discrepancies in results be
tween studies could be due to differences in ferritin levels over 
time, which depend on sex, age, and menopausal status.

Mediation Analysis
We investigated the mediating role of hepcidin, sTfR, and 
TSAT besides ferritin in the association of female sex with glu
cose homeostasis. Andrews et al found that the upper quartiles 
of hepcidin mRNA expression in obese men had an adjusted 
odd ratio for diabetes of 4.54 (CI 95% 0.95-21.66, P < .05) 
[9]. Hepcidin is a liver-derived 25 amino acid peptide and mas
ter regulator of iron homeostasis, by inhibiting the transport of 
iron into the blood circulation and also the recycling of iron 
from macrophages [6]. Elevated hepcidin has been shown to 
potentially lead to iron accumulation in the liver and increased 
oxidative stress [5]. In a meta-analysis, the sTfR:ferritin ratio 
was inversely correlated with the risk of diabetes. In only 1 
study, an association between high sTfR, as a sensitive indica
tor of high metabolic demand for iron, and an increased risk of 
diabetes was identified [5]. There is much debate about TSAT, 

with some studies reporting a high TSAT, while others have 
shown both high and low TSAT to be associated with diabetes 
[49]. Our study showed however that TSAT may have a sup
pressive role in the association between female sex and glucose 
hemostasis. Iron deficiency can also impair insulin expression 
and lead to metabolic changes through association with obes
ity. In this context, the inflammatory state associated with ex
cessive adipose tissue may decrease iron absorption by 
increasing proinflammatory cytokines upregulating hepcidin 
[49]. In our study, we did not identify an association between 
AID or high iron status, and outcomes, most likely due to the 
low power of the categorized groups.

Clinical Implications in Diabetes Management
A better understanding of sex differences in physiology and 
disease and the identification of underlying mechanisms may 
lead to better prevention and treatment. Our observational 
study indicates the role of iron in understanding sex differen
ces in diabetes. Future studies should explore our hypothesis 
more and investigate causality in diverse populations. In add
ition, from a clinical and public health perspective, further ex
ploring our results could provide new insights into glycemic 
management and guiding sex-specific therapeutic interven
tions for the treatment of diabetes.

Strengths and Limitations
To our knowledge, this is the first study investigating the po
tential mediating role of iron biomarkers on the association 
of sex with glucose hemostasis. Our study presents several 
strengths, including a long follow-up time, a comprehensive 
set of iron biomarkers, and an analysis of multiple potential 
confounders. Our study also has some limitations. The cross- 
sectional nature of the study hampers drawing any conclusions 
on causality. Since iron parameters were measured at 1 point 
during this cohort, we could not evaluate the possibility of 
changes in iron parameters longitudinally. It should be realized 
that most epidemiologic studies use a single baseline measure
ment for studying the association of variables with outcomes, 
which adversely affects the strength and significance of the as
sociation of these variables with outcomes. If intra-individual 
variability of variables is considered, this results in the 
strengthening of associations that also existed for single meas
urements of these variables [50]. Since the study sample was 
mainly composed of white individuals, the findings might 
not generalize to other populations and should be replicated 
with different groups. We were not able to assess dietary 
iron intake patterns and sex hormones, and supplementary 
studies are needed to take these parameters into account. We 
did not have information on menopausal status, which pre
cluded our possibility to explore the role of menopause on 
the investigated associations; however, no interaction with 
age, except for ferritin, was identified in our study. In addition, 
reverse causality could be present in the analysis between iron 
biomarkers and diabetes, but the exclusion of the first 3 
months of follow-up did not change our results.
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