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Abstract

A fundamental function of cortical circuits is the integration of information from different

sources to form a reliable basis for behavior. While animals behave as if they optimally inte-

grate information according to Bayesian probability theory, the implementation of the

required computations in the biological substrate remains unclear. We propose a novel,

Bayesian view on the dynamics of conductance-based neurons and synapses which sug-

gests that they are naturally equipped to optimally perform information integration. In our

approach apical dendrites represent prior expectations over somatic potentials, while basal

dendrites represent likelihoods of somatic potentials. These are parametrized by local quan-

tities, the effective reversal potentials and membrane conductances. We formally demon-

strate that under these assumptions the somatic compartment naturally computes the

corresponding posterior. We derive a gradient-based plasticity rule, allowing neurons to

learn desired target distributions and weight synaptic inputs by their relative reliabilities. Our

theory explains various experimental findings on the system and single-cell level related to

multi-sensory integration, which we illustrate with simulations. Furthermore, we make exper-

imentally testable predictions on Bayesian dendritic integration and synaptic plasticity.

Author summary

The only certainty is uncertainty. Whether it is the reconstruction of a three-dimension

scene from the two-dimensional images on our retina or locating your lock in twilight, we

have to make decisions and perform actions without knowing the exact state of our envi-

ronment. In the presence of uncertainty, Bayesian probability theory provides formal reci-

pes of how different pieces of information should be combined to gain maximal

information. Indeed, behavioral experiments show that humans and other animals behave

as if they operate according to these principles. However, so far it is unclear how the nec-

essary computations are implemented by our biological substrate. By suggesting a new

view on the dynamics of a broad class of neuron models, we show how these computa-

tions may be implemented by individual cortical neurons. Furthermore, we derive a novel
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model of synaptic plasticity from first principles and illustrate how a neuron equipped

with these synapse dynamics learns to approximate Bayes-optimal decision makers.

Finally, we interpret various experimental results in light of our proposed theory and

make experimentally testable predictions.

Introduction

Successful actions are based on information gathered from a variety of sources. This holds as

true for individuals as it does for whole societies. For instance, experts, political parties, and

special interest groups may all have different opinions on proposed legislature. How should

one combine these different views? One might, for example, weight them according to their

relative reliability, estimated from demonstrated expertise. According to Bayesian probability

theory, the combined reliability-weighted view contains more information than any of the

individual views taken on its own and thus provides an improved basis for subsequent actions

[1].

Such problems of weighting and combining information from different sources are com-

monplace for our brains. Whether inputs from neurons with different receptive fields or inputs

from different modalities (Fig 1a), our cortex needs to combine these uncertain information

sources into a coherent basis that enables informed actions.

Bayesian probability theory provides clear recipes for how to optimally solve such problems,

but so far the implementation in the biological substrate is unclear. Previous work has demon-

strated that multiple interacting neuronal populations can efficiently perform such probabilis-

tic computations [3, 4]. These studies provided mechanistic models potentially underlying the

often Bayes-optimal behavior observed in humans and other animals [2, 5, 6]. Here we dem-

onstrate that probabilistic computations may be even deeper ingrained in our biological sub-

strate, in single cortical neurons.

We suggest that each dendritic compartment, here interpreted as logical subdivision of a

complex morphology, represents either a (Gaussian) likelihood function or a (Gaussian) prior

distribution over somatic potentials. These are parametrized by the local effective reversal

potential and the membrane conductance. Basal dendrites receiving bottom-up input repre-

sent likelihoods, while apical dendrites receiving top-down input, represent priors. We show

that the natural dynamics of leaky integrator models compute the corresponding posterior.

The crucial ingredient is the divisive normalization of compartmental membrane potentials

Fig 1. Integration of uncertain information in cortical neurons. (a1) Cue integration in early visual processing judging the orientation of a local edge. (a2) Cue

integration in multimodal perception judging the height of a bar [2]. (b1) A neuron integrates visual cues and prior expectations to combine information across receptive

fields. (b2) A neuron integrates visual and haptic cues with prior expectations to combine information across modalities. These computations can be realized by the

natural dynamics of cortical neurons through the bidirectional coupling of compartments (colored arrows) which represent likelihood functions (green, blue), prior

(grey), or posterior distributions (red) through their local membrane conductance and effective reversal potential.

https://doi.org/10.1371/journal.pcbi.1012047.g001
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naturally performed in the presence of conductance-based synaptic coupling [7]. Furthermore,

while this computation relies on bidirectional coupling between neuronal compartments, at

the level of the neuronal input-output transfer function, the effective computation can be

described in a feed-forward manner.

Beyond performing inference, the single-neuron view of reliability-weighted integration

provides an efficient basis for learning. In our approach, synapses not only learn to reproduce

a somatic target activity [8], but they also adjust synaptic weights to achieve some target vari-

ance in the somatic potential. Furthermore, afferents with low reliability will be adjusted to

contribute with a smaller total excitatory and inhibitory conductance to allow other projec-

tions to gain more influence. Implicitly, this allows each dendritic compartment to adjust its

relative reliability according to its past success in contributing to matching desired somatic

distributions.

In our theoretical framework we derive somatic membrane potential dynamics and synap-

tic plasticity jointly via stochastic gradient ascent on the log-posterior distribution of somatic

potentials. Simulations demonstrate successful learning of a prototypical multisensory integra-

tion task. The trained model allows us to interpret behavioral and neuronal data from cue inte-

gration experiments through a Bayesian lens and to make specific predictions about both

system behavior and single cell dynamics.

Results

Integration of uncertain information in cortical neurons

To give a high-level intuition for our approach, let us consider a prototypical task our brains

have to solve: the integration of various cues about a stimulus, for example in early visual areas

from different parts of the visual field (Fig 1a) or in association areas from different sensory

modalities (Fig 1b). Due to properties of the stimulus and of our sensory systems, information

delivered via various modalities inherently differs in reliability. Behavioral evidence demon-

strates that humans and non-human animals are able to integrate sensory input from different

modalities [2, 5, 6, 9–14] and prior experience (e.g., [15, 16]), to achieve a similar performance

as Bayes-optimal cue-integration models. Our theory suggests that pyramidal cells are natu-

rally suited to implement the necessary computations. In particular they take both their inputs

and their respective reliabilities into account by using two orthogonal information channels:

membrane potentials and conductances.

Consider a situation where your visual sensory apparatus is impaired, for example, due to a

deformation of the lens. Presented with multimodal stimuli that provide auditory and visual

cues, you would have learned to rely more on auditory cues rather than visual input (Fig 2).

When confronted with an animal as in Fig 2a, based on your vision alone, you might expect it

to be a cat, but not be certain about it. Hearing it bark, however, would shift your belief

towards it being, with high certainty, a dog. Since current-based neuron models only encode

information about their preferred feature in the total synaptic current without considering the

relative reliability of different pathways, they can generate wrong decisions: here, a neuron

that integrates auditory and visual cues wrongly signals the presence of a cat to higher cortical

areas (Fig 2b). In contrast, as we will show in the next section, by using dendritic conductances

gd as an additional coding dimension besides effective dendritic reversal potentials Ed, conduc-

tance-based neuron models are able to respond correctly by weighting auditory inputs stron-

ger than visual inputs (Fig 2c). Intuitively, in the absence of stimuli, the “cat neuron” (Fig 2b

and 2c) represents a small (prior) probability that a cat may be present, and the presentation of

an ambiguous cat-dog image increases this probability (Fig 2e, 400–1200ms, d,e). However,

when the animal subsequently barks, the probability drops abruptly. In our approach these
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computations are reflected by a hyperpolarization of the somatic membrane potential and an

associated increase in membrane conductance. Consistent with Bayes-optimal cue-integration

models (e.g., [17]), the combined estimate shows an increased reliability, even if the cues are

opposing.

Bayesian neuronal dynamics

Excitatory and inhibitory conductances targeting a single microscopic neuronal compartment

(with at most one excitatory and one inhibitory afferent) combine with the leak and the associ-

ated reversal potentials into a total transmembrane current Id = gd(Ed − ud). This current

b ca
Visual input:

maybe a cat

Auditory input:

like
ly not a cat

"Woof"

0

prob.
not cat!

likely
not cat

maybe
cat

conductance-based
neurons

sum reliability-
weighted inputs

2

-2 4

input
reliability

2

-2 4

4
cat!

not cat cat
input

expect cat

current-based
neurons

sum inputs

Fig 2. Conductance-based neuronal dynamics naturally implement Bayesian cue integration. (a) A multisensory stimulus. (b) Current-based neuron models can only

additively accumulate information about their preferred feature. (c) Conductance-based neuron models simultaneously represent information and associated reliability.

(d) Total somatic conductances �g s consisting of leak and synaptic conductances in a multisensory neuron (see panel (c)) under three conditions: only visual input (V,

blue), only auditory input (A, green), bimodal input (VA, red), and no input (gray). Before 400ms the visual cue is absent. Before 1200ms the auditory cue is absent. (e)

Somatic membrane potentials us are noisy, time-continuous processes that sample from the somatic distributions in the respective condition. This histogram on the right

shows the somatic potential distributions between 1250ms and 2250ms. (f) Suggested microcircuit implementation. Top part shows the neuron from panel (c). Activity r
of pyramidal cells from lower areas is projected directly (red lines with circular markers, WE

i denote excitatory synaptic weights) and indirectly via inhibitory

interneurons (circles and black lines with bar markers, WI
i denote inhibitory synaptic weights) to different dendritic compartments of pyramidal cells in higher cortical

areas. Each pyramidal cell represents pooled information �Es with its associated reliability �g s distributed across a corresponding population (overlapping triangle triples,

representing pre- and postsynaptic neurons, respectively).

https://doi.org/10.1371/journal.pcbi.1012047.g002
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induces a stimulus-dependent effective reversal potential Ed given by

Ed ¼
gEEE þ gIEI þ gLEL

gE þ gI þ gL
; ð1Þ

where excitatory, inhibitory and leak reversal potential are denoted as EE/I/L, and the respective

conductances by gE/I/L. The sum of these three conductances gd = gE + gI + gL represents the

local membrane conductance, which excludes the coupling to other compartments. The excit-

atory and inhibitory conductances are the product of the synaptic weights times the presynap-

tic firing rates, gE/I = WE/Ir. Note that in general Ed is different from the actual dendritic

potential ud, which is additionally influenced by the membrane potential in neighboring

compartments.

Across the dendritic tree (with multiple compartments i) we now interpret gdi and Ed
i as

parameters of Gaussian [18] likelihood functions pðEd
i jus; gdi Þ in basal compartments and

parameters of Gaussian priors pðusjEd
i ; g

d
i Þ in apical compartments. The dendritic likelihoods

quantify the statistical relationship between dendritic and somatic potentials. Intuitively speak-

ing, they describe how compatible a certain somatic potential us is with an effective reversal

potential Ed
i . Note that this relation is of purely statistical, not causal nature—biophysically,

effective reversal potentials Ed
i cause somatic potentials, not the other way around.

Finally, the somatic compartment computes the posterior according to Bayes theorem (see

Methods Sec. “Bayesian theory of somatic potential dynamics” for details),

pðusjW; rÞ / likelihood� prior ¼ e
�

�g s

2le
ðus �

�EsÞ
2

:
ð2Þ

Here, �g s represents the total somatic conductance, and �Es the total somatic reversal potential,

which is given by the convex combination of the somatic and dendritic effective reversal

potentials, weighted by their respective membrane conductances and dendro-somatic cou-

pling factors (Fig 3). The “exploration parameter” λe relates conductances to membrane poten-

tial fluctuations. In general, this parameter depends on neuronal properties, for example, on

the amplitude of background inputs and the spatial structure of the cell. It can be determined

experimentally by an appropriate measurement of membrane potentials from which both fluc-

tuation amplitudes and decay time constants t ¼ C=�g s can be estimated.

To obtain the somatic membrane potential dynamics, we propose that the soma performs

noisy gradient ascent on the log-posterior,

C _us ¼ le
@

@us
log pðusjW; rÞ þ x

¼ �g s ð
�Es � usÞ þ x

¼ g0ðE0 � usÞ þ
XD

i¼1

asdi ½g
L
i ðE

L � usÞ þ gEi ðE
E � usÞ þ gIi ðE

I � usÞ� þ x :

ð3Þ

with membrane capacitance C, and dendro-somatic coupling factors asdi ¼ gsdi =ðg
sd
i þ gdi Þ that

result from the dendro-somatic coupling conductances gsdi and the isolated dendritic conduc-

tances gdi . The additive noise ξ represents white noise with variance 2Cλe, arising, for example,

from unspecific background inputs [19–22]. For fixed presynaptic activity r, the average

somatic membrane potential hence represents a maximum-a-posteriori estimate (MAP, [17]),

while its variance is inversely proportional to the total somatic conductance �g s. The effective

time constant of the somatic dynamics is t ¼ C=�g s, thus enabling us to converge faster to reli-

able MAP estimates for larger �g s.
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The dynamics derived here from Bayesian inference (Eq 3) are identical to the somatic

membrane potential dynamics in bidirectionally coupled multi-compartment models with

leaky integrator dynamics and conductance-based synaptic coupling (Fig 4) under the

assumption of fast dendritic responses [23]. In other words, the biophysical system computes

the posterior distribution via its natural evolution over time. This suggests a fundamental role

of conductance-based dynamics for Bayesian neuronal computation.

Conductance-based Bayesian integration, as introduced above, can also be viewed from a

different perspective in terms of probabilistic opinion pooling [24]. Under this view each

Fig 3. Non-linear cue integration is achieved through a linear vector summation of conductances. (a) Non-linear combination of Gaussian probability densities.

The pooled mean is a convex combination of the original means, while the pooled reliability, the inverse variance, is a sum of the individual reliabilities. (b) Stimulus-

evoked excitatory and inhibitory synaptic conductances as two-dimensional vectors (blue and green), as well as the leak (gray), are linearly summed across dendrites to

yield the total somatic conductances (red arrow). The intersections with the antidiagonal (black line) yield the corresponding dendritic and somatic reversal potentials.

This intersection is a nonlinear operation (see Methods Sec. “Linear coordinates for nonlinear processing”). The inset shows the full distributions. Note that the prior

can be modulated by synaptic conductance elicited by top-down input (see panel c). (c) Translation of prior (gray) and dendritic (green and blue) potentials and

conductances into the corresponding somatic mean potential and conductances (red). For visualization purposes, the prior distribution is only partially shown.

https://doi.org/10.1371/journal.pcbi.1012047.g003

Fig 4. Single neuron dynamics as Bayesian inference. (a) Somatic and dendritic membrane potentials are coupled

through currents flowing along the dendritic tree (blue and black arrows, Eqs 5 and 6). (b) The steady state of the

somatic compartment can be interpreted as computing the posterior p(us|E0, g0, Ed, gd) from the dendritic priors

p(us|E0, g0) and dendritic likelihoods pðEd
i jus; gdi Þ. Stimulus-driven effective reversal potentials in basal dendrites pull

the somatic potential distribution from the prior towards the posterior.

https://doi.org/10.1371/journal.pcbi.1012047.g004
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dendrite can be thought of as an individual with a specific opinion—the dendrite’s effective

reversal potential—along with an associated reliability—the dendrite’s conductance. Accord-

ingly, the soma then plays the role of a “decision maker” that pools the reliability-weighted

dendrite’s opinions, determines a compromise, and communicates this outcome to other indi-

viduals, i.e., downstream neurons’ dendrites. Intuitively speaking, in this process dendrites

with a lot of confidence in their opinion, i.e., those with high dendritic conductance, contrib-

ute more to the pooled opinion than others.

Before introducing synaptic plasticity, we first discuss a specific consequence for neuronal

dynamics arising from our Bayesian view of neuronal dynamics.

Stimuli lead to Bayesian updates of somatic membrane potential statistics

The conductance-based Bayesian integration view predicts neuronal response properties that

differ from those of classical neuron models. In the case of conductances, somatic membrane

potentials reflect prior expectations in the absence of sensory input. These priors typically have

low reliability, encoded in relatively small conductances. As a consequence, the neuron is

more susceptible to background noise, resulting in large membrane potential fluctuations.

Upon stimulus onset, presynaptic activity increases causing synaptic conductances to increase,

thereby pulling postsynaptic membrane potentials towards the cue-specific reversal potentials

Ed, irrespective of their prior value (Fig 5a). This phenomenon is observed in electrophysiolog-

ical recordings from mouse somatosensory cortex: the change in membrane potential upon

whisker stimulation pulls the somatic membrane potential from variable pre-stimulus poten-

tials, i.e., different prior expectations, towards a cue-specific post-stimulus potential (Fig 5a,

[25]). Besides a change in the average membrane potential, cue onset increases conductances

and hence decreases membrane potential variability.

These effects are signatures of Bayesian computations. Upon cue onset, the prior distribu-

tion is combined with stimulus-specific likelihoods leading to an updated somatic distribution

with adapted mean and reduced variance. If the prior strongly disagrees with information pro-

vided by the stimulus, the change in mean is larger than if prior and stimulus information are

consistent. Importantly, the variance is always reduced in the presence of new information,

regardless of whether it conflicts with previous information or not; this is a hallmark of Bayes-

ian reasoning.

Fig 5. Conductance-based Bayesian integration implies stimulus-specific reversal potentials. (a) Average stimulus-evoked responses for different ranges of

prestimulus potentials generated by our model (left) and measured experimentally (right, see [25]). Vertical arrow indicates stimulus onset corresponding to activation of

dendritic input and whisker touch, respectively. Independently of the previous value of the somatic potential, the dendritic input always pulls the somatic potential

towards the effective reversal potential associated with the stimulus. (b) PSP amplitude vs. prestimulus potential generated by our model (left) and measured

experimentally (right, see [25]). Experiment data from [25].

https://doi.org/10.1371/journal.pcbi.1012047.g005
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We propose that this probabilistic computation underlies the observed stimulus-driven

reduction of variability throughout cortex [26, 27] and explains why stimulus-evoked PSP

amplitudes are negatively correlated with prestimulus potentials [25, 28, Fig 5b; also see]. In

whisker stimulation experiments [25], the stimulation intensity is encoded by the whisker

deflection angle. Our framework predicts that, as the amplitude of whisker deflections

increases, the variance of the post-stimulus potentials decreases. This prediction is consistent

with the recent observation that increasing the contrast of oriented bar stimuli reduces the var-

iance in the postsynaptic response of orientation-specific neurons in macaque visual cortex

[29]. Furthermore, our model predicts that the nature of stimuli during learning will affect the

impact of sensory cues on electrophysiological quantities and behavior: more reliable priors

will cause a smaller influence of sensory inputs, while increasing stimulus reliability, e.g., stim-

ulus intensity, would achieve the opposite effect. Regardless of training, our model also pre-

dicts decreasing influence of the prior for increasing stimulus intensity.

Gradient-based synaptic dynamics

As discussed above, a fixed stimulus determines the somatic membrane potential distribution.

Prior to learning, this distribution will typically be different from a desired distribution as pre-

dicted, for example, by past sensory experience or cross-modal input. We refer to such stimu-

lus-dependent desired distributions as target distributions.

We define learning in our framework as adapting synaptic weights W to increase the proba-

bility of samples u∗s from the target distribution under the currently represented somatic poste-

rior. Formally, learning reduces the Kullback-Leibler divergence KL(p*|p) between the target

distribution p*(us|r) and the somatic membrane potential distribution p(us|W, r). This can be

interpreted as a form of supervised learning, where a large divergence implies poor perfor-

mance and a small divergence good performance, respectively. This is achieved through gradi-

ent ascent on the (log-)posterior somatic probability of target potentials u∗s sampled from the

target distribution, resulting in the following dynamics for excitatory and inhibitory weights

(for details see Methods Sec. “Weight dynamics”):

_WE=I
i / le

@

@WE
i

log pðu∗s jW; rÞ / ðu∗s � �EsÞðE
E=I � ~Ed

i Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼Dm
E=I
i

þ
asdi
2

le

�g s
� ðu∗s � �EsÞ

2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ds2

2

6
6
6
4

3

7
7
7
5
ri ; ð4Þ

with ~Ed
i ¼ a

sd
i

�Es þ ð1 � a
sd
i ÞE

d
i . Here, λe is the exploration parameter, asdi the an effective den-

dritic coupling strength, Ed
i the reversal potential of dendrite i given by Eq 1, and �Es the total

somatic reversal potential.

All dynamic quantities arising in the synaptic plasticity rule are neuron-local. The dendritic

potentials Ed
i are available at the synaptic site, as well as the presynaptic rates ri. We hypothesize

that the backpropagating action potential rate that codes for u∗s can influence dendritic synap-

ses [30]. Furthermore, the total conductance �g s determines the effective time constant by

which the somatic membrane potential fluctuates and could be measured through its temporal

correlation length. The exact molecular mechanisms by which these terms and their combina-

tions are computed in the synapses remain a topic for future research.

Joint learning of somatic mean and variance

The total postsynaptic error is composed of an error in the mean Dm
E=I
i and an error in the var-

iance Δσ2 (Eq 4). By jointly adapting the excitatory and inhibitory synapses, both errors in the
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mean and the variance are reduced. To simultaneously adjust both the mean and variance, the

two degrees of freedom offered by separate excitation and inhibition are required.

To illustrate these learning principles we consider a toy example in which a neuron receives

input via two different input channels with different noise amplitudes. Initially neither the

average somatic membrane potential, nor its variance match the the parameters of the target

distribution (Fig 6a, left). Over the course of learning, the ratio of excitatory to inhibitory

weights increases to allow the average somatic membrane potential to match the average target

potential and the total strength of both excitatory and inhibitory inputs increases to match the

Fig 6. Dendritic predictive plasticity performs error correction and reliability matching. (a) A neuron receives input via two different input

channels with different noise amplitudes (green and blue). Synaptic plasticity adapts the mean (μ) and variance (σ2) of the somatic membrane

potential (red) towards the target (black). (b1) Excitatory and inhibitory weights per input channel (basal dendrite). The dashed vertical line indicates

the onset of learning. The dendrites learn the mean target potential within the first few seconds (jumps after the dashed line). (b2) Ratio of excitatory

and total synaptic weights per dendrite. These ratios determine the mean dendritic membrane potentials. Since both dendrites learn to match the

same somatic mean potential based on their respective synaptic inputs, these ratios become equal. (b3) Sum of excitatory and inhibitory weights per

dendrite. The total dendritic weights reflect the reliability of the dendritic input. Learning assigns larger synaptic weights to the less fluctuating and

more reliable input (blue) as compared to the stronger fluctuating and less reliable input (green). As the balancing ratio becomes the same (b2), the

excitatory and inhibitory strengths of the more reliable input must both become larger (b1). (c) The relative synaptic strength of a given branch

(Wi/∑j Wj) becomes identical to the relative reliability ( 1

s2
i
=
P

j
1

s2
j
) of its input with respect to the other branches over the course of learning (here

shown for i = 1; starting with W1 = W2 for the entire range of relative reliabilities, horizontal line). Note that time flows from blue (first trial) to

yellow (last trial).

https://doi.org/10.1371/journal.pcbi.1012047.g006
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inverse of the total somatic conductance to the variance of the targets (Fig 6a, right; b1). Excit-

atory and inhibitory weights hence first move into opposite directions to match the average,

and later move in identical directions to match the variance (Fig 6b1).

In both dendrites, the strengths of excitation and inhibition converge to the same ratio to

match the mean of the target distribution (Fig 6b2). However, the relative magnitude of the

total synaptic strength Wtot = WE + WI changes according to the relative fluctuations of the

presynaptic input during learning. While branches with reliable presynaptic input (small fluc-

tuations) are assigned large total synaptic weights, branches with unreliable input learn small

total synaptic weights (Fig 6b2). More specifically, the total synaptic weights indeed match the

respective reliabilities of the individual dendrites: Wtot�
/ 1

s2
r

(Fig 6c). Intuitively speaking, the

total synaptic weights learn to modulate somatic background noise ξ towards a target variance

s∗u. For a proof, we refer to the SI.

Learning Bayes-optimal cue combinations

We next consider a multisensory integration task in which a rat has to judge whether the angle

of a grating is larger than 45˚ or not, using whisker touching (T) and visual inspection (V), see

Fig 7a and [14]. In this example, projections are clustered according to modality on dendritic

compartments. In general, this clustering is not necessarily determined by modality but could

also reflect, for example, lower-level features, or specific intracortical pathways. In our setup,

uncertainty in the sensory input from the two modalities is modeled by different levels of addi-

tive noise. The binary classification is performed by two multisensory output neurons that are

trained to encode the features > 45˚ and< 45˚, respectively. Technically, we assume the target

distribution is a narrow Gaussian centered around a stimulus-dependent target potential. For

example, for the neuron encoding orientations > 45˚, the target potential would be high for

ground truth orientations > 45˚ and it would be low otherwise. The output neurons receive

input from populations of feature detectors encoding information about visual and tactile

cues, respectively (Fig 7b).

The performance of the model neurons after learning matches well the Bayes-optimal MAP

estimates that make use of knowledge about the exact relative noise variances. In contrast,

averaging the two cues with equal weighting, and thus not exploiting the conductance-based

Bayesian processing, or considering only one of the two cues, would result in lower

Fig 7. Learning Bayes-optimal inference of orientations from multimodal stimuli. (a) Experimental setup [14]. (b) Network model. (c) Accuracy of the MAP estimate

(MAP, dark gray), the trained model with bimodal cues (VT, red), unweighted average of visual and tactile cues (unw. avg., light gray), and the trained model with only

visual (V, blue) and tactile cues (T, green), respectively. Error bars denotes standard error of the mean over 25 experiments, each consisting of 20 000 trials. The trained

model performs as well as a theoretically optimal observer (compare loss of MAP and VT). (d) Psychometric curves of the model confirm that the classification near 45˚

for the combined modalities (red) is at least as good as for the visual modality (V, blue, lower input variance), and better than for the tactile modality (T, green, higher

input variability). Dots: subsampled data, solid lines: fit of complementary error function. (e) Psychometric curves for rat 1 [14] for comparison. Experiment data from

[14].

https://doi.org/10.1371/journal.pcbi.1012047.g007
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performance (Fig 7c). Furthermore, the psychophysical curves of the trained model match

well to experimental data obtained in a comparable setup (Fig 7d and 7e).

Cross-modal suppression is caused by conductance-based Bayesian

integration

Using the trained network from the previous section, we next consider the firing rate of the

output neuron that prefers orientations > 45˚ for conflicting cues with a specific mismatch.

We assume a true stimulus orientation > 45˚ generates a separate cue for each modality,

where, as an example we assume the visual cue to be more vertical than the tactile cue (Fig 8a)

which result in different dendritic reversal potentials Ed
i . In the following we identify the reli-

ability of a stimulus with its intensity. Intuitively speaking, a weak stimulus is less reliable than

a strong one.

When cues are presented simultaneously at low stimulus intensity, the output neurons fire

stronger than in unimodal conditions (Fig 8b). However, when presented simultaneously at

high stimulus intensity the cues suppress each other, i.e., the resulting firing rate is smaller

than the maximal rate in unimodal conditions (Fig 8b). This phenomenon is known as cross-

modal suppression [31, 32].

In the context of the conductance-based Bayesian integration, this counterintuitive interac-

tion of multimodal cues arises as a consequence of the somatic potential being a weighted aver-

age of the two unimodal effective reversal potentials and the prior. For low stimulus intensity

the prior dominates; since the evidence from either modality is only weak, information arriv-

ing from a second modality always constitutes additional evidence that the preferred stimulus

is present. Thus, the somatic potential is pulled farther away from the prior in the bimodal

condition as compared to the unimodal one. For high stimulus intensity the prior does not

play a role and the somatic potential becomes a weighted average of the two modality-specific

effective reversal potentials. As one cue is more aligned with the neuron’s preferred feature

than the other, the weighted average appears as a suppression (Fig 8).

We propose that the computational principle of conductance-based Bayesian integration

also underlies other variants of cross-modal suppression (e.g., [7, 31–33]), and also explains

Fig 8. Cross-modal suppression arising from Bayes-optimal integration of information in single neurons. (a) Experimental setup (compare Fig 7). (b) Firing rate of

the output neuron encoding orientations> 45˚ for unimodal stimulation (V,T) and bimodal stimulation (VT). Dashed lines indicate the limit of no stimulation (gray),

and infinitely strong tactile (green) and visual (blue) stimulation, respectively. Inset shows zoom in for high stimulation intensities. Pulling the somatic potential (red)

towards the weighted mean of the visual and tactile effective reversal potentials (blue and green dashed lines) leads to a relative increase for weak stimulus intensities

(black upward arrow) and to cross-modal suppression at strong stimulus intensities (black downward arrow). (c) Firing rate of a neuron from macaque MSTd in

response to misaligned visual (blue) and vestibular (green) cues with a mismatch of Δ = 60˚. Experiment data from [31].

https://doi.org/10.1371/journal.pcbi.1012047.g008
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unimodal suppression arising from superimposing cues (e.g., [34–36]), or superimposing sen-

sory inputs and optogenetic stimulation [37, 38].

Discussion

The biophysics of cortical neurons can be interpreted as Bayesian computations. We demon-

strated that the dynamics of conductance-based neuron models naturally computes posterior

distributions from Gaussian likelihood functions and prior represented in dendritic compart-

ments. We derived somatic membrane dynamics from stochastic gradient ascent on this poste-

rior distribution, and synaptic plasticity from matching the posterior to a target distribution.

Our plasticity rule naturally accommodates the relative reliabilities of different pathways by

scaling up the relative weights of reliable inputs, i.e., those that have a high correlation to target

potentials for given presynaptic activities. The targets may themselves be formed by peri-

somatic input from other modalities, or by more informed predictive input from other cortical

areas. We demonstrated successful learning in a multisensory integration task in which modal-

ities were different in their reliability.

Cortical and hippocampal pyramidal neurons have also been described to be driven by two

classes of inputs, with general ‘top-down’ input on apical dendrites that predicts the ‘bottom-

up’ input on basal dendrites [39, 40]. In this framework, adapting the basal inputs has been

conceptualized as “learning by the dendritic prediction of somatic firing” [30, 41, 42]. In the

broader context of our Bayesian framework, this view suggests that synaptic plasticity tries to

match bottom up input to top-down expectations. Depending on the nature of the top-down

input, learning can be thus interpreted as target matching or—in the absence of targets—as a

regularization of the cortical representation similar to prior matching in variational autoenco-

ders [43].

Our supervised learning can be seen within this predictive framework. A neuron is consid-

ered as a nonlinear prediction element, with dendritic input predicting somatic activity.

Extending this predictive view, we argue that dendrites themselves can be seen as performing a

dendritic ‘opinion pooling’ [24, 44], namely forming dendritic opinions on the stimulus fea-

ture, weighting them according to their reliability, and predicting the somatic opinion that is

imposed by the teacher input. Each dendrite receives a subset of the neuron’s afferents and

forms its own opinion whether a certain feature is likely present in this afferent subset. While

the dendritic opinion is encoded in the effective dendritic reversal potential, the reliability of

this opinion is encoded in the total dendritic conductance. According to the biophysics of neu-

rons, the overall somatic opinion is then formed by the certainty-weighted dendritic opinions,

and this is what the somatic output represents.

So far, we have only considered synapses of which the conductance does not depend on the

local membrane potential. Excitatory synapses in pyramidal cells are known to express N-

methyl-D-aspartate (NMDA) channels, whose conductance depends on the local potential

[45]. These synapses elicit strong supra-linear responses [46] which cause a massive increase of

the isolated dendritic conductance and both dendritic and somatic potentials. In our current

framework, such responses would correspond to a high certainty that a given feature is present

in the input targeting the dendritic branch. Dendritic calcium spikes that originate in the api-

cal dendrites of layer 5 pyramidal neurons [39, 47] may also represent such strong responses.

At the time of the peak potential, when the derivative vanishes, these strong responses can be

pooled with other dendritic potentials. As a result, the dendritic spikes can then be integrated

according to their reliabilities to form the somatic posterior. However, these strongly non-lin-

ear, recurrent interactions are difficult to fully capture in the current mathematical framework.

An extended model, which could also describe the influence of backpropagation action
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potentials necessary for learning, is a promising direction to further reduce the gap to biophys-

ical dynamics.

Bayesian inference has previously been suggested as an operation on the level of a neuronal

population in space [3, 17, 48] or in time [12, 20, 21, 49]. In our framework, to read out the

reliability of a single neuron, postsynaptic neurons either have to average across time or across

a population of neurons that encode the same feature. Our single-neuron description of Bayes-

ian inference may thus be complementary to population-based models. A formal demonstra-

tion of this complementarity is beyond the scope of the current manuscript. Other recent

work also considers the neuronal representation and learning of uncertainty. For example, in

line with our plasticity rules, natural-gradient-descent learning for spiking neurons [50] pre-

dicts small learning rates for unreliable afferents. A different approach to representing and

learning uncertainty is centered on synaptic weights rather than membrane potentials and

conductances [51]. In this model, each synapse represents a distribution over synaptic weights

and plasticity adapts the parameters of this distribution. While being a complementary

hypothesis, this normative view does not incorporate neuronal membrane dynamics.

Our model makes various experimental predictions.

(i) Certainty representation within a neuron: in response to individual whisker touches, our

model implies that the somatic potential of somatosensory neurons is driven towards a stimu-

lus-specific reversal potential; this is consistent with measurements in mouse barrel cortex (Fig

5). Moreover, the model also predicts that the variability of cumulative PSP amplitudes (jumps

in the postsynaptic membrane potential following a whisker touch) depends on the frequency

of whisker touches. For high frequencies, i.e., small inter-stimulus intervals, the total evoked

conductance remains large and the somatic potential “sticks” more to the corresponding rever-

sal potential between stimuli. Thus, the pre-stimulus variability of the somatic potential

decreases, which in turn reduces the CV (coefficient of variation) of PSP amplitudes upon

stimulation (consistent with experimental data, cf. Figs 1C & 6K in [25]). Similarly, we predict

a drop in the CV of the PSPs with increased whisker deflection amplitude. A stronger, more

certain stimulus would lead to stronger presynaptic firing; this consequently yields a stronger

clamping and hence a smaller post-stimulus variability of the somatic potential, thereby reduc-

ing the variability of stimulus-induced PSPs.

(ii) Synaptic plasticity for certainty learning: to test whether the mean and variance of the

somatic potential can be learned by dendritic input, one may consider extracellular stimulation

of mixed excitatory and inhibitory presynaptic afferents of a neuron while clamping the

somatic potential to a fluctuating target. Our plasticity rule predicts that initially, when the

mean of the target distribution is not yet matched, excitatory and inhibitory synaptic strengths

move in opposite directions, i.e., one increases, the other decreases, to jointly match the aver-

age somatic membrane potential to the target potential (cf. Fig 6b1). Then, after the match in

the mean has been approximately reached, the excitatory and inhibitory strengths covary in

order to match the variance of the target distribution.

(iii) Cross-modal suppression: consider a setting similar to [31] in which an animal receives

mismatched visual and vestibular cues about a quantity of interest (cf. Fig 8). From a norma-

tive perspective, making the visual stimulus less reliable should shift weight to the vestibular

input. Accordingly, our framework predicts that the total synaptic weights from the visual

modality should become smaller. This causes visual cues to have a smaller effect on the somatic

membrane potential, and thus, over the course of learning, the firing rate of the bimodal con-

dition should become more similar to the tactile-only condition.

In conclusion, we suggest that single cortical neurons are naturally equipped with the ‘cog-

nitive capability’ of Bayes-optimal integration of information. Moreover, our gradient-based

formulation opens a promising avenue to explain the dynamics of hierarchically organized
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networks of such neurons. Our framework demonstrates that the conductance-based nature of

synaptic coupling may not be an artifact of the biological substrate, but rather enables single

neurons to perform efficient probabilistic inference previously thought to be realized only at

the circuit level.

Methods

Equivalent somato-dendritic circuit

The excitatory and inhibitory dendritic conductances, gEi and gIi , are driven by the presynaptic

firing rates ri(t) through synaptic weights WE=I
i and have the form gE=Ii ðtÞ ¼WE=I

i riðtÞ. For

notational simplicity we drop the time argument in the following. The dynamics of the somatic

potential us and dendritic potentials ud
i for the D dendrites projecting to the soma read as

C _us ¼ g0ðE0 � usÞ þ
XD

i¼1

gsdi ðu
d
i � usÞ ð5Þ

Cd
i _ud

i ¼ gLi ðE
L � ud

i Þ þ gEi ðE
E � ud

i Þ þ gIi ðE
I � ud

i Þ þ gdsi ðus � ud
i Þ ; ð6Þ

where C and Cd are the somatic and dendritic capacitances, EL/E/I the reversal potentials for

the leak, the excitatory and inhibitory currents, gsdi the transfer conductance from the ith den-

drite to the soma, and gdsi in the reverse direction. By g0 and E0 we denote the somatic conduc-

tance and its induced reversal potential, which in the absence of synaptic input to the soma

becomes the leak conductance and the leak reversal potential.

We assume that Cds are small, so that dendritic dynamics are much faster than somatic

dynamics and can be assumed to be in equilibrium. We can thus set _ud
i to zero and rearrange

Eq 6 to obtain

ud
i � us ¼

gdi
gdi þ gdsi

ðEd
i � usÞ ; ð7Þ

with dendritic reversal potentials Ed
i given by Eq 1 and gdi ¼ gEi þ gIi þ gLi . Plugging Eqs 7 into

5 and using the shorthand notation asdi ¼
gsdi

gdsi þg
d
i
, we obtain

C _us ¼ g0ðE0 � usÞ þ
XD

i¼1

asdi g
d
i ðE

d
i � usÞ ; ð8Þ

compare Eq 3 in the main manuscript. These dynamics are equivalent to gradient descent

(� @E=@us) on the energy function

EðusÞ ¼
g0

2
ðE0 � usÞ

2
þ
XD

i¼1

asdi g
d
i

2
ðEd

i � usÞ
2
; ð9Þ

which also represents the log-posterior of the somatic potential distribution, as we discuss

below.

Bayesian theory of somatic potential dynamics

Above, we have outlined a bottom-up derivation of somatic dynamics from the biophysics of

structured neurons. In the following, we consider a probabilistic view of single neuron compu-

tation and demonstrate that this top-down approach yields exactly the same somatic mem-

brane potential dynamics.
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The assumption of Gaussian likelihoods and priors reflects the fact that the summation of

many independent synaptic inputs generally yields a normal distribution, according to the

central limit theorem and in agreement with experimental data [18]. We thus consider a prior

distribution over us of the form

pðusjE0; g0Þ ¼
1

Z0

e�
g0

2le
ðE0 � usÞ

2

; ð10Þ

with parameters λe, g0, E0 and normalization constant Z0. Similarly, we define the dendritic

likelihood for us as

pðEd
i jus; gdi Þ ¼

1

Zd
i

e�
asdi gdi
2le
ðEdi � usÞ

2

; ð11Þ

with parameters asdi ;E
d
i ; g

d
i . According to Bayes’ rule, the posterior distribution of the somatic

membrane potential us is proportional to the product of the dendritic likelihoods and the

prior. If we further assume that dendrites are conditionally independent (independence of

dendritic densities given the somatic potential), their joint density p(Ed|us, gd) factorizes, yield-

ing

pðus jE0; g0;E
d; gdÞ / pðEd j us; gdÞpðusjE0; g0Þ ¼

YD

i¼1

pðEd
i jus; g

d
i ÞpðusjE0; g0Þ : ð12Þ

Plugging in Eqs 10 and 11, we can derive that the posterior is a Gaussian density over us with

mean

�Es ¼
g0E0 þ

PD
i¼1
asdi g

d
i E

d
i

g0 þ
PD

i¼1
asdi gdi

ð13Þ

and inverse variance

�g s ¼ g0 þ
XD

i¼1

asdi g
d
i : ð14Þ

We thus obtain

pðusjW; rÞ � pðus jE0; g0;E
d; gdÞ ¼

1

Z
e�

�g s
2le
ðus � �EsÞ

2

; ð15Þ

with normalization factor Z ¼
ffiffiffiffiffiffi
2ple

�g s

q
. We switched in Eq 15 to the conditioning on W and the

presynaptic rates r since these uniquely determine the dendritic and somatic conductances

(gd), and thus also the corresponding reversal potentials (Ed). Here, we use the conventional

linear relationship g = Wr between conductances and presynaptic rates. For more complex

synapses with nonlinear transmission of the type g = f(w, r), where f can be an arbitrary func-

tion, our derivation holds similarly, but would yield a modified plasticity rule.

The energy function from Eq 9 is equivalent to

EðusÞ ¼ � le log pðusjW; rÞ � le log Z ¼
�g s
2
ðus �

�EsÞ
2
. Since Z is independent of us, the

somatic membrane potential dynamics from Eq 8 minimizes the energy E while maximizing

the log-posterior,

C _us ¼ �
@E
@us
¼ le

@

@us
log pðusjW; rÞ : ð16Þ
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In this form, it becomes obvious that the somatic potential moves towards the maximum-a-

posteriori estimate (MAP) of us in the absence of noise. The stochastic version of Eq 16 with

Gaussian additive noise leads to Eq 3 in the Results, this can be loosely interpreted as using

Langevin dynamics to find the MAP solution for the posterior distribution.

Weight dynamics

The KL between the target distribution p* and the somatic membrane potential distribution

can be written as

KL½p∗ðusjrÞjpðusjW; rÞ� ¼ � Sðp∗Þ � Ep∗ ½log pðusjW; rÞ� : ð17Þ

The entropy S of the target distribution p* is independent of the synaptic weights W. Stochastic

gradient descent on the KL divergence therefore leads to a learning rule for excitatory and

inhibitory synapses that can be directly derived from Eq 15 (see SI):

_W E=I
i / le

@

@WE=I
i

log pðu∗s jW; rÞ ¼ asdi ðu
∗
s �

�EsÞ E
E=I � ~Ed

i

� �
þ
adsi
2

le

�g s
� ðu∗s � �EsÞ

2

� �� �

ri ; ð18Þ

with asdi ¼
gsdi

gdsi þg
d
i
, adsi ¼

gdsi
gdsi þg

d
i

and ~Ed
i ¼ a

ds
i

�Es þ ð1 � a
ds
i ÞE

d
i , see also Eq 4 in the Results, where

we assumed symmetric coupling conductances between dendritic compartments and soma,

i.e., gsdi ¼ gdsi .

As discussed in the main text, the two terms in the plasticity rule roughly correspond

to adapting the mean and variance of the somatic distribution. However, the second term

/
le
�g s
� ðu∗s � �EsÞ

2
depends not only on a mismatch in the variance, but also on a mismatch

in the mean of the distribution. To highlight this, we rewrite the sample u∗s as

u∗s ¼ m
∗ þ s∗x

∗
, the target mean plus a sample from N ð0; 1Þ scaled with the target variance.

Plugging this into the plasticity rule, the first term becomes / ðm∗ þ s∗x
∗
� �EsÞ, and the sec-

ond term becomes /
le
�g s
� ðm∗ þ s∗x

∗
� �EsÞ

2
. This form shows that only after the somatic

reversal matches the target mean, �Es ¼ m
∗, will the synapses adapt so that in expectation

le
�g s
� ðs∗x

∗
Þ

2
� 0. Because the ξ* are samples from a standard normal distribution, we con-

clude that after learning, beside �Es ¼ m
∗, we also have

le
�g s
¼ s∗2, i.e., the total synaptic con-

ductance is inversely proportional to the variance of the target potential distribution. For a

proof that, in addition, the total synaptic strength on each dendritic branch becomes

inversely proportional to the variance in the presynaptic rate, Wtot�
/ 1

s2
r

, see SI.

In the absence of a target distribution, the neuron essentially sets its own targets. On aver-

age, weight changes in the absence of a target distribution are hence zero. Since for conduc-

tance-based synapses only non-negative weights are meaningful, we define the minimal

synaptic weight as zero.

Linear coordinates for nonlinear processing

The interplay of conductances and potentials can be visualized in a Cartesian plane spanned

by inhibitory and excitatory conductances (Fig 9). To simplify the picture, we neglect leak con-

ductances and assume strong dendritic couplings gsd, gds. The state of a single dendrite is fully

determined by its inhibitory and excitatory synaptic conductances and can be represented by a

vector (gI, gE). As we assume the prior conductance is zero, the total conductance at the soma

is given by the sum of dendritic conductances. Thus, the soma itself can be represented by a
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vector that is the sum of the dendritic conductance vectors. Furthermore, the length of these

vectors is proportional to the magnitude of excitatory and inhibitory conductances and thus

the reliability of the potential encoded by their associated compartments.

This simple, linear construction also allows us to determine the membrane potentials of

individual compartments. For this, we need to construct the antidiagonal segment connecting

the points (1, 0) and (0, 1). If one identifies the endpoints of this segment with the synaptic

reversal potentials, i.e., EI! (1, 0) and EE! (0, 1), the antidiagonal can be viewed as a linear

map of all possible membrane potentials. With this construction, the membrane potential of a

compartment (dendritic or somatic) is simply given by the intersection of its conductance vec-

tor with the antidiagonal. Formally, this intersection is a nonlinear operation and instantiates

a convex combination, the core computation that connects neuronal biophysics to Bayesian

inference (Fig 3).

This simple construction allows us to easily visualize the effects of synaptic weight changes

on the dendritic and somatic membrane potentials. For example, increasing the inhibitory

conductance of a certain compartment will have a twofold effect: its effective reversal potential

will decrease (the intersection will move towards EI), while simultaneously increasing its reli-

ability (the vector will become longer).

In the following, we give a simple geometric proof that the intersection u of a conductance

vector (gI, gE) with the antidiagonal indeed represents the correct membrane potential of the

compartment. The coordinates of this intersection are easy to calculate as the solution to the

system of equations that define the two lines x/y = gI/gE and y = 1 − x, with

ðx; yÞ ¼
gI

gI þ gE
;

gE

gI þ gE

� �

: ð19Þ

The ratio of these coordinates is also the ratio of the two resulting segments on the

Fig 9. The nonlinear membrane potential and synaptic dynamics expressed in linear conductance coordinates.

Dendrites can be represented as vectors defined by their inhibitory and excitatory conductances (blue and green

arrows). In these coordinates, the soma is itself represented by a vector that is simply the sum of dendritic vectors (red

arrow). The antidiagonal (gray) spans the range of all possible membrane potentials, from EI to EE. The membrane

potential of any given compartment is given by the intersection of its conductance vector with the antidiagonal.

https://doi.org/10.1371/journal.pcbi.1012047.g009
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antidiagonal: (EE − u)/(u − EI) = x/y. Solving for u yields

u ¼
gIEI þ gEEE

gI þ gE
; ð20Þ

which represents the sought convex combination.

Simulation details

In the following we provide additional detail on simulations. Numerical values for all parame-

ters can be found in Tables 1–4.

Details to Fig 5. We consider the trained network from Fig 7, but now use a finite somatic

capacitance C. The differential equation of the output neurons (Eq 3) is integrated on a time

grid of spacing Δt with an explicit Runge-Kutta method of order 3(2) from SciPy 1.4.1 [52]. To

mimic background noise we generate “noise” cues, identical for both modalities, from a nor-

mal distribution N ðmb; s
2
bÞ and convert these into rates rb via the two populations of feature

detectors. We consider an additional “signal” cue, also identical across modalities and trials,

which generates additional rates r0 via the feature detectors. The input rate for the output neu-

rons is then computed as r = γr0 + (1 − γ)rb, where γ = γbefore before stimulus onset and γ =

γafter after stimulus onset. For visualization purposes, we shift the scale of membrane potentials

by −8mV in the figure.

Details to Fig 6. We consider a neuron following instantaneous versions of Eq 3. It has D
compartments with infinitely strong coupling of the dendritic compartments to the soma gds,

gsd!1. In each trial, we sample a ground truth input rate r � N ðmr; s
2
r Þ, and from this rate

we generate noisy rates rV � N ðr; s2
VÞ; r

T � N ðr; s2
TÞ with modality-specific noise amplitudes

σV, σT, respectively. We avoid non-positive input rates by replacing them with rmin. We intro-

duce an additional neuron with just a single compartments which generates target membrane

potentials u* from the ground truth input rate r and a random weight matrix. The second neu-

ron receives the noisy input rates and should learn to mimic the distribution of somatic target

potentials by learning synaptic weights via Eq 4. We train for a certain number of trials Ntrials,

and for visualization purposes convert trial number into time by defining a trial duration of

Δttrial.

Details to Fig 7. We consider N output neurons each with D dendritic compartments.

Their dynamics are described by Eq 3, but for computational efficiency we consider an instan-

taneous version of with C! 0. We furthermore assume infinitely strong coupling of the den-

dritic compartments to the soma gds, gsd!1. We use a softplus activation function ρ(us) =

log(1+ exp(us)).

Table 1. Parameters used in Fig 5. Remaining parameters defined in Table 3.

Parameter name Value Description

Ntrials 40 number of trials

μnoise, σnoise 35˚, 15˚ mean/std. of noise orientations

θstimulus 44˚ stimulus orientation

γbefore, γafter 0.0, 0.88 rel. signal contrast before/after stimulus onset

dt 0.2 ms integration time step

T 100 ms simulation duration

C 50 pF somatic membrane capacitance

λe 100.0 nS mV2 neuronal exploration constant

https://doi.org/10.1371/journal.pcbi.1012047.t001
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Table 3. Parameters used in Fig 7.

Parameter name Value Description

N 2 number of neurons

D 3 number of dendritic compartments per neuron

gL
0

1.0 nS somatic leak conductance

gLi 0.2 nS dendritic leak conductance

EE, EI 0 mV, −85 mV exc. /inh. reversal potentials

EL −70 mV leak potential

λe 1.0 nS mV2 neuronal exploration constant

C ! 0 somatic membrane capacitance

gsdi ; gdsi !1 somato-dendritic/dendro-somatic coupling conductance

NT, NV 70 number of feature detectors per modality

½y
fd
min; y

fd
max� [−315˚, 405˚] min/max preferred orientations of feature detectors

κ 6:0 1

deg2 concentration (inverse variance) of feature detectors

rlow, rhigh 0:75 1

s ; 16:0 1

s min/max rates of feature detectors

wmin
init ;w

max
init 0.0 nS s, 0.005 nS s min/max value of initial excitatory weights

wmin
init ;w

max
init 0.0 nS s, 0.024 nS s min/max value of initial inhibitory weights

η 0.25 � 10−4 learning rate

σT 28.5˚ tactile noise amplitude

σV 13.5˚ visual noise amplitude

½y
train
min ; y

train
max � [−270˚, 360˚] min/max of training orientations

½y
test
min; y

test
max� [−135˚, 225˚] min/max of testing orientations

θdb 45˚ decision boundary

Ntrain 400 000 number of training trials

Ntest 500 000 number of testing trials

pbimodal 0.9 probability of a bimodal trial during training

b 12 batch size

r∗low; r∗high 0:75 1

s ; 16:0 1

s low/high target rates

https://doi.org/10.1371/journal.pcbi.1012047.t003

Table 2. Parameters used in Fig 6. Remaining parameters defined in Table 3.

Parameter name Value Description

N 1 number of neurons

D 2 number of dendritic compartments per neuron

gL
0

0.25 nS somatic leak conductance

gLi 0.025 nS dendritic leak conductance

wmin
init ;wmax

init 0.0 nS s, 0.019 nS s min/max value of initial excitatory weights

wmin
init ;wmax

init 0.0 nS s, 0.21 nS s min/max value of initial inhibitory weights

wmin
init ;wmax

init 0.0 nS s, 1.07 nS s min/max value of target excitatory weights

wmin
init ;wmax

init 0.0 nS s, 7.0 nS s min/max value of target inhibitory weights

η 1.25 � 10−3 learning rate

Ntrials 110 000 number of trials

Δttrial 10 ms trial duration

r* N 1:2 1

s ; 0:5
1

s

� �
distribution of input rates

rmin 0:001 1

s minimal input rate

σT 0:3 1

s noise amplitude of tactile modality

σV 0:01875 1

s noise amplitude of visual modality

https://doi.org/10.1371/journal.pcbi.1012047.t002
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We define two homogeneous input populations of NT and NV feature detectors, respec-

tively, with Gaussian tuning curves. The output rate of a feature detector in response to a cue

with orientation θ is given by:

rðyÞ ¼ rmin þ ðrmax � rminÞe�
k
2
ðy� y0Þ2 ; ð21Þ

with minimal rate rmin, maximal rate rmax, concentration κ and preferred orientation θ0. The

preferred orientations θ0 are homogeneously covering the interval ½y
fd
min; y

fd
max�. All feature detec-

tors from one population project to one dendritic compartment of each output neuron via

plastic connections.

Each output neuron additionally receives an input from one presynaptic neuron with fixed

rate but plastic weight, allowing it to adjust its prior expectations.

Initial weights are randomly sampled from a zero-mean normal distribution with standard

deviation sw
init. Training proceeds as follows. From a ground-truth orientation θ* two cues, θV,

and θT, are generated by sampling from a Gaussian distribution around a true stimulus value

with modality-specific noise amplitudes σV and σT). The true orientation θ* determines the

output neurons target rates and hence, via the inverse activation function, target membrane

potentials. The output neuron which should prefer orientations > 45˚ is trained to respond

with a rate r∗low if θ< 45˚ and with a rate r∗high if θ� 45˚. The other output neuron is trained in

the opposite fashion. Weight changes are following Eq 4. To speed up training we use batches

of size b for Ntrain trials with ground truth orientations θ* sampled uniformly from ½y
train
min ; y

train
max �.

During training, with probability pbimodal cues are provided via both modalities, while

1 − pbimodal of all trials are unimodal, i.e., feature detectors of one modality remain silent.

For testing the output neurons are asked to classify Ntest cues uniformly sampled from

½y
test
min; y

test
max�, again perturbed by modality specific noise. The classification is performed on the

combined rate of the two output neurons r = 0.5(r0 + (rlow + rhigh − r1)), where r0 is the rate of

the neuron preferring orientations > 45˚ and r1 the rate of the other output neuron. A ground

truth orientation θ* is classified as>= 45˚ if r>= rlow + 0.5(rhigh − rlow).

Details to Fig 8. We consider the trained network from Fig 7. Here we set the cues pro-

vided to the feature detectors of the tactile and visual modality to fixed values θV, θT, respec-

tively. We introduce two additional parameters, the stimulus intensities cV, cT, which linearly

scale the rates of all feature detectors of the respective modality. For visualization purposes we

scale the rate of the output neuron by a factor rscale.

Supporting information

S1 Text. 1. Definitions. 2. Derivation of the somatic potential distribution. 3. Derivation of

membrane potential dynamics. 4. Derivation of weight dynamics. 5. Unreliable dendritic

inputs are assigned small synaptic strengths. 6. Dendritic parameters.

(PDF)

Table 4. Parameters used in Fig 8. Remaining parameters defined in Table 3.

Parameter name Value Description

θT 65˚ orientation of tactile cue

θV 50˚ orientation of visual cue

cT, cV [10−3, 102] stimulus contrasts of tactile and visual modality

rscale 2.5 output rate scaling factor

https://doi.org/10.1371/journal.pcbi.1012047.t004

PLOS COMPUTATIONAL BIOLOGY Conductance-based dendrites perform Bayes-optimal cue integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012047 June 12, 2024 20 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012047.s001
https://doi.org/10.1371/journal.pcbi.1012047.t004
https://doi.org/10.1371/journal.pcbi.1012047


Acknowledgments

WS thanks M. Larkum and F. Helmchen for many inspiring discussions on dendritic process-

ing, and M. Diamond and N. Nikbakht for sharing and discussing their data in an early state

of this work. The authors thank all members of the CompNeuro and NeuroTMA groups for

valuable discussions.

Author Contributions

Conceptualization: Jakob Jordan, João Sacramento, Mihai A. Petrovici, Walter Senn.

Data curation: Jakob Jordan, Willem A. M. Wybo.

Formal analysis: Jakob Jordan, João Sacramento, Willem A. M. Wybo, Mihai A. Petrovici,

Walter Senn.

Funding acquisition: Mihai A. Petrovici, Walter Senn.

Investigation: Jakob Jordan, Willem A. M. Wybo.

Methodology: Jakob Jordan, João Sacramento, Willem A. M. Wybo, Mihai A. Petrovici, Wal-

ter Senn.

Project administration: Mihai A. Petrovici, Walter Senn.

Resources: Mihai A. Petrovici, Walter Senn.

Software: Jakob Jordan, Willem A. M. Wybo.

Supervision: Mihai A. Petrovici, Walter Senn.

Validation: Jakob Jordan, Mihai A. Petrovici.

Visualization: Jakob Jordan, Willem A. M. Wybo.

Writing – original draft: Jakob Jordan, João Sacramento, Mihai A. Petrovici, Walter Senn.

Writing – review & editing: Jakob Jordan, João Sacramento, Willem A. M. Wybo, Mihai A.

Petrovici, Walter Senn.

References
1. Jaynes E. T. Probability theory: The logic of science. Cambridge university press, (2003).

2. Ernst M. O. and Banks M. S. Nature 415 (6870), 429 (2002). https://doi.org/10.1038/415429a PMID:

11807554

3. Ma W. J., Beck J. M., Latham P. E., and Pouget A. Nature Neuroscience 9(11), 1432 (2006). https://

doi.org/10.1038/nn1790 PMID: 17057707

4. Echeveste R., Aitchison L., Hennequin G., and Lengyel M. Nature Neuroscience 23(9), 1138–1149

(2020). https://doi.org/10.1038/s41593-020-0671-1 PMID: 32778794

5. Knill D. C. and Saunders J. A. Vision Research 43(24), 2539–2558 (2003). https://doi.org/10.1016/

S0042-6989(03)00458-9 PMID: 13129541

6. Hillis J. M., Watt S. J., Landy M. S., and Banks M. S. Journal of Vision 4(12), 1–1 (2004). https://doi.org/

10.1167/4.12.1

7. Carandini M. and Heeger D. J. Science 264 (5163), 1333–1336 (1994). https://doi.org/10.1126/

science.8191289 PMID: 8191289

8. Urbanczik R. and Senn W. Neuron 81(3), 521–528 (2014). https://doi.org/10.1016/j.neuron.2013.11.

030 PMID: 24507189

9. Rock I. and Victor J. Science 143 (3606), 594–596 (1964). https://doi.org/10.1126/science.143.3606.

594 PMID: 14080333

10. Alais D. and Burr D. Current Biology 14(3), 257–262 (2004). https://doi.org/10.1016/j.cub.2004.01.029

PMID: 14761661

PLOS COMPUTATIONAL BIOLOGY Conductance-based dendrites perform Bayes-optimal cue integration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012047 June 12, 2024 21 / 23

https://doi.org/10.1038/415429a
http://www.ncbi.nlm.nih.gov/pubmed/11807554
https://doi.org/10.1038/nn1790
https://doi.org/10.1038/nn1790
http://www.ncbi.nlm.nih.gov/pubmed/17057707
https://doi.org/10.1038/s41593-020-0671-1
http://www.ncbi.nlm.nih.gov/pubmed/32778794
https://doi.org/10.1016/S0042-6989(03)00458-9
https://doi.org/10.1016/S0042-6989(03)00458-9
http://www.ncbi.nlm.nih.gov/pubmed/13129541
https://doi.org/10.1167/4.12.1
https://doi.org/10.1167/4.12.1
https://doi.org/10.1126/science.8191289
https://doi.org/10.1126/science.8191289
http://www.ncbi.nlm.nih.gov/pubmed/8191289
https://doi.org/10.1016/j.neuron.2013.11.030
https://doi.org/10.1016/j.neuron.2013.11.030
http://www.ncbi.nlm.nih.gov/pubmed/24507189
https://doi.org/10.1126/science.143.3606.594
https://doi.org/10.1126/science.143.3606.594
http://www.ncbi.nlm.nih.gov/pubmed/14080333
https://doi.org/10.1016/j.cub.2004.01.029
http://www.ncbi.nlm.nih.gov/pubmed/14761661
https://doi.org/10.1371/journal.pcbi.1012047


11. Fetsch C. R., Turner A. H., DeAngelis G. C., and Angelaki D. E. Journal of Neuroscience 29(49),

15601–15612 (2009). https://doi.org/10.1523/JNEUROSCI.2574-09.2009 PMID: 20007484

12. Fischer B. J. and Peña J. L. Nature Neuroscience 14(8), 1061 (2011). https://doi.org/10.1038/nn.2872

PMID: 21725311

13. Raposo D., Sheppard J. P., Schrater P. R., and Churchland A. K. Journal of Neuroscience 32(11),

3726–3735 (2012). https://doi.org/10.1523/JNEUROSCI.4998-11.2012 PMID: 22423093

14. Nikbakht N., Tafreshiha A., Zoccolan D., and Diamond M. E. Neuron 97(3), 626–639 (2018). https://

doi.org/10.1016/j.neuron.2018.01.003 PMID: 29395913

15. Xu Y., Regier T., and Newcombe N. S. Cognition 163, 56–66 (2017). https://doi.org/10.1016/j.

cognition.2017.02.016 PMID: 28285237

16. Darlington T. R., Beck J. M., and Lisberger S. G. Nature Neuroscience 21(10), 1442 (2018). https://doi.

org/10.1038/s41593-018-0233-y PMID: 30224803

17. Knill D. C. and Pouget A. TRENDS in Neurosciences 27(12), 712–719 (2004). https://doi.org/10.1016/j.

tins.2004.10.007 PMID: 15541511

18. Petersen P. C. and Berg R. W. eLife 5(OCTOBER2016), 1–33 (2016).

19. Richardson M. J. and Gerstner W. Neural Computation 17(4), 923–947 (2005). https://doi.org/10.1162/

0899766053429444 PMID: 15829095

20. Petrovici M. A., Bill J., Bytschok I., Schemmel J., and Meier K. Physical Review E 94(4), 042312

(2016).

21. Dold D., Bytschok I., Kungl A. F., Baumbach A., Breitwieser O., Senn W., Schemmel J., Meier K., and

Petrovici M. A. Neural Networks 119, 200–213 (2019). https://doi.org/10.1016/j.neunet.2019.08.002

PMID: 31450073

22. Jordan J., Petrovici M. A., Breitwieser O., Schemmel J., Meier K., Diesmann M., and Tetzlaff T. Scien-

tific Reports 9(1), 1–17 (2019). https://doi.org/10.1038/s41598-019-53804-z

23. Wybo W. A., Torben-Nielsen B., Nevian T., and Gewaltig M.-O. Cell Reports 26(7), 1759–1773 (2019).

https://doi.org/10.1016/j.celrep.2019.01.074 PMID: 30759388

24. Dietrich F. and List C. In The Oxford Handbook of Probability and Philosophy, chapter Probabilistic

Opinion Pooling. Oxford University Press 09 (2016).

25. Crochet S., Poulet J. F., Kremer Y., and Petersen C. C. Neuron 69(6), 1160–1175 (2011). https://doi.

org/10.1016/j.neuron.2011.02.022 PMID: 21435560

26. Monier C., Chavane F., Baudot P., Graham L. J., and Frégnac Y. Neuron 37(4), 663–680 (2003).
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