
Journal of Steroid Biochemistry and Molecular Biology 243 (2024) 106561

Available online 10 June 2024
0960-0760/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Mitochondrial dysfunction results in enhanced adrenal androgen 
production in H295R cells 
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A B S T R A C T   

The role of mitochondria in steroidogenesis is well established. However, the specific effects of mitochondrial 
dysfunction on androgen synthesis are not fully understood. In this study, we investigate the effects of various 
mitochondrial and metabolic inhibitors in H295R adrenal cells and perform a comprehensive analysis of steroid 
and metabolite profiling. We report that mitochondrial complex I inhibition by rotenone shifts cells toward 
anaerobic metabolism with a concomitant hyperandrogenic phenotype characterized by rapid stimulation of 
dehydroepiandrosterone (DHEA, 2 h) and slower accumulation of androstenedione and testosterone (24 h). 
Screening of metabolic inhibitors confirmed DHEA stimulation, which included mitochondrial complex III and 
mitochondrial pyruvate carrier inhibition. Metabolomic studies revealed truncated tricarboxylic acid cycle with 
an inverse correlation between citric acid and DHEA production as a common metabolic marker of hyper-
androgenic inhibitors. The current study sheds light on a direct interplay between energy metabolism and 
androgen biosynthesis that could be further explored to identify novel molecular targets for efficient treatment of 
androgen excess disorders.   

1. Introduction 

Androgens are steroid hormones essential for reproduction and 
sexual development that are produced in the human fetal adrenals, adult 
adrenal zona reticularis (ZR), and gonads of both males and females [1]. 
Steroidogenesis in the ZR requires a catalytic cascade of specific en-
zymes and cofactors that are located in the mitochondria and endo-
plasmic reticulum (ER). Mitochondria play an indispensable role in the 
initiation of steroid synthesis, as they contain the cholesterol side-chain 

cleavage enzyme (CYP11A1) on the inner mitochondrial membrane, 
which represents the enzymatic rate-limiting step in the cellular ca-
pacity for pregnenolone synthesis [2,3]. The further conversion of 
pregnenolone to androgens requires two essential enzymes, namely 
cytochrome P450c17 (CYP17A1) and 3β-hydroxysteroid dehydrogenase 
type 2 (HSD3B2). CYP17A1 is a NADPH-dependent enzyme localized on 
the ER membranes that can catalyze 17α-hydroxylase and 17,20-lyase 
biosynthetic activities. HSD3B2 is a NAD+-dependent dehydrogenase 
with distinct subcellular localizations in the ER or mitochondria [3,4]. 
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Reprogramming of the steroidogenic pathway in the ZR towards dehy-
droepiandrosterone (DHEA) synthesis is characterized by low expres-
sion of HSD3B2 and increased 17,20-lyase activity through increased 
expression of the allosteric activator cytochrome b5A (CYB5A) [5]. 
Thus, androgen synthesis depends on a complex intraorganellar inter-
play between the mitochondrial and ER compartments. 

Premature adrenarche (PA) and polycystic ovary syndrome (PCOS) 
are two common hyperandrogenic conditions in females [6,7]. Adre-
narche represents the postnatal development of the ZR in prepubertal 
children. PA is characterized by early maturation of the ZR and 
concomitant development of secondary sexual characteristics, typically 
before 8 years of age in girls, which may progress to PCOS [8,9]. PCOS is 
a multisystem disorder with reproductive and metabolic perturbations 
characterized by hyperandrogenism with oligo- or anovulation and 
polycystic ovaries, and is often associated with insulin resistance, dys-
lipidemia and obesity. Recent studies have described mitochondrial 
gene mutations in patients with PCOS, suggesting that mitochondrial 
dysfunction may be involved in the development and progression of 
PCOS [10–13]. Clinical and preclinical studies have reported that 
mitochondrial dysfunction indeed plays an essential role in insulin 
resistance, lipid metabolism, and follicular development [14,15]. 
However, the driving factors of hyperandrogenic disorders and their 
possible links to energy metabolism are still poorly understood, making 
current treatment options scarce [6,16]. 

In the current study, the adrenal H295R cell model is used to 
investigate the effect of mitochondrial dysfunction on androgen pro-
duction. We show that inhibition of mitochondrial complex I by rote-
none (Rot) induces a rapid shift towards hyperandrogenic 
steroidogenesis. Furthermore, we have performed a comprehensive 
bioenergetic screening of metabolic and mitochondrial inhibitors, which 
demonstrated stimulated DHEA production upon inhibition of complex 
I, III or mitochondrial pyruvate carrier. Our metabolomic studies reveal 
a common pattern of truncated tricarboxylic acid cycle metabolism with 
an inverse correlation of citric acid and DHEA production upon hyper-
androgenic inhibitors. Taken together, our study demonstrates that 
androgen biosynthesis is tightly coupled to a dysfunctional mitochon-
drial environment. Specific alterations reported here could be explored 
in the future to identify novel molecular targets for the treatment of 
androgen excess disorders. 

2. Materials and methods 

2.1. Cell culture and drug exposure 

The human adrenocortical cell line NCI-H295R was maintained in 
Dulbecco’s modified Eagle’s/Ham’s F-12 medium containing L-gluta-
mine and 15 mM HEPES (Thermo Fisher Scientific) supplemented with 
5 % NU-I serum (BD Biosciences, Catalog ♯ 355500), insulin/transferrin/ 
selenium (0.1 %), and penicillin (100 U/mL) and streptomycin (100 μg/ 
mL). Cells were incubated at 37◦C with 5 % CO2 and divided at 
approximately 80 % confluence in T175 flasks. All inhibitors were 
purchased from Sigma, dissolved in dimethyl sulfoxide (DMSO) and 
diluted 0.01 % in culture medium to the indicated concentrations, 
except for 2-deoxy-D-glucose (2DG, 25 mM) and sodium citrate (0.5 M), 
which were dissolved directly in culture medium. 

2.2. Cell metabolic analysis 

Cells were seeded in XFe96-well plates (7’500/well) and analyzed 
using the Seahorse XFe96 real-time cell metabolic analyzer (Agilent 
Technologies). Cellular oxygen consumption rate (OCR) and extracel-
lular acidification rate (ECAR) were assessed in DMEM medium sup-
plemented with 10 mM glucose, 2 mM glutamine, 2 mM pyruvate and 
5 mM HEPES. After initial assessment of basal OCR and ECAR rates, 
specific inhibitors were added as indicated, followed by injection of 
oligomycin (1 μM) to determine the oxidative leak, and the combined 

injection of Rot/ antimycin A (1 μM/ 1 μM) to determine non- 
mitochondrial respiration. Each experiment was normalized to cell 
number by Hoechst staining (1 μg/mL). For the calculation of specific 
steady-states, OCR was corrected for non-mitochondrial oxygen con-
sumption. ATP production rates were calculated using Agilent Wave 
software (Agilent Technologies). 

2.3. Steroid profiling by LC-MS or DHEA ELISA assay 

Cells were seeded in 12-well plates (1*106/well) and exposed to 
specific inhibitors as indicated above. Quantification of complete steroid 
profiles in the culture supernatant was performed by liquid chroma-
tography coupled to high-resolution mass spectrometry as previously 
described [17]. For direct assessment of DHEA, cells were seeded in 
96-well plates (50’000/well) and after exposure to specific inhibitors, 
the supernatant was assessed by a DHEA ELISA assay kit according to the 
manufacturer’s instructions (Catalog ♯ DHA31-K01, Eagle Biosciences). 
Results from both assays were normalized to total amount of protein 
using the DC protein determination assay (BioRad). 

2.4. Untargeted metabolomics and targeted quantification of TCA cycle 
metabolites 

Cells were seeded in 12-well plates (1*106/well), treated as indi-
cated, washed with ammonium carbonate (75 mM, pH 7.4), and snap 
frozen in liquid nitrogen. For untargeted metabolomics, snap frozen cells 
were extracted with 70 % ethanol and analyzed by untargeted flow in-
jection analysis on an Agilent 6550 Q-TOF instrument as previously 
described [18]. Ions were putatively annotated based on accurate mass 
against the KEGG database with a tolerance of 0.001 Da. For quantifi-
cation of TCA cycle metabolites including citrate and isocitrate, snap 
frozen cells were extracted with 50 % acetonitrile and analyzed using 
liquid chromatography tandem mass spectrometry on a Shimadzu 
Nexera X2 LCX30 coupled to AB Sciex 6500+ Qtrap instrument as 
previously described [19]. Data was acquired with Analyst (version 1.7) 
and processed with SCIEX OS (version 3.1). Results were normalized to 
total amount of protein using the DC protein determination assay 
(BioRad). 

2.5. Lipidomics 

Cells were seeded in 12-well plates (1*106/well), treated as indicated 
and pellets were harvested. Collected pellets were extracted using 50:50 
(v/v) methanol/isopropanol for 1 h at − 20◦C. Untargeted lipidomics 
was performed by reversed-phase liquid chromatography coupled to 
high-resolution mass spectrometry on a Thermo Fisher Q-Exactive HF-X 
mass spectrometer as previously described [20]. Data processing was 
performed using Compound Discoverer 3.1 (Thermo). Lipids were an-
notated with MS2 information and class-specific internal standards used 
for quantification. 

2.6. Statistical analysis 

All results are represented as the mean +/- standard error of the 
mean of at least three independent experiments. GraphPad Prism soft-
ware (version 9) was used to plot graphs and perform statistical analysis, 
except for PCA analysis and heat map graphs, which were analyzed and 
plotted using MetaboAnalyst software (version 6.0). Data were analyzed 
by 2-tailed Student’s t-test, unless otherwise indicated, and p-values of 
<0.05 (*) or <0.01 (**) were considered significant. 
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3. Results 

3.1. Inhibition of mitochondrial complex I stimulates cellular androgen 
content 

To test whether inhibition of aerobic respiration affects cellular 
androgen levels, we treated H295R cells with the mitochondrial com-
plex I inhibitor Rot and conducted cell metabolic analysis and profiled 
steroidogenesis. As expected, Rot exposure caused an immediate and 
dose-dependent inhibition of mitochondrial respiration with a subse-
quent increase in anaerobic metabolism leading to a profound adapta-
tion in the bioenergetic profile and a shift of calculated ATP production 
rates from aerobic to glycolytic metabolism (Fig. 1A-C, Suppl. Fig. 1 A- 
D). Exposure time up to 24 h at 200 nM Rot did not induce cellular 
cytotoxicity and resulted only in a mild accumulation of mitochondrial 
superoxide (Suppl. Fig. 1E-I). Time-dependent analysis of steroidogenic 
profiles (Fig. 2 A-M) revealed a rapid increase in DHEA after 2 h expo-
sure to Rot, which further accumulated after 6 and 24 h (Fig. 2K). 
Further androgens, such as DHEA-sulfate (DHEAS), androstenedione 
(Adione), and testosterone, were stimulated only after 24 h (Fig. 2J, L, 
M). Other intermediates, such as pregnenolone (Preg), progesterone 
(Prog), 17αOH-pregnenolone (17αOH-Preg) and 17αOH-progesterone, 
were also increased after exposure to Rot (Fig. 2B, C, F, G). However, no 
significant stimulation of corticosterone or cortisol levels was observed, 
indicating no specific effect on mineralocorticoid or glucocorticoid 
accumulation (Fig. 2E, I). Based on the ratios of individual steroids to 
corresponding precursors, we implied related enzymatic activities in a 
subsidiary analysis (Suppl. Table 1). After 2 h of Rot exposure, we found 
decreased metabolic ratios of HSD3B2 (Prog/Preg and Adione/DHEA) 
and a slightly stimulated CYP17A1+CYB5A ratio (DHEA/17αOHPreg), 
which were not persistent after 6 or 24 h. Consistent with increased 
testosterone levels at 24 h, we found an increased 17β-hydroxysteroid 
dehydrogenase (HSD17B) enzymatic metabolic ratio at 24 h Rot expo-
sure (Suppl. Table 1). Taken together, these results indicate that inhi-
bition of aerobic respiration by Rot causes a rapid and profound shift in 
steroidogenesis towards androgen excess. 

3.2. Specific mitochondrial dysfunction environments induce cellular 
DHEA excess 

Based on the rapid onset of DHEA excess, we hypothesized that acute 
post-transcriptional metabolic adaptation is a major driver of the 
observed phenotype and characterized the metabolic adaptation in more 
detail. Knowing that Rot causes broad metabolic adaptations, we wanted 

to analyze whether other mitochondrial or metabolic disruptors have a 
similar ability to induce acute hyperandrogenic states. We therefore 
screened DHEA secretion in parallel with bioenergetic analysis after 6 h 
drug exposure using compound concentrations with an optimal meta-
bolic output, but without a relevant cell proliferative effect (Fig. 3A-C). 
Exposure to the mitochondrial complex III inhibitor antimycin A (AA) 
caused a profound shift from aerobic to glycolytic metabolism and 
simultaneously stimulated DHEA accumulation. In contrast, inhibition 
of mitochondrial complex V by oligomycin (Oligo) also shifted meta-
bolism to glycolysis but decreased DHEA secretion. Dissipation of 
mitochondrial membrane potential by the uncoupler FCCP (carbon-
ylcyanide-p-trifluoromethoxyphenylhydrazone) shifted metabolism to a 
stressed metabolic phenotype with stimulated aerobic and anerobic 
metabolism, but was unable to affect DHEA secretion. Competitive in-
hibition of glycolysis by 2DG shifted metabolism toward higher aerobic 
metabolism and did not affect DHEA secretion. Interestingly, direct in-
hibition of the mitochondrial pyruvate carrier (MPC) by UK5099 (UK), 
which imports pyruvate into the mitochondrial matrix and thus pro-
motes the direct flow of glycolytic flux into the mitochondria, increased 
DHEA levels and shifted the metabolic profile towards a similar glyco-
lytic state as Rot. Other metabolic perturbations, such as inhibition of 
mitochondrial fatty acid uptake by Etomoxir (Eto) or inhibition of 
mitochondrial glutamine uptake by BPTES (bis-2-(5-phenylacetamido- 
1,2,4-thiadiazol-2-yl) ethyl sulfide 3), did not affect DHEA levels. Taken 
together, the screening suggests that acute inhibition of CI, CIII, or MPC 
stimulates DHEA accumulation in adrenal H295R cells. 

3.3. Metabolic markers of truncated TCA cycle are associated with 
hyperandrogenic mitochondrial dysfunction 

Next, we addressed the question of whether the hyperandrogenic 
inhibitors Rot, AA and UK share common metabolic drivers and exam-
ined the adaptive effects on the cellular metabolome and lipidome after 
6 h drug exposure. We additionally compared the generated profiles 
with the non-androgenic OXPHOS inhibitor Oligo to exclude general 
metabolic effects upon mitochondrial dysfunction. Principal component 
analysis (PCA) of the assessed untargeted metabolome revealed clus-
tering of biological replicates with preferential grouping of the OXPHOS 
inhibitors Rot, AA and Oligo versus DMSO and UK, thus not separating 
hyperandrogenic conditions (Fig. 4A). Analysis of the most altered 
metabolite ions (log2FC >0.5, adj. p-value <0.01) identified decreased 
intracellular (iso)citrate as a common marker in all hyperandrogenic 
treatments (Fig. 4B, Suppl. Table 2), while no common stimulated 
metabolic markers could be identified. Next, we analyzed tricarboxylic 

Fig. 1. Mitochondrial Complex I Inhibition shifts Metabolic Flux to Anaerobic Metabolism. A. Schematic representation of mitochondrial complex I inhibition by Rot, 
resulting in decreased oxidative phosphorylation (OXPHOS) and compensatory stimulation of glycolysis. Arrow thickness indicates stimulation or inhibition of the 
respective pathway. B. Bioenergetic plot showing shift towards anaerobic metabolism. Decreased oxygen consumption rate (OCR) and stimulated extracellular 
acidification rate (ECAR) were assessed by extracellular flux analysis after 6 h exposure to Rot (200 nM). C. Calculated ATP production rates from bioenergetic 
flux analysis. 
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acid (TCA) cycle-related metabolite ions in more detail and additionally 
found that aconitate, pyruvate, and glutamate were decreased by all 
androgenic inhibitors (Fig. 4C-D). Targeted metabolite analysis 
confirmed decreased intracellular citrate and isocitrate levels in all 
hyperandrogenic treatments (Rot, AA, and UK), which was unaffected 
by the non-androgenic inhibitor Oligo (Fig. 4E-F). Finally, we tested the 
effect of direct supplementation of the cell culture medium with citrate, 
which did not affect DHEA levels after 6 h of drug exposure (Fig. 4G). 

Knowing that hyperandrogenic states are associated with alterations 
in lipid metabolism [21,22], we additionally performed a lipidomic 
investigation to search for specific lipid markers. PCA again revealed a 
grouping of the OXPHOS inhibitors Rot, AA and Oligo versus DMSO and 
UK, thus not separating hyperandrogenic conditions (Fig. 5A). Analysis 
by total lipid class showed triglyceride accumulation in all OXPHOS 
inhibitors (Rot, AA, and Oligo) (Fig. 5B). Analysis of top altered lipid 
ions (log2FC >0.5, adj. p-value <0.01) did not identify a common 
hyperandrogenic marker, but additionally revealed an accumulation of 
unsaturated triglycerides upon exposure to OXPHOS inhibitors (Fig. 5C, 
Suppl. Table 3). Assuming that these lipids may be stored in intracellular 
lipid droplets, we performed additional studies using confocal imaging, 
but did not find any relevant reorganization of intracellular lipid droplet 
formation upon 24 h Rot exposure (Suppl. Fig. 2A-B). Taken together, 
these results demonstrate that the acute adaptive effect on the lipid 
desaturation response is associated with mitochondrial OXPHOS 
dysfunction induced by Rot, AA, and Oligo, whereas the common 
metabolic pattern upon hyperandrogenic condition induced by Rot, AA, 
and UK represents a dysfunctional TCA cycle. 

4. Discussion 

In this study, we describe a close interaction between mitochondrial 
bioenergetics and androgen biosynthesis in a steroid cell model. Our 
study shows that mitochondrial CI, CIII or MPC inhibition leads to a 
rapid DHEA accumulation. The three identified hyperandrogenic mito-
chondrial inhibitors have different molecular mechanisms: Rot affects 
mitochondrial NADH oxidation by inhibiting the transfer of electrons 
from CI to ubiquinone and thus still allowing convergent electron flow 
toward ubiquinone (e.g. through CII or alternative dehydrogenases). In 
contrast, AA inhibits the electron transfer of CIII from ubiquinol to cy-
tochrome c, which effectively inhibits electron flow through the 
OXPHOS system [23]. Finally, inhibition of MPC by UK reduces the 
mitochondrial pyruvate uptake as a substrate for the TCA cycle and 
indirectly affects the respiratory capacity from pyruvate oxidation, thus 
stimulating the entry of alternative metabolites into the TCA cycle (e.g. 
through glutamine anaplerosis) [24]. 

We showed that the increase in DHEA is associated with a shift in 
cellular metabolism from aerobic to anaerobic glycolysis with a 
concomitant dysfunctional TCA cycle leading to decreased cellular cit-
rate. Stimulation of anaerobic glycolysis has been described in patients 
with PCOS, with a strong positive correlation between lactate levels and 
insulin resistance [25]. Our study indicates that stimulated anaerobic 
glycolysis alone is not specific for hyperandrogenic condition, as shown 
by metabolic screening of various metabolic or mitochondrial inhibitors. 
In agreement with our in vitro study, metabolomic analysis performed in 
plasma of women with PCOS reported an inhibited TCA cycle with 
reduced citrate levels [25,26], suggesting similar systemic changes in 
whole-body metabolism. Citrate plays several important roles in cellular 
energy production and biosynthetic processes: It is a key intermediate in 
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validation of intracellular citrate and isocitrate levels by targeted LC-MS analysis. G. Accumulation of DHEA in the supernatant after 6 h drug exposure with or 
without 0.5 mM citrate supplementation in the culture medium. DHEA levels were significantly changed compared to the respective control (*), while there was no 
significant (ns) change with additional citrate supplementation. 
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the mitochondrial TCA cycle, where citrate synthase catalyzes the 
condensation of acetyl-CoA and oxaloacetate as a first step, and citrate is 
then further oxidized to produce reduction equivalents (NADH and 
FADH2) for mitochondrial OXPHOS. It can also be transported to the 
cytoplasm via the mitochondrial citrate transporter, where ATP-citrate 
lyase generates acetyl-CoA for metabolic processes such as lipid 
biosynthesis. It is also a known inhibitor of phosphofructokinase and 
thus plays a regulatory role in glycolysis [27]. Consequently, low levels 
of citrate in the cytoplasm can stimulate glycolysis and are key features 
of the Warburg effect in tumor cells [28]. Since mitochondrial citrate 
production is the primary source for most cells, exogenous citrate 
transport is usually not of functional importance. Interestingly, RNA 
sequencing of microdissections of the human ZR identified SLC13A5, a 
plasma membrane sodium/citrate-cotransporter, as a highly expressed 
transporter [29,30]. This is a surprising finding that may indicate a 
nutrient-limited state in human ZR that has not been addressed so far. In 
our study, direct supplementation of citrate in the culture medium did 
not affect DHEA levels after hyperandrogenic treatment, suggesting that 
citrate itself may not be the main player, but rather a marker of an 
underlying metabolic adaptation leading to hyperandrogenic 
steroidogenesis. 

Another hallmark of human hyperandrogenic conditions is an 
altered lipid status [21,22]. Our study found a decrease in choles-
terolesters (CE) and an accumulation of total triglycerides (TGs) with a 
concomitant desaturation response to CI, CIII and CV inhibition, which 
was thus specific to OXPHOS inhibition but not to DHEA excess. The 
decreased cellular CE were concomitant with lower cholesterol levels, 
which might represent the previously described coregulation of mito-
chondrial function and cholesterol biosynthesis [31,32]. While the 
increased total TG may be the consequence of decreased 
energy-dependent mitochondrial fatty acid oxidation [33,34], the 
observed lipid desaturation response is related to stimulated ER 

metabolism, known as a mechanism for glycolytic NAD+ recycling [35] 
and highlights the close adaptive interplay between mitochondria and 
ER during mitochondrial dysfunction. Indeed, a detailed analysis of the 
ER-mitochondrial interplay may be important to gain further insight 
into the role of mitochondrial metabolism in the regulation of androgen 
synthesis. Steroidogenesis is performed in compartmentalized fashion 
between mitochondrial and ER subcellular compartments and is 
dependent on different subcellular redox pools and pairs, e.g. NADP(H) 
and NAD(H). ER-localized CYP17A1 is NADPH-dependent, which can be 
generated by anabolic reactions such as the cytosolic pentose phosphate 
pathway. HSD3B2, localized in the mitochondrial matrix but also in 
extramitochondrial compartments [36,37], depends on NAD+ and is 
therefore mainly associated with catabolic reactions. The relative lack of 
HSD3B2 expression/activity required for androgen production could 
thus be influenced by the pathways regulating mitochondrial NADH 
production and/or regulation of the subcellular distribution of HSD3B2. 

The identification of several mitochondrial disruptors with hyper-
androgenic effects supports the hypothesis that androgen excess is 
influenced by specific environments of mitochondrial dysfunction. Of 
course, the drugs reviewed in this study do not represent a complete 
survey of disruptors of mitochondrial metabolism. Therefore, it is highly 
likely that additional hyperandrogenic stimulators will be identified in 
subsequent studies. Several low-molecular weight drugs with off-target 
mitochondrial dysfunction have reached the market. One example is the 
anticonvulsant valproic acid, which has hyperandrogenic side effects 
[38,39] and is a well-known mitochondrial toxicant with diverse path-
omechanisms on fatty acid oxidation and TCA cycle dysfunction [40]. 
Metformin is an insulin-sensitizing drug used as a treatment option for 
PCOS with a mechanism of action that is not fully understood [6,41]. It 
has been associated with CI inhibition in vitro, but this finding is related 
to supraphysiologic concentrations (1 mM) [42], which are not reached 
in humans and therefore do not contradict our results. Interestingly, 

Fig. 5. TG Accumulation with Increased Desaturation Response is associated with OXPHOS Inhibition but not directly with DHEA Excess. A. Principal 
Component Analysis (PCA) with two principal components after 6 h of Rot, AA, UK, Oligo exposure versus DMSO control. B. Analysis by total lipid class. Statistical 
analysis was performed using 2-way ANOVA followed by Dunnett’s multiple comparison test. C. Effect on cellular TGs differentiated along the x-axis based on total 
acyl chain carbon and double bond content. Top altered metabolites (log2FC >0.5, adj. p-value <0.01) are listed in Suppl. Table 3. Abbreviations: Cer, ceramides; 
SM, sphingomyelins; PC, phosphatidylcholines; LPC, lysophosphatidylcholines; PE, phosphatidylethanolamines; LPE, lysophosphatidylethanolamine; PI, phosphoi-
nositides; PS, phosphatidylserine; PG, phosphatidylglycerols; CE, cholesterol esters; Chol, cholesterol; DG, diacylglycerols; TG, triglycerides. 
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metformin is not an effective treatment option for all PCOS patients, 
suggesting that hyperandrogenic clinical phenotypes may be associated 
with multiple pathomechanisms. 

The direct role of androgens and the androgen receptor (AR) in the 
regulation of glucose and lipid metabolism is well established. There is 
increasing evidence for a direct link between androgens and AR in the 
control of mitochondrial function [43,44]. For example, AR has been 
shown to be imported into and localized to mitochondria, where it has 
an inverse relationship with mitochondrial DNA content and thus 
negatively affects OXPHOS [45,46]. Furthermore, in prostate cancer 
cells, AR directly regulates the transcription of MPC2, a co-stabilizing 
protein of MPC, thus maintaining metabolic homeostasis by control-
ling the import of pyruvate into the mitochondrial matrix [47]. Taken 
together, these results provide further evidence to support the hypoth-
esis of mitochondrial dysfunction associated with androgen excess. 

Our study is limited in several ways. We used the H295R adrenal 
cancer cell line, which is a simplified system compared to a human, but 
is well established to study human steroidogenesis and is known to 
respond with a hyperandrogenic steroid profile under different cell 
culture conditions [48,49]. Consistent with our results, we have dis-
cussed confirmatory in vitro and in vivo data in the literature, so we are 
confident in the validity of our findings. To date, we have measured total 
levels of steroids and have not performed precursor labelled experiments 
to support where and how steroidogenesis is affected and whether other 
compensatory mechanisms occur. We also measured the total intracel-
lular metabolomic content and have not provided a comprehensive 
picture of subcellular metabolites. Further resolution of metabolic 
adaptation is needed to specify differences in metabolic flux, e.g. 
through 13C tracing and subcellular metabolite measurements. We have 
shown that different inhibitors of mitochondrial metabolism are fast 
drivers of DHEA production within 2–6 h, thus making strict genomic 
regulation unlikely, but gene expression profiling could add information 
to a potentially complex metabolic interplay. 

In conclusion, our functional and metabolomic screening of mito-
chondrial dysfunction in adrenal H295R cells allowed us to identify a 
critical role for mitochondrial metabolism in androgen biosynthesis. The 
current data provide a starting point for further research to explore key 
metabolic drivers to provide specific pathomechanisms, identify pre-
dictive biomarkers, and advance the development of specific treatment 
options for patients with hyperandrogenic symptoms. 
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