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BACKGROUND: Hyperthermic intraperitoneal chemotherapy (HIPEC) improves survival in patients with Stage III ovarian cancer
following interval cytoreductive surgery (CRS). Optimising patient selection is essential to maximise treatment efficacy and avoid
overtreatment. This study aimed to identify biomarkers that predict HIPEC benefit by analysing gene signatures and cellular
composition of tumours from participants in the OVHIPEC-1 trial.
METHODS: Whole-transcriptome RNA sequencing data were retrieved from high-grade serous ovarian cancer (HGSOC) samples
from 147 patients obtained during interval CRS. We performed differential gene expression analysis and applied deconvolution
methods to estimate cell-type proportions in bulk mRNA data, validated by histological assessment. We tested the interaction
between treatment and potential predictors on progression-free survival using Cox proportional hazards models.
RESULTS: While differential gene expression analysis did not yield any predictive biomarkers, the cellular composition, as
characterised by deconvolution, indicated that the absence of macrophages and the presence of B cells in the tumour
microenvironment are potential predictors of HIPEC benefit. The histological assessment confirmed the predictive value of
macrophage absence.
CONCLUSION: Immune cell composition, in particular macrophages absence, may predict response to HIPEC in HGSOC and these
hypothesis-generating findings warrant further investigation.
CLINICAL TRIAL REGISTRATION: NCT00426257.
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BACKGROUND
Hyperthermic intraperitoneal chemotherapy (HIPEC) improves
survival in patients with Stage III ovarian cancer following
neoadjuvant chemotherapy (NACT) and interval cytoreductive
surgery (CRS) [1, 2]. Following the publication of the OVHIPEC-1
trial, this treatment modality has been included in several
international guidelines as a treatment option [3–6]. The OVHIPEC-
1 trial showed, at a median follow-up period of 10.1 years, that the
addition of cisplatin-based HIPEC to CRS significantly improved
progression-free survival (HR 0.66 [95% CI 0.50–0.87], stratified

P= 0.0031) and overall survival (HR 0.67 [95% CI 0.48–0.94], stratified
P= 0.019) when compared to surgery alone. These findings were
confirmed in a Korean randomised controlled trial for the specific
patient population treated with NACT and interval CRS, although no
significant advantage of HIPEC was observed in the overall patient
population, which included patients with Stage IV disease and those
treated with primary CRS [7]. The differential response observed
across patient subgroups highlights the importance of identifying
biomarkers to effectively select patients for HIPEC in order to
optimise treatment efficacy and avoid overtreatment.
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Alongside the malignant epithelial cells, non-malignant cell
populations present in the tumour microenvironment (TME) are
increasingly recognised to modulate tumour behaviour and
therapeutic response [8–14]. Cell components in the TME can be
classified into immune cells and stromal cells and include cancer-
associated fibroblasts (CAF), endothelial cells, macrophages,
dendritic cells, and lymphocytes. In this study, we aim to explore
the TME as a source of predictive biomarkers for patient
stratification in the context of HIPEC.
While conventional bulk transcriptome analysis provides valu-

able insights into the average gene expression profile of a tumour,
the assessment of cellular heterogeneity within the tumour is
limited. Single-cell RNA sequencing (RNA-seq) has emerged as a
technique to overcome this constraint by allowing analysis of
gene expression at the level of individual cells. However, its use is
hampered by technical complexity, limited throughput, cost, and
labour-intensiveness. Hence, deconvolution methods offer an
alternative to obtain comparable insights into tumour hetero-
geneity [15–18].
Deconvolution is a computational technique to infer the

proportions of different cell types in tissue samples from bulk
mRNA-seq data, using reference profiles derived from single-cell
sequencing for each cell type in the tumour [16, 17, 19, 20]. A
notable advantage of this approach over traditional pathology lies
in its ability to provide richer and more nuanced information
about the cellular landscape, including distinctions between
subpopulations of epithelial cells and other cells in the TME.
While deconvolution of bulk RNA-seq has proven useful in breast
cancer and other tumour types in predicting treatment and
survival outcomes [18, 21–24], its accuracy and applicability to
predict HIPEC response in HGSOC remains unexplored.
The objective of this study is twofold: first, to evaluate the

cellular makeup of the tumour and surrounding TME in tissue
samples from participants in the OVHIPEC-1 trial using deconvolu-
tion of bulk RNA-seq data; and second, to utilise this cellular
profile alongside differential expression analysis of bulk mRNA-seq
data and morphologic features to predict response to HIPEC.

METHODS
Trial design and participants
OVHIPEC-1 is a multicentre, open-label, randomised, controlled, Phase 3
trial conducted at eight experienced HIPEC centres in the Netherlands and
Belgium between April 1, 2007 and April 30, 2016. The study design,
eligibility criteria, and procedures have been described in detail previously
[1]. In brief, a total of 245 patients with histologically confirmed primary
Stage III epithelial ovarian, fallopian tube, or peritoneal cancer were
enrolled and randomly assigned to undergo interval CRS either with or
without HIPEC, stratified according to previous suboptimal CRS (yes vs. no),
the institution performing the surgery, and the number of regions involved
in the abdominal cavity (0–5 vs. 6–8).

Study oversight
OVHIPEC-1 was an investigator-initiated trial with Netherlands Cancer Institute
being the sponsor. The local ethics board of all participating sites approved
the study protocol. The study was conducted in accordance with the ICH
Harmonised Tripartite Guideline for Good Clinical Practice and the principles
of the Declaration of Helsinki. All patients provided written informed consent.
This study is registered with ClinicalTrials.gov, NCT00426257.

Treatment
All patients were treated with at least three cycles of neoadjuvant
carboplatin (area under the curve of 5–6mg/ml/min) and paclitaxel
(175mg/m2 of body-surface area) once every three weeks and were
eligible for the study if they had not progressed during these cycles. The
HIPEC procedure has been described in detail previously. In brief, heated
saline (40–42 °C) was continuously circulated through the abdominal
cavity for 90minutes using the open technique. Cisplatin was added at a
dose of 100mg/m2. Sodium thiosulfate was administered to prevent

nephrotoxicity. Adjuvant chemotherapy consisted of three additional
cycles of carboplatin (area under the curve of 5–6mg/ml/min) and
paclitaxel (175mg/m2 of body-surface area) once every three weeks for
patients in both arms. Accrual in the OVHIPEC-1 trial was completed before
the reimbursement of poly (ADP-ribose) polymerase inhibitors (PARPi) as
frontline maintenance therapy. However, two patients participated in the
SOLO-1 trial with olaparib versus placebo in this setting [25]. As per Dutch
national guidelines, patients did not receive bevacizumab maintenance
therapy following frontline treatment.

Endpoints and statistical considerations
The primary endpoint was progression-free survival (PFS), which was
defined as the time from randomisation to disease recurrence, progression,
or death from any cause, whichever occurred first. Disease progression was
defined according to Response Evaluation Criteria in Solid Tumours version
1.1, or on the basis of an increased CA-125 level, whichever one of these
two criteria was met first, as recommended by the Gynecologic Cancer
InterGroup [26]. Overall survival (OS) was a secondary endpoint and was
defined as the time from randomisation to death of any cause. Survival
data were censored at the date of last contact for those patients who had
no evidence of disease or remained alive, with a cut-off date of March 31,
2022 (median follow-up of 10.1 years).
Tissue was collected to study gene expression profiles in the tumour to

identify subgroups of patients that differ in their benefit from HIPEC
therapy, which is the objective of the current study.
For descriptive statistics, the (nonparametric) Wilcoxon’s rank-sum test

(Mann–Whitney U test) was employed for differences between numerical
variables. Categorical variables were compared using Fisher’s two-sided
exact test. All reported P values were two-sided, and statistical significance
was established when the P value was less than 0.05 in all cases.
Baseline and treatment characteristics of patients with available tissue

samples for histopathologic evaluation (histopathology cohort) were
balanced between treatment arms (Supplementary Table 2). In the cohort
of patients with available RNA-seq data (RNA-seq cohort), there was a
significant difference between treatment arms in the time between surgery
and adjuvant chemotherapy (Supplement Table 3). Adjustment for this
variable did not negatively impact the effect of HIPEC treatment (HR for PFS
0.72 [95% CI 0.56–1.09] and HR for OS 0.71 [95% CI 0.49–1.01]) and therefore
the time between surgery and adjuvant chemotherapy did not confound the
association between treatment and PFS. Characteristics of the current study
cohorts were largely similar to those of the excluded patients. However, a
notable difference was a higher prevalence of previous suboptimal surgery in
the included patients (Supplementary Tables 4 and 5).
Hazard ratios and their corresponding 95% confidence intervals were

estimated using (stratified) Cox proportional hazards (CPH) models. The
assumption of proportional hazards was evaluated by both graphical
inspection of scaled Schoenfeld residuals and a test for independence
between residuals and time. In the case of non-proportionality, the
corresponding variable was added as a stratification variable to the CPH
model. Subgroup analyses were presented with first-order interaction
P values (α= 0.05), which were obtained using the likelihood-ratio test
involving nested models containing and excluding the interaction term.

Tissue availability
Only patients with HGSOC were included for this study. Figures 1 and 2
provide a summary of tissue sample collection and RNA-seq data for the
participants in the study, as well as a summary of the methods. Reasons for
sample unavailability include withdrawal of consent, complete pathologic
response after NACT (i.e., no detectable tumour remaining), insufficient
RNA quality, or failure to receive samples from the participating sites.

Tissue samples
Formalin-fixed, paraffin-embedded (FFPE) tissue was collected at three
time points: (1) pre-treatment; (2) surgical resection (during interval CRS
before the administration of HIPEC); and (3) at disease recurrence. Tissue
samples were obtained from either primary tumours or metastatic sites.
Pre-treatment histology was not available for all patients, as the diagnosis
was based on ascites cytology in the majority of patients.

Histopathological assessment
Histopathologic evaluation was performed by three experienced gynecologic
pathologists (KKvdV, HMH, JS) on tissue resected during interval CRS with the
online platform Slidescore (www.slidescore.com). The following variables
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were manually scored on routine haematoxylin and eosin (H&E)-stained
sections: growth pattern (glandular, papillary, solid, or a combination, mitotic
rate (< 12 or ≥12), psammoma bodies (present or absent), stromal and intra-
epithelial TILs (as a percentage of the tumour area), tertiary lymphoid
structures (present or absent), macrophages (present or absent), fibrosis
(present or absent), necrosis (present or absent), and tumour regression score
(based on Mandard score [27], classified from 1 to 5).

RNA isolation and sequencing
RNA was isolated from FFPE samples containing at least 30% tumour cells.
A pathologist (JS) scored the tumour percentage and indicated the most
tumour-dense region on an H&E-stained slide for subsequent RNA
isolation. Five to 10 FFPE slides (10 µm) were used for isolation of RNA
using the AllPrep DNA/RNA FFPE isolation kit (Qiagen, 80234) in
combination with the QIAcube, following the manufacturer’s recom-
mended protocol. For sequencing, Truseq RNA Exome Prep method was
used. The data generated were single-end reads with a length of 65 base
pairs. Sequencing was performed on the HiSeq 2500 platform using High
Output Mode with the HOM SR Cluster Kit v4 and chemistry v4.
Sequencing data were aligned to the hg38 reference genome using the

Rsem package. The alignment and transcript quantification were executed
using STAR with default parameters within the Rsem package [28, 29].
Transcripts per million values were further used in the deconvolution
pipeline, while expected count values were used for differential expression
analysis.

Bulk mRNA sequencing analysis
Differentially expression genes were identified using DESeq2 [30], using
the expected counts from the STAR alignment described above. First, for
two samples that were sequenced twice, the two duplicate sample read
counts were added together. Next, we removed genes with less than 500
reads across all samples, and genes that did not have at least 10 samples
with at least 20 reads, leaving 20,078 genes for differential expression
analysis. For the remaining analysis, all standard settings of the DESeq2 R
package were used.
For the association of genes with PFS, we first estimated the log-

transformed counts per million using the variance stabilising transform,
and using the sample location (primary tumour vs metastasis) as cofactor
in estimating the variance. The effect of an interaction between the

resulting transformed counts per million and treatment were tested
against PFS in a CPH model. P values were adjusted for multiple testing
with Benjamini–Hochberg correction.
For identifying differentially expressed genes, we compared several

subgroups: (1) primary tumour samples versus metastatic samples and (2)
pre-treatment samples versus resection samples, with location as cofactor.
For differential gene set enrichment analysis, we used the flexgsea R
package [31] with the default weighted KS-like statistic [32]. Significance
was estimated by sample permutation. For gene sets without direction,
absolute enrichment scores were used. As gene sets, we used the MSigDB
Hallmark and Gene Ontology (GO) biological process sets [33]. For the GO
terms, REVIGO [34] was used.

Single-cell reference profile construction and bulk cell
deconvolution
We obtained the single-cell unnormalized read counts from 20,483 cells of
7 treatment-naive HGSOC patients [35]. Single-cell analysis was performed
using Seurat [36]. Genes expressed in less than three cells were discarded
from the further analysis. Cells were filtered to contain at least 1000
unique expressed genes and to have a percentage of mitochondrial
transcripts of less than 50%, leaving 19,937 cells for further analysis. Cells
were subsequently log normalised to 10,000 transcripts per cell. In
addition, each cell was scored for G2/M and S cell cycle phases based on a
gene list for the human genome [37]. Cell transcript counts were then
corrected for the cell cycle phase scores, the number of unique molecular
identifiers and the percentage of mitochondrial transcripts, by indepen-
dently scaling and centring the residuals of a linear model for each listed
variable.
Next, principal component analysis was performed on the 2000 most

variable protein coding genes and the 20 first principal components were
selected for clustering based on an elbow plot. Cluster resolution was set
to 0.5, which yielded well defined clusters for further annotations. Uniform
Manifold Approximation and Projections (UMAP) were constructed on the
first 20 principal components to visualise the clustering.
To assist in annotating individual cell clusters, differentially expressed

genes were calculated using Seurat for each individual cluster. The
reference profiles were constructed from Seurat clusters by averaging the
original transcriptome counts of all single cells belonging to the same
Seurat cluster with subsequent normalisation to transcripts per million.

245 patients with FIGO Stage III ovarian cancer treated with neo-adjuvant chemotherapy

122 patients assigned to CRS with HIPEC

118
2

1
1

122
1

123 patients assigned to CRS without HIPEC

107 patients with HGSOC subtype 112 patients with HGSOC subtype

1 
4 

Drop out:

4 
14 

7 
2 

Drop out:

11
7
3

Drop out:

102 evaluable patients for histopathology 93 evaluable patients for histopathology

75 patients with RNA seq data available 72 patients with RNA seq data available 

tissue unavailable
TCP too low
DNA/RNA quality too low
not valid 

tissue unavailable
no tumor cells

tissue unavailable
no tumor cells 
withdrawal of consent

4 
13 

2 

Drop out:

TCP too low
DNA/RNA quality too low
not valid

received assigned treatment
underwent surgery without resection 
due to progression
did not undergo CRS due to progression
did not receive HIPEC due to technical 
issues

received assigned treatment
withdrawal of consent              

Fig. 1 CONSORT diagram of OVHIPEC-1 participants and tissue availability. HGSOC high-grade serous ovarian cancer, TCP tumour cell
percentage, CRS cytoreductive surgery, HIPEC hyperthermic intraperitoneal chemotherapy.
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Dampened weighted least squares (DWLS) were used using default
parameters to calculate the cell-type contributions per patient based on
the cell-type reference profiles described in the previous section [16].
To validate the robustness of the deconvolution results, tumour slides

of a subset of 75 patients were assessed by a board-certified pathologist
(KKvdV) for immune cell percentage, as well as tumour cell percentage.
Scoring was performed on tumours with consecutive H&E-stained tissue
slides sourced from the same FFPE block used for bulk mRNA-seq,
thereby minimising potential intra-patient heterogeneity between FFPE
blocks.

Cell-type-based delta treatment score (DTS)
To investigate whether a set of features (cell types) is predictive of HIPEC
benefit, we calculated a delta treatment score (DTS) [18]. DTS measures the
relative risk of recurrence of a patient if treated with CRS over CRS-HIPEC
based on a set of features and is calculated as follows. First, on the set of
features to investigate (CT), which are a subset of the 24 cell types as
predicted by the deconvolution, a multivariable Cox regression with
pairwise treatment (T) interaction is fitted. Based on the CPH model a cell-
type hazard score can be calculated for each patient in the test set under a
given treatment. The cell type hazard score (HSCTp;T ) for a set of features (CT)
is calculated as follows:

HSCTp;T ¼ β1 � CTp þ β2 � T þ β3 � CTp � T (1)

where, β1 is the vector of coefficients for the main effects of features, CT is
the vector of cell-type abundances in patient p, β2 is the treatment effect,
and β3 is the vector of coefficients of the interaction between the features
of patient p and the treatment. Finally, the DTS is calculated as follows:

DTSCTp ¼ HSCTp;T¼1 � HSCTp;T¼0 (2)

where, HSCTp;T¼1 is the cell-type hazard score for patient p and features CT
when treated with treatment T= 1 (CRS-HIPEC) and HSCTp;T¼0 is the cell-type
hazard score for patient p and features CT when treated with treatment
T= 0 (CRS).

Determination of DTS cut-offs for the various risk groups
The predictive power of the DTSCT was tested using a CPH model with
treatment interaction. To avoid dataset-specific bias, DTSCTp scores for
each feature set CT were calculated using leave-one-out validation,
where a CPH model is fitted to all but one patient to calculate the DTSCT

for the remaining patient. A training and validation split was not possible
in this study, as the training and validation sets would not allow for
testing treatment interactions with sufficient statistical power. Further-
more, due to the randomised design of the study, important prognostic
factors were evenly distributed between treatment arms (Supplementary
Table 3). Therefore, clinical characteristics were not adjusted for in the
analysis. For patient risk stratification, the median value was used as a
cut-off to dichotomise the continuous DTSCT into DTSCT-high and DTSCT-
low, as no training set was available to select a cut-off in an unbiased
way. Log-rank tests were used to test for significance in survival between
risk groups.

RESULTS
The study included 219 patients diagnosed with high-grade
serous ovarian carcinoma. Differential gene expression analysis
and bulk RNA-seq deconvolution were performed using RNA-seq
data from 35 pre-treatment samples, 147 resection samples, and
14 recurrence samples (Fig. 2). Histopathologic evaluation was
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machine learning 
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Multi-subject scRNA-seq
from 7 treatment-naive HGSOC tumours1

Cell type-specific gene 
expression reference profiles
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Fig. 2 Summary of methods diagram. a Samples from the OVHIPEC-1 study cohort were collected for HE-stained slides and whole-
transcriptome sequencing at three time points: pre-treatment (TP1), surgical resection (TP2), and recurrence (TP3). Only patients with high-
grade serous ovarian cancer were included in the analysis. b Cell-type-specific gene expression reference profiles were created using single-
cell transcriptomic data from seven treatment-naïve high-grade serous ovarian cancer patients from a publicly available dataset (Olbrecht
et al. [35]). Individual cells were isolated, RNA was extracted, and sequencing was performed. Clustering algorithms were then applied to
group cells with similar gene expression profiles, and differentially expressed genes were calculated for each cluster. Clusters were annotated
based on known marker genes or biological features, and reference profiles were constructed by averaging transcriptome counts within
clusters. c A deconvolution algorithm, specifically Dampened Weighted Least Squares (DWLS), was employed to estimate the relative
proportions of different cell types in samples obtained from the OVHIPEC-1 study cohort. This algorithm used the reference profiles derived
from single-cell RNA sequencing to infer the cell-type fractions based on the gene expression signatures of the cells.
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conducted on H&E-stained slides from FFPE blocks of 49 baseline
samples, 195 resection samples, and 16 recurrence samples to
validate the deconvolution results.

Differential expression analysis did not identify
transcriptomic signatures associated with HIPEC benefit
We assessed whether bulk RNA-seq of the FFPE surgical resection
samples (obtained following NACT) could define transcriptomic
signatures associated with HIPEC benefit. We tested whether the
interaction between the expression of each gene and treatment
was associated with PFS in a CPH model. None of the genes had
a significant association after correcting for multiple testing
(Fig. 3a).
Although no significant associations were found with HIPEC

benefits, we further explored differences between patients and
samples and compared several subgroups in our dataset. First, we
assessed differentially expressed genes between primary tumour
samples and metastases (Fig. 3b). In metastases, we identified
adipocyte-characteristic transcripts including CD36, FABP4 and
ADIPOQ.
Second, a comparison between pre-treatment and surgical

resection samples showed profound differences. In total, 2906
genes were significantly different before and after NACT (Fig. 3c).
Among these, DUSP1 is one of the most strongly upregulated
genes after NACT and has previously been associated with

chemotherapy resistance in HGSOC [38]. We used gene set
enrichment analysis to identify specific sets of genes among the
large number of differentially expressed genes (Fig. 3d). Here,
gene sets associated with cell proliferation were significantly
lower in the surgical resection samples, than in the pre-
treatment samples. This is consistent with the killing of
proliferative cancer cells by the NACT and indicates that the
gene expression profiles contain biologically meaningful signals.
Several signatures related to inflammation and stromal compo-
nents, including TNFα and JAK/STAT signalling pathways,
showed trends of increase after NACT. However, these differ-
ences did not reach significance, indicating the need for a
different approach to find biomarkers predictive of HIPEC
response.
Third, a comparison between the recurrence samples and the

pre-treatment and resection samples revealed that gene sets
associated with proliferation were significantly higher in the
recurrence samples than in the resection samples (Supplementary
Fig. 1A). However, there was no significant difference between the
recurrence samples and the pre-treatment samples (Supplemen-
tary Fig. 1B). This is consistent with the outgrowth of cancer cells
in the recurrence. Additionally, there were trends towards higher
levels of inflammatory signalling pathways in the recurrence
samples compared to the pre-treatment samples (Supplementary
Fig. 1B). Although not statistically significant, this highlights the
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and HIPEC with survival in a Cox regression analysis, corrected for multiple hypothesis testing. No genes showed a significant association.
b Volcano plot showing the difference of each gene’s expression level between metastatic and primary tumour samples, among the resection
samples. c Volcano plot showing the difference of each gene’s expression level between pre-treatment samples and resection samples, with
tissue location (primary vs metastatic) as covariate. d Gene set enrichment analysis for the comparison of resection samples to pre-treatment
samples, given the MSigDB Hallmark gene sets. The graph shows the top 20 gene sets ordered by absolute enrichment score (bottom to top).
The colour indicates the significance of the enrichment as a false discovery rate (FDR).

S.L. Aronson et al.

5

British Journal of Cancer



potential for further information to be uncovered through a
deconvolution approach.
Despite the demonstrated associations in these subgroups,

standard differential expression analysis yielded no significant
associations with response to HIPEC.

Generation of independent reference profiles using single-cell
mRNA sequencing of ovarian cancer
We subsequently aimed to deconvolve our bulk RNA-seq data to
assess whether specific cell types, as well as their proportions,
could predict a patient’s benefit from HIPEC. Deconvolution
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determines the proportions of different cell types in a bulk RNA-
seq dataset using single-cell RNA-seq data as reference profiles.
We used a publicly available single-cell dataset composed of
20,483 cells from 7 patients [35]. Seurat-based clustering revealed
25 clusters, representing the expected cell types (Fig. 4a). Clusters
representing TME cells, such as B cells, T cells, and macrophages
were composed of cells from multiple patients, whereas tumour
cell (TC) clusters only contained cells from a single patient
(Fig. 4b). We further delineated multiple clusters of cancer-
associated fibroblasts (CAF), based on cell-type-specific marker
genes. Some of these clusters had expression patterns that were
unique to individual patients (Fig. 4c). Of note, no adipocyte
cluster was identified reflecting the inefficient capture of this cell
type in single-cell approaches, as previously described [39]. We
then used this dataset for our deconvolution-based assessment of
the bulk RNA-seq data.

Deconvolution of bulk mRNA data reveals robustly the cellular
composition of tumours
Based on the 25 cell-type clusters we identified in HGSOC, we
generated cell-type-specific reference profiles by averaging the gene
expression within each cell-type cluster. These reference profiles
were used for deconvolution to unravel the contribution of each cell
type within the bulk mRNA-seq data of the 147 patients, with
available sequencing data from the surgical resection sample (Fig. 4d),
as well as from the pre-treatment and recurrence samples. Comparing
the deconvolution-based cell-type fractions to the manual H&E-based
cell-type scores, we observed good correlations between the two
different cell-type estimations (Pearson correlation 0.73, Supplemen-
tary Fig. 2). Analysis of deconvolution-derived cell-type abundances
from different time points reveals dynamic changes in cell
populations over the course of disease progression and treatment
response (Supplementary Figs. 3–5). Supplementary Fig. 6 shows the
differences in cellular composition between primary and metastatic
disease sites. Of note, paired samples from 16 patients from before
and after NACT show a significant increase in macrophage abundance
induced by NACT (Macrophages: P= 0.02; Macrophages SPP1:
P= 0.02). While this increase can be observed in most paired
samples, the extend of the observed changes in macrophage
abundance following NACT is highly variable, with a subset of
patients showing a decrease in macrophage abundance after NACT.

Distinct cellular compositions of high-grade serous ovarian
tumours are associated with progression-free survival
Hierarchical clustering of the deconvolution-derived cell-type
abundance matrix of the 147 samples from the resection time
point, revealed pronounced heterogeneity in the cellular compo-
sition of HGSOC (Fig. 4d). We investigated whether different
cellular compositions in HGSOC are associated with PFS. In our
cohort, we identified as subset of patients with high immune cell
abundance (i.e. sum of B cells, T cells, and macrophages). After
adjusting for the addition or absence of HIPEC, the deconvolution-
derived immune cell abundance (as a continuous variable) was
significantly associated with PFS (HR 0.15, 0.03–0.62, P value=
0.01). Stratifying patients by their immune cell abundance
revealed a subgroup with high immune cell abundance that had

significantly prolonged PFS irrespective of treatment (Fig. 4e).
Interestingly, the abundance of immune cells in the TME did not
seem to correlate strongly with the abundance of other cell types
such as CAFs or TCs (Supplementary Fig. 7).

Different tumour compositions are associated with HIPEC
response
Next, we investigated whether the different deconvolution-
derived cellular compositions allowed for the identification of a
subset of patients with increased benefit from CRS over CRS-
HIPEC, or vice versa. We modelled the differential treatment
outcomes on PFS as the ratio of the hazards of a patient treated
with CRS over CRS-HIPEC. The cell-type-based delta treatment
score (DTS) score (see “Methods”) delineates which treatment is
more beneficial for a patient, where DTS < 0 indicates a benefit of
the CRS-HIPEC treatment, and vice versa DTS > 0 indicates a better
outcome without HIPEC. We investigated three different sets of
cell-type (CT) abundances for their interaction with the treatment
arm. We calculated a DTSCT score for each set of cells belonging to
TC, CAF and immune cells (IC) independently using leave-one-out
cross-validation. The results indicated a significant interaction
between DTSIC and treatment in the CPH model for the set of
immune cell abundances (Pinteraction < 0.005). Conversely, the
interactions for DTSTC and DTSCAF were not found to be significant
(Pinteraction= 0.21 and Pinteraction= 0.60, respectively).
Subsequently, we dichotomised the continuous DTSIC score into

DTSIC-high and DTSIC-low using the median value as a cut-off.
Survival analysis conducted on the resulting risk groups showed
that patients with a low DTSIC had a longer PFS when treated with
CRS-HIPEC, whereas patients with a high DTSIC had longer PFS in
the absence of HIPEC (Fig. 5a, b). Analysis of the cell-type-specific
contributions in calculating DTSIC showed that both an increase in
the abundance of B cells and the depletion of macrophages in the
TME are associated with a lower DTSIC (Fig. 5c). Cell-type
abundances between DTSIC-high and DTSIC-low similarly show
higher B-cell abundances and lower macrophage abundance in
DTSIC-low patients, while DTSIC-high patients have overall lower
B-cell abundance and a higher abundance of macrophages in the
TME than DTSIC-low patients (Fig. 5d, e). Furthermore, gene set
enrichment analysis on the DTSIC revealed upregulation of gene
sets related to the interferon-alpha and interferon-gamma
response pathways in patients with lower DTSIC (Fig. 5f). This
provides further validation for DTSIC, as it shows correlation to the
immune cell organisation of the sample even when going back to
the bulk mRNA-seq data.

Histopathology of resection samples confirms macrophage
absence or necrosis as predictors of enhanced HIPEC response
We performed the histopathological assessment of the HGSOC tissue
samples from the primary tumour or the omentum resected during
surgery (following NACT) in 102 CRS and 93 CRS-HIPEC patients
(Fig. 1). An exploratory subgroup analysis suggested that within the
subset of patients lacking macrophages, those who received HIPEC
had more favourable OS compared to those who underwent surgery
alone (HR 0.53 [95% CI 0.32–0.89]). In the subset of patients with
macrophages present, overall survival was comparable between

Fig. 4 Deconvolution of bulk RNA sequencing data to estimate cell-type abundance using single-cell expression reference profiles.
a UMAP projection of single cells based on their normalised expression counts. Cells with similar expression profiles are proximally located,
allowing for clustering, and annotating single cells according to their respective cell type. In total, Seurat-based clustering revealed 25 clusters,
representing the expected cell types. b Annotation of the UMAP projection based on sample origin shows no patient overlap in TC clusters,
while immune cell clusters consist of cells from multiple patients. c Expression of cell-type-specific marker genes within each cluster. Cell-type-
specific markers are used to provide cell-type labels to individual Seurat-based clusters. d Heatmap showing cell-type abundances as
estimated by single-cell deconvolution for every patient. Hierarchical clustering of patients shows a heterogeneous landscape of cell-type
composition, with varying degrees of immune infiltration. e Kaplan–Meier Curve using quartile cut-offs (first 25% vs 25–75% vs 75% and
beyond), shows a significant association of deconvolution-based immune cell abundance with PFS (two-sided log-rank P value= <0.005). CAF
cancer-associated fibroblasts, TC tumour cells.
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treatment arms. This suggests that there is a differential effect of
treatment according to macrophage status (Pinteraction= 0.054; Fig. 6).
Stratification by other morphological variables did not reveal a
differential treatment effect (Fig. 6). Exploratory subgroup analyses
for PFS are shown in Supplementary Fig. 8.

DISCUSSION
In our study, we aimed to explore predictive biomarkers for HIPEC
response to support tailored treatment to individual HGSOC

patients. By applying deconvolution to bulk RNA-seq data, we
found that this method robustly reveals the cellular composition
of HGSOC from participants in the OVHIPEC-1 study. While
standard differential gene expression analysis of bulk RNA-seq
did not yield any discernible predictive biomarkers within our
cohort, deconvolution methods demonstrated that HIPEC benefit
may be predicted by the absence of macrophages and the
presence of B cells in the TME. Manual pathologists scoring of
morphologic features confirmed that macrophage absence was
indicative of HIPEC response.
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The absence of macrophages in the tumour microenvironment
at surgical resection may be the effect of NACT or indicate an
impaired anti-tumour immunity [40]. Host anti-tumour immune
responses are associated with a significant improvement in overall
survival in patients with HGSOC [12, 41]. For those patients lacking
macrophages, HIPEC may be beneficial, given its potential to
enhance the anti-tumour response through the immune-
potentiating effects of the combination of hyperthermia and
cisplatin [42]. Alternatively, patients without macrophages follow-
ing NACT may be relatively resistant to systemic platinum-based
chemotherapy, considering the known local immune activation
induced by chemotherapy [43]. Local treatment of the peritoneum
with high-dose heated chemotherapy might result in a higher
sensitivity to HIPEC in contrast to those patients who are already
relatively susceptible to systemic chemotherapy. This hypothesis is
supported by the observed overlap of enriched pathways related
to immune response in resection samples compared to pre-
treatment samples (Fig. 3d) and in DTSIC-low compared to DTSIC-
high samples (Fig. 5f), pointing to a potential link between the
initial response to NACT and the subsequent response to HIPEC.
This observation might also be consistent with the changes in
macrophage abundances following NACT seen in paired samples
(Supplementary Fig. 2). However, this requires additional investi-
gation, since the number of paired samples is insufficient to draw
significant conclusions. In addition, the state of tumour-associated
macrophages (TAM) might contribute to our results. TAMs are an
integral component of the TME in ovarian cancer and predomi-
nantly display a pro-tumour M2 phenotype [44]. M2-like TAMs
limit the effector function of CD8+ T cells in metastatic HGSOCs
and are associated with poor overall survival [45, 46]. In this
regard, the absence of immunosuppressive M2 macrophages in
combination with the augmented local anti-tumour effect of the
heated platinum may result in a better HIPEC response. However,
in our experimental setup a discrimination between different TAM
states (M1 or M2) was not possible.
Deconvolution further delineated a high abundance of B cells in

the TME as a predictive biomarker for HIPEC treatment. Although
the role of B cells in cancer is not yet fully understood, it might be
hypothesised that heat shock proteins (HSP), released under
hyperthermic conditions, modulate the immune response by
affecting the activation and function of B cells [42, 47]. The
favourable impact on survival following HIPEC aligns with the
abundant presence of B cells at the tumour site. Further validation
in other cohorts and mechanistic studies is required to assess
macrophages and B cells in the TME as a predictive biomarker for
HIPEC treatment. Moreover, validation in pre-treatment biopsies is
needed to explore the feasibility of incorporating the biomarker
into clinical practice, given that a biopsy after NACT deviates from
standard of care.

Compared to the deconvolution of bulk RNA-seq data, our bulk
gene expression analysis did not identify specific signatures
associated with HIPEC benefit. This is in contrast to other studies
[38] and might be explained by the fact that we accounted for
gene selection bias and gene-gene correlations [48–50], and
investigated a larger cohort of patients. When comparing
differentially expressed genes between the primary tumour and
metastatic sites, adipocyte-characteristic transcripts including
CD36, FABP4 and ADIPOQ were identified in metastases. These
signatures likely result from omental fat tissue in metastatic
samples, rather than representing inherent features of metastatic
tumour cells. However, FABP4 was previously identified as a key
determinant of metastatic potential of ovarian cancer [51, 52].
Moreover, the higher expression of PROK1 in primary tumour
samples may indicate residual normal ovarian tissue or might
indicate true differences between metastatic and primary ovarian
cancer cells. In line with this PROK1, endocrine gland-derived
vascular endothelial growth factor has been linked to angiogen-
esis, proliferation and invasion in various malignant tumours [53].
When comparing pre-treatment samples with surgical resection
samples, DUSP1 is strongly upregulated after treatment with
NACT. This gene has previously been associated with chemother-
apy resistance in HGSOC [38] and DUSP-inhibitors are being
explored in mouse models of ovarian cancer [54]. Hence, our bulk
gene expression analysis provided several relevant associations
that may warrant follow-up study.
To our knowledge, this is the first study to use samples from a

randomised controlled study to predict which ovarian cancer
patients benefit most from HIPEC through transcriptomic profiling.
Previous research in the same cohort showed that while BRCA-
mutated tumours had better survival with CRS alone, no additional
survival benefit was seen with HIPEC. Subgroup analysis revealed
that HIPEC may be most beneficial for patients with homologous
recombination-deficient (HRD) tumours lacking pathogenic
BRCA1/2 mutations [2, 55]. These findings emphasise the
importance of molecular profiling in personalising ovarian cancer
treatment, highlighting the potential of identifying subgroups that
may benefit more from HIPEC treatment. It should be noted that
our evaluation excluded patients who achieved a complete
pathological response to NACT, as no tumour tissue was available.
Hence, our findings might not encompass the unique molecular
characteristics of these exceptional complete responders. This
could impact the generalisability of our results and introduce bias
in our predictive models, although it is inherent to molecular
research in clinical trials. Another limitation concerns the intra-
patient heterogeneity commonly observed in ovarian tumours.
The diverse cellular composition and molecular characteristics
across different regions of a tumour can result in variations in
treatment response and biomarker expression within a single

Fig. 5 Predictive delta treatment score based on single-cell deconvolution. Kaplan–Meier estimates for the (a) DTSIC-low group and
b DTSIC-high group treated either with CRS or CRS-HIPEC. DTSIC was dichotomised based on a median cut-off, where 50% of patients with the
lowest DTSIC were assigned to DTSIC-low and 50% with the highest DTSIC were assigned to DTSIC-high. Patients in the DTSIC-low group benefit
significantly from HIPEC treatment (P < 0.005) over CRS, while in the DTSIC-high group patients have significantly worse survival outcome
when treated with HIPEC (P= 0.01). c Value of CPH interaction coefficients between treatment and cell-type features for DTSIC averaged over
all models in the leave-one-out validation. Error bars represent the 95% confidence intervals estimated by bootstrapping. A high positive
interaction coefficient for a given cell type results in a lower DTSIC and therefore better outcome for patients under HIPEC, while a high
negative coefficient results in a higher DTSIC and therefore better outcome under CRS, showing feature importance for DTSIC. d Heatmap of
cell-type abundances sorted according to DTSIC. Given the prognostic significance of immune cells, both DTSIC-low and DTSIC-high patients
show increased immune cell infiltration, while in DTSIC-high patients, the TME contains a higher abundance of macrophages, contrasted by a
higher B-cell abundance in DTSIC-low patients. Cell-type abundances are normalised to the interval [0,1], with the interval of the unnormalized
cell-type abundances with original feature value interval listed in brackets. e Absolute cell-type abundances for each immune cell cluster for
DTSIC-high and DTSIC-low emphasising the absence of macrophages and the presence of B cells to be associated with differential HIPEC
response. f Gene set enrichment analysis of the continuous deconvolution-derived DTSIC shows upregulated immune-specific pathways in
DTSIC-low patients compared to DTSIC-high patients. This finding provides further evidence supporting the validity of the deconvolution-
derived DTSIC, as the correlation between the patient-specific immune response and the differential HIPEC response remains even when
reverting to the bulk mRNA-seq data. CRS cytoreductive surgery, DTSIC immune cell delta treatment score, HIPEC hyperthermic intraperitoneal
chemotherapy.
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patient. Analysing only one tumour sample may not capture the
full extent of this intra-patient heterogeneity and the substantial
differences between various tumour sites. Nevertheless, this
limitation is unavoidable, as it is difficult to justify multiple
biopsies from each patient in a large cohort. With respect to inter-
patient heterogeneity, the use of single-cell datasets with a limited
number of patients for deconvolution might not comprehensively
capture all TC and CAF cell types present in HGSOC. Although
studies in breast cancer have shown no performance increase
when using single-cell data from more than seven patients [18],
further studies in HGSOC might benefit from a larger number of
patients.
In summary, our study demonstrated that immune cell

composition, in particular macrophages absence, may predict
response to HIPEC in HGSOC. These hypothesis-generating
findings need to be validated in future studies using cost-
efficient and targeted methods such as immunohistochemistry,
and may provide a potential opportunity for refined patient
stratification to maximise treatment efficacy and avoid
overtreatment.
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