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Abstract
This study investigates the effect of flash floods on local economic activity in Central 
America and the Caribbean. I measure these rarely analyzed floods by constructing a high-
resolution, physically based index of flash flood occurrence from satellite data and con-
nect these to changes in local night light emissions. After accounting for tropical cyclone 
activity, flash floods have a delayed, short-term negative effect on economic activity. In 
countries with a low to medium human development index (HDI), the average negative 
effect can be up to 5.6% in the following months. Countries with higher HDI appear more 
resilient and are only marginally affected. Also, flash floods exhibit a minor positive spatial 
spillover in low to medium HDI countries, besides their more substantial local negative 
effect. Due to their high frequency, flash floods have a detrimental effect on local economic 
growth in developing countries that will likely be exacerbated by climate change. (JEL )

JEL Classification O11 · Q54 · R11

1 Introduction

When Tropical Storm Ophelia poured extreme rainfall over New York City on Septem-
ber 29th in 2023, the resulting flash floods wreaked havoc: the city shut down its subway, 
roads, and airport terminals, and a state of emergency had to be declared. Less than a week 
before, heavy rainfall in the night caused a flash flood early on the 25th near Guatemala 
City when a small river broke its banks, destroying several homes and causing deaths and 
missing people.1 These are not isolated incidents. According to the Emergency Events 
Database (EM-DAT), 0.9 Million people were affected by flash floods in 2022, the 5th 
most among all natural hazard subtypes.2 In addition, the frequency and severity of flash 
floods are projected to increase with climate change (IPCC 2023). The Caribbean and 
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Central America are especially at risk from flash floods by being already one of the world’s 
most rainfall- and thunderstorm-heavy regions. Further aggravating the risk, urbanization 
is often unregulated, and soil degradation is common (Pinos and Quesada-Román 2021). 
Therefore, understanding how flash floods impact economic activity in Central America 
and the Caribbean is crucial for its development. This study contributes to this understand-
ing by physically modeling flash flood events from satellite rainfall data and connecting 
these to changes in night light activity while controlling for tropical cyclone activity and 
local characteristics.

While the direct physical damage from natural hazards is self-evident, the overall 
economic consequences are not. In many countries, natural disasters are a major chan-
nel through which climate and environmental degradation impact the economy and lower 
development (Felbermayr and Gröschl 2014). A growing literature has thus started to study 
the economic impacts of various types of natural disasters: tropical storms (Strobl 2012; 
Hsiang 2014; Deryugina 2017; Ishizawa and Miranda 2019; Kunze 2021), earthquakes 
(Barone and Mocetti 2014; Fabian et al. 2019), droughts (Barrios et al. 2010; Hornbeck 
2012) and urban floods (Kocornik-Mina et  al. 2020), to name a few. Many estimate the 
overall economic impact of the natural disaster, while others are explicitly entertaining the 
notion of direct (first-order) and indirect (second-order) effects. The direct impact can be 
viewed as the immediate destruction and rebuilding cost. The indirect impact is charac-
terized by second-order effects such as the re-organization of the economy. For instance, 
when an establishment is destroyed, this disrupts the value chain. Similarly, if a firm goes 
out of the market, the now laid-off workers will be subject to unemployment. These sec-
ond-order effects are often considerable. Deryugina (2017) finds that US hurricanes sub-
stantially increase transfers such as unemployment benefits to affected counties, signifi-
cantly exceeding direct disaster assistance in value.

The literature quantifying the impact of extreme rainfall and flood events specifically 
can be divided into two groups. Those concerned with extreme rainfall use aggregated 
weather data such as the region-specific deviation in monthly rainfall to estimate economic 
impacts of weather anomalies (Dell 2012, 2014; Felbermayr et al. 2022; Kotz et al. 2022). 
These studies implicitly evade many flash flood events because a monthly measure of rain-
fall cannot reliably identify short (usually less than a day) extreme rainfall events. The 
other group uses flood report data instead to overcome this issue (Loayza et al. 2012; Fom-
byFomby et al. 2013; Kocornik-Mina et al. 2020). The advantage of flood report data like 
EM-DAT or the Dartmouth Flood Observatory (DFO) is that it identifies the natural hazard 
by impact. But it also comes at a cost: relying on media reports like the EM-DAT to iden-
tify and locate flood events introduces reporting, selection, and endogeneity biases (Panwar 
and Sen 2020). For example, insurance penetration and reported damages are highly cor-
related with a country’s development (Felbermayr et al. 2022). The DFO instead relies on 
satellite imagery on cloud-free days to quantify the flooded area. Since flash floods have a 
short lifespan and occur in combination with heavy rainfall and thus cloud coverage, many 
go unnoticed. To the best of my knowledge, no study focuses on the economic impact of 
flash floods, as there is no consistent nor exhaustive database of them. It is thus necessary 
to develop a physically consistent index of occurrence that reliably identifies flash flood 
events to study their economic impacts.

Macroeconomic models of natural disasters are generally based on classical growth 
theory with the event as a one-time shock to the capital stock (Hallegatte et al. 2007; 
Strulik and Trimborn 2019). However, it has been argued that these models cannot cap-
ture the effects of short-term shocks from natural hazards adequately to derive long-term 
impacts (Cavallo et al. 2013). Regardless of this debate, the economic impact has to be 
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assessed empirically to provide estimates for model parameters (Strulik and Trimborn 
2019). This impact has to be estimated for each hazard separately since they are not 
necessarily comparable. Some might destroy a larger share of certain types of capital, 
some damage a larger share of public infrastructure, and others displace more people. It 
has also been recognized that with climate change making natural hazards more com-
mon in many parts of the world, jointly considering events based on their frequency and 
intensity is crucial when estimating the effects on growth. For instance, in a Solow-like 
model that allows for non-equilibrium dynamics, Hallegatte et al. (2007) show a sharp 
increase in GDP losses if natural hazards intensity or frequency increase above a certain 
threshold. The capacity of an economy to cope with a natural hazard, determining the 
threshold, is linked to its development (Hallegatte and Dumas 2009). For instance, the 
more developed economy can cope better with severe and frequent shocks to its infra-
structure as it has the necessary means for timely reconstruction.

To frame the analysis, there are four hypotheses about an economy’s growth dynam-
ics after a natural disaster: a return to the same output level after an initial decline, 
a decline in output level without recovery, or an increase in the level of output either 
immediately with creative-destruction or after some time as build-back-better (Botzen 
et  al. 2019). The question of which hypothesis is most adequate, focusing on high-
impact natural disasters, has not reached a conclusive answer (Skidmore and Toya 2002; 
Cuaresma 2008; Klomp 2016). Most evidence points towards an initial decline in output 
that gradually recovers over time. In contrast, the no-recovery, build-back-better, and 
creative-destruction hypotheses have support in specific settings (Strobl 2012; Felber-
mayr and Gröschl 2014; Noy and Strobl 2023) It is suggested that this depends mainly 
on the type of disaster, the time period and geographic scope of the analysis (Lazzaroni 
and van Bergeijk 2014; Klomp and Valckx 2014). Critically, the scale of analysis mat-
ters. Economic mechanisms that would cause output to increase are typically motivated 
on the micro- or perhaps city level. For example, local build-back-better might siphon 
investments into an area affected by a natural disaster at the cost of other locations. Sim-
ilarly, the negative impact might be relatively short-term such that rebuilding is com-
pleted within a year. It follows that country-by-year panel data is not well suited consid-
ering the growth dynamics of a small-scale, high-frequency natural hazard such as flash 
floods. However, if one is interested in the aggregate net effect, that is the effect of the 
natural hazard after spatial equilibrium effects and temporal smoothing took place, then 
estimates from a country by year panel are informative.

Therefore, a critical part of the methodology is to detect extreme rainfall events that 
likely trigger flash floods on a high spatial and temporal resolution. I use the flash flood 
intensity-duration classification from Collalti et  al. (2024) as a physical measure for 
flood incidence. This classification is based on intensity-duration-frequency (IDF) curves 
from conditional copula sampling and exhaustive information on all flash flood events in 
Jamaica from 2001 to 2018. Jamaica shares a similar topography, soil composition, and 
climate with the whole region of Central America and the Caribbean, so the classification 
is well-calibrated. I use rainfall information from the Integrated Multi-satellitE Retriev-
als for GPM (IMERG), which employs the Global Precipitation Measurement (GPM) con-
stellation satellite data. This allows the construction of meteorologically distinct rainfall 
events by imposing some inter-event-time without any rainfall from the high frequency 
(half-hourly) satellite data for each 0.1◦ × 0.1◦ (approx. 11 km ×11 km at the equator) cell. 
Events can, therefore, stretch over several days, whereby most events last less than a day. 
Of the 64 M cell-wise rainfall events in Central America and the Caribbean in 2000–2021, 
2.3 M or approximately 1.7% can be classified as flash floods.
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I estimate a flash flood’s effect on aggregate economic activity by using satellite 
images of night lights at a monthly frequency. The source of night light data is NASA’s 
Black Marble product that removes cloud-contaminated pixels and corrects for atmos-
pheric, terrain, vegetation, snow, lunar, and stray light effects on the VIIRS Day/Night 
Band (DNB) radiances. Controlling for tropical storms and various fixed effects, I find 
that night lights decrease significantly by up to 5.6% in the following months for low 
and medium-development countries. Afterward, there is a quick recovery within the first 
year. Due to their high frequency, night light growth decreases significantly due to flash 
floods for locations in the region’s low- and medium-developed countries. The reac-
tion in night lights is considerably less pronounced in high- and very high-development 
countries.

These results are important for several reasons. First, the findings contribute to the liter-
ature on physically modeled natural disasters in economics (Nordhaus 2010; Hsiang 2014; 
Eichenauer 2020). Second, extreme rainfall events and the associated pluvial floods are, 
after droughts, the extreme events most likely to increase in probability and intensity due 
to climate change (Seneviratne et al. 2021). For instance, the 6th IPCC Report states that 
“Projected increases in direct flood damages are higher by 1.4 to 2 times at 2◦C and 2.5 
to 3.9 times at 3◦C compared to 1.5◦C global warming without adaptation.” (IPCC 2023). 
Knowledge of how a natural hazard shock affects the economy is necessary to adequately 
inform policymakers about climate change risks.

The remainder of the paper is organized as follows: Sect. 2 presents the study region, 
describes the data, discusses difficulties in measuring flash floods, and provides summary 
statistics. Section  3 focuses on the role of geography in flash flood risk. In Sect.  4, the 
identification strategy is detailed, whereas Sect. 5 provides results which are discussed in 
Sect. 6. Finally, Sect. 7 concludes.

2  Data

Three types of data are necessary for this study. First, data on hazards includes a satel-
lite-derived rainfall measure and the subsequent creation of a flash flood indicator as the 
variable of interest. In addition, I construct an index of hurricane destructiveness. Sec-
ond, comes the economic data, where I use night light data to infer changes in economic 
activity. Third, auxiliary data on topography and land use serve as sources for potential 
heterogeneity.

2.1  Study Region

The study region of Central America and the Caribbean is characterized by its proximity to 
the sea: no location is further away from it than 200 km (Encyclopedia Britannica 2022). 
The tropical climate is tempered by elevation, latitude, and local topography. Rainfall 
occurs in a dry and wet season pattern and is heaviest between May and November. Topog-
raphy is diverse: most countries have humid lowlands along the coast, while there are pro-
nounced hills and mountain ranges. Natural vegetation is equally varied. Tropical forests 
occupy lowlands, while evergreen forests clothe hills and mountains. However, much of 
Central America and the Caribbean’s timberland has been cleared for crop cultivation.
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2.2  Flash Floods

Floods come in various forms that determine the flood hazard and risk. Floods caused 
by local excess rainfall, so-called pluvial floods, can be divided into surface water 
floods and flash floods. Surface water floods are caused when rain falls over a pro-
longed period such that the drainage systems and general runoff cannot deal with the 
amount of water, resulting in a shallow, standing flood. Flash floods, on the other side, 
are characterized by shorter, more intense extreme rainfall events. Torrential rainfalls 
trigger these dangerous floods due to their quick onset and ravageous, debris-sweeping 
flow. They are a predominantly localized phenomenon that can occur almost every-
where and is difficult to forecast.

2.2.1  From Rainfall to Floods

In this study, flash floods are measured via a binary classification that indicates whether, in 
a month, an episode of heavy rainfall likely triggered some flash flood at a location. This 
classification borrows from Collalti et al. (2024), who employ a hydro-statistical method-
ology and exhaustive data on confirmed flash flood events in Jamaica to estimate a deci-
sion rule for the optimal classification of flood incidence. Specifically, the procedure starts 
by first defining appropriate rainfall events that relate to actual weather conditions via an 
inter-event time definition, where 12 h without rainfall above 0.1 mm/h meteorologically 
delimits a rainfall event from another. This allows for a varying duration of rainfall events 
while not suffering from arbitrary cut-offs as, for instance, daily rainfall measures would. 
Figure 1 depicts this procedure that takes as input rainfall time series and yields meteoro-
logically distinct rainfall events. By using remote sensing data from the Global Precipita-
tion Measurement (GPM) Integrated Multi-satellitE Retrievals (IMERG) on a 0.1◦ × 0.1◦ 
(approx. 11 km ×11 km at the equator) grid with half-hourly data, coverage is consistent for 
the whole study region (Huffman et al. 2015). I run the IETD event definition on all 13,702 
GPM/IMERG cells in the study region, where each cell’s rainfall time series has a length 
of approximately 368,000.

Most of the resulting events are non-hazardous regular rainfall events that are not 
hazardous. However, the more extreme an event becomes, the more likely it triggers 
a local flash flood. In hydrological research that aims to quantify pluvial flood risk, 
this extremeness is characterized by the average intensity (mm/h) and duration (h) of 
events in so-called intensity-duration-frequency (IDF) curves (Koutsoyiannis et  al. 
1998). For a set duration or intensity, a rainfall event becomes less frequent (and more 
extreme) if either duration or intensity increases, which are themselves negatively cor-
related (Endreny and Imbeah 2009). The IDF curve, therefore, shows all combinations 
of intensity and duration for a given return period where a higher return period corre-
sponds to more extreme events.

Collalti et al. (2024) use the local yearly maximum rainfall events in terms of total 
rainfall to generate IDF curves for extreme rainfall events in Jamaica via copula func-
tions. That way, the non-linear dependence between intensity, duration, and frequency 
is flexibly characterized. Equipped with all the confirmed, time- and geo-referenced 
flash floods in Jamaica from 2001 to 2018, they evaluate which IDF curve best predicts 
the occurrence of a flash flood for all extreme rainfall events and achieve a true posi-
tive rate of 65% for events above the IDF curve with a return period of 21

6
 years.
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2.2.2  Flash Flood Indicator

I employ this IDF curve as a binary flash flood decision rule on the same satellite-based 
rainfall estimate to recover potential flood events. The GPM/IMERG satellite precipitation 
algorithm combines various microwave and infrared precipitation measurements to pro-
duce precipitation estimates adjusted with surface gauge data. The sample period is June 
1st 2000 to June 30th 2021. For every month with one rainfall event above the threshold, 
the corresponding GPM/IMERG grid cell area is considered treated by a flash flood.3

Since the IDF curve was developed to maximize the ratio of true positives against false 
positives, it gives equal weights to both. Here, false positives are a more significant con-
cern than missing some true positives. For instance, false positives lead to non-classical 
measurement error in our variable of interest and subsequently bias the results. On the 
other side, missing some true positives only reduces the number of detected events and 
precision while not causing bias.

In addition, rainfall events for the 21

6
 return period that maximized the ratio of true posi-

tives against false positives in Jamaica is, on average, 3.7 mm/h lower than rainfall events 
with the same return period for the whole study region in this paper. While this does not 
imply that the indicator should be adjusted for that amount, it indicates that some adjust-
ments are necessary to avoid many false positives in particularly rainfall-heavy regions. As 
a starting point for subsequent analysis, I require that a rainfall event has an intensity of at 
least 2 mm/h above the IDF curve to be classified as a flash flood. If an event exceeds this 
threshold, I treat it as a flood-causing rainfall event.

In the study region, one of the most rainfall-intense regions in the world, locations 
defined by the GPM/IMERG grid experience a flash flood 1.7 times each year on average, 
according to the index. There is considerable spatial variation for the average occurrence 
probability and spatial clustering for a given month, as Fig. 2 shows. Table 1 provides sum-
mary statistics of all rainfall events. Flash flood rainfall events are, on average, 5.5× more 
intense and 2.5× longer than non-flash flood events.

2.3  Night Lights

The source of night light data is NASA’s Black Marble product. Black Marble processing 
of the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) removes 
cloud-contaminated pixels and corrects for atmospheric and other light effects such as gas 
flares, is calibrated across time, and validated against ground measurements (Román et al. 
2018). The VIIRS DNB provides global daily measurements of nocturnal visible and near-
infrared light. The VIIRS DNB is said to be ultra-sensitive in low light conditions, making 
it suitable for monitoring remote areas as well as highly urbanized locations.

Night lights have been used increasingly as a proxy of local economic activity in devel-
oping countries (Hodler and Raschky 2014; Storeygard 2016; Kocornik-Mina et al. 2020). 
In their seminal paper, Henderson (2012) lay foundations on using night light data to aug-
ment income growth measures. They find that the elasticity between the growth of lights 
and local GDP growth is around 0.3. Chen and Nordhaus (2019) compare DMSP/OLS 
and VIIRS for predicting the US’s cross-sectional and time-series GDP data. They find 
that VIIRS performs well at predicting metropolitan area night light growth. Gibson et al. 

3 Flash floods that start in one month and end in the next are only assigned to the month when the rainfall 
event started.
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(2021) compare the ability of the DMSP/OLS and VIIRS to predict local GDP for Indone-
sia and finds that the DMSP/OLS is twice as noisy as the VIIRS.

I use version VNP46A3, which provides monthly composites generated from daily 
observations. Monthly composites remove much of the noise in daily observations and also 
ensure continuous measurements even when there is cloud coverage for several days in a 
row, which is not uncommon in the tropics. Black Marble has been available globally since 
January 2012 on a 15 arc-second (approx. 500 m) linear latitude-by-longitude grid. Fig-
ure 3 shows lights at night in January 2012. All cells not on land are removed for the analy-
sis—including both ocean and lakes. The Black Marble data is aggregated to the lower-
resolution GPM/IMERG grid cells such that each night light observation in the empirical 
analysis is the sum of the 576 Black Marble observations.

2.4  Tropical Storms

In analyzing the effect of floods, which are due to extreme rainfall in the Caribbean and 
Central America, it is necessary to separate the flood effect from the effect of tropical 
storms’ wind destruction. I follow Strobl (2011) in calculating the local wind exposure dur-
ing a storm with the Boose et al. (2004) version of the Holland (1980) wind field model. 
The source of storm data used is the HURDAT Best Track Data (Landsea and Franklin 
2013). “Appendix” provides additional information on the wind field model. The resulting 
wind speed Vijt is then translated to a hurricane destruction index wnit of economic impact 
via the non-linear damage function by Emanuel (2011), see for instance Brei et al. (2019):

15
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Fig. 1  Rainfall event definition. Notes: Illustration of the event definition via inter-event-time (IETD). In 
the GPM/IMERG data, each step in time corresponds to a half-hourly interval with a rainfall measurement 
per grid cell. Each grid cell has a time series of approximately 368,000 half-hourly observations. Each of 
these 13,702 time series is then split into distinct events via a 12 h IETD. This means that if there is at least 
12 h without rainfall to the next episode of rainfall, these two constitute single events (1st and 2nd event). 
If there is less than 12 h without rainfall in between, it is treated as a single event (2nd event). This process 
is applied to the whole time series (3rd event, etc.) and repeated for all cells. Each event is then assigned its 
start time and cell coordinates
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(1)wnit =
v3
ijt

1 + v3
ijt

× 100

(2)

with

vijt =
max(Vijt − Vthresh, 0)

Vhalf − Vthresh

Fig. 2  Map of flash flood distribution. Notes: Map of the spatial distribution of flash floods according to 
the indicator in Sect. 2.2.2. The primary GPM/IMERG rainfall data is first aggregated to a series of distinct 
events per grid cell via the inter-event-time definition in Sect.  2.2.1. Then, if an event exceeds the IDF 
threshold from Collalti et  al. (2024) by more than 2 mm/h in average intensity, it is classified as a flash 
flood. a Then plots the average number of such flash floods per year from June 2000 to October 2021 and b 
maps the flash flood incidents in June 2015

Table 1  Rainfall and flash flood 
summary statistics

Summary statistics of all flash flood and rainfall events characteristics. 
Intensity refers to the average hourly intensity of an event

Statistic Mean St. dev. Min Median Max

Flash Flood Rainfall Events (N = 1,056,508)
Intensity mm/h 6.61 3.31 3.93 5.50 113.18
Duration h 16.60 11.14 1.00 13.50 214.50
Year 2009.44 5.79 2000 2009 2021
Month 7.02 2.99 1 7 12
Longitude −80.15 8.28 −91.95 −81.55 −58.05
Latitude 16.07 8.07 7.05 14.25 31.95
Non Flash Flood Rainfall Events (N = 63,049,303)
Intensity mm/h 1.21 1.36 0.10 0.77 190.22
Duration h 6.65 10.84 0.50 3.50 3875.00
Year 2010.49 6.12 2000 2011 2021
Month 6.83 3.05 1 7 12
Longitude −78.00 9.22 −91.95 −79.65 −58.05
Latitude 15.73 7.54 7.05 13.95 31.95
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where Vijt corresponds to the maximum wind speed of hurricane j in location i at time t. 
Then, Vthresh = 92 km/h is the lower threshold below which no damages occur, whereas 
Vhalf = 203 km/h is where 50% destruction is expected. Conveniently, a one-unit increase 
can be interpreted as a 1% increase in damages. The maximum vijt in a given month repre-
sents the tropical cyclone impact in subsequent analysis.

2.5  Summary Statistics

Table 2 displays summary statistics. There are 13,702 cells with 114 monthly observations 
starting in January 2012 and ending in June 2021 for a panel of 1.56 Million observations.4 
Out of these 1.56 Million observations, 150,065 or 9.6% are potentially hit by a flash flood. 
Observations that are hit emit less light at night on average (3.72 vs. 6.52 W/(cm2 − sr) ), 
have, on average, been hit more frequently per year in the period 2000–2010 (8.0 vs. 6.7 
times), have a lower average elevation (242.7 m vs. 331.3 m) and have a slightly less rug-
ged terrain (14.39 vs. 16.12 TRI).5 In summary, the two groups of observations are not 

Fig. 3  Map of night lights. Notes: Night light map in January 2012 from NASA’s VNP46A3 Black Marble 
product of the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) that removes 
cloud-contaminated pixels and corrects for atmospheric and other light effects such as gas flares, is cali-
brated across time, and validated against ground measurements. The grey polygon indicates the study 
region of Central America and the Caribbean, excluding Florida. The radiance in the figure is top-coded 
at 800 W ∕(cm2 − sr) to shrink the color scale and make differences at lowly lit places visible. Due to 
ships, some cells do have night light activity, even if not on land. For the analysis, all cells not on land are 
removed

4 The rainfall data has been available since 2000. Thus, lags of flood events before 2012 have been supple-
mented to the panel.
5 Data on land use and topography is described in Section “Land Cover” and “Topography” in the “Appen-
dix”.



 D. Collalti 

1 3

equal; local characteristics and seasonality likely affect whether a flash flood occurs. The 
subsequent empirical analysis has to consider these differences.

3  The Role of Geography in Flash Flood Risk

The flash flood indicator derived in Sect. 2.2 only considers the intensity and duration of rainfall, 
omitting geography. Naturally, one might wonder whether the accuracy could be improved by 
considering features like land use, elevation, or terrain ruggedness from Section “Land Cover” 
and “Topography”. For instance, Wheater and Evans (2009) highlight the role of soil permeabil-
ity for flood risk, which is negatively influenced by urbanization, deforestation and intensification 
of agricultural practice. Similarly, Hounkpè et al. (2019) document that land use change from 
natural vegetation towards farmland increases flood risk. These studies, however, focus on floods 
in highly localized catchment areas, where counterfactuals in risk are difficult to come by.6 The 
objective of such studies is the precise water flow modeling and not the counterfactual question 
of how flood risk changes by land use in general. It stands to be established how land use and 
topography aggregated to locations corresponding to gridded remote sensing rainfall observa-
tions can inform flash flood risk.

Suppose aggregate land use or topography can be used to improve the flash flood indica-
tor. In that case, land use or topography should have a statistically significant effect on the 
probability of observing a confirmed flood event after controlling for the indicator. Bor-
rowing the data on the confirmed flash flood events in Jamaica from 2001 to 2018 and the 
yearly maximum rainfall events at all locations affected from Collalti et al. (2024), regress-
ing the confirmed flash flood on the flash flood indicator, land use shares, and topography 
determines whether land use or topography has a direct influence. Alternatively, one could 
also suspect that each aspect of geography does not directly influence the flash flood risk 
but instead works through extreme rainfall and the indicator, which can be examined in an 
interaction term. Table 3 reports the corresponding logistic regression results.

Comparing the estimate for the flash flood indicator across specifications in Table 3, the 
indicator predicts the observed occurrence of a flash flood well. The odds of observing a 
flash flood increase by 84–97% in the case of the flash flood indicator equal to one and is 
statistically significant across specifications. Note that the sample consists only of yearly 
maximum rainfall events and the actual confirmed flash flood rainfall events—a regression 
of all rainfall events would yield vastly stronger effects but would hardly be reasonable. 
Neither elevation, terrain ruggedness (TRI), nor share of built area, cropland, grassland, 
and forest cover significantly change the odds of observing a flash flood after controlling 
for the flash flood indicator. The direct effect of the indicator is also robust against an inter-
action with the dominant land use type in column (3).7

It might be that the rainfall flash flood indicator already implicitly takes some of the 
flash flood risk due to geography into account. For instance, we expect a higher flash flood 
risk for higher altitudes and rugged terrain (“Mountains”), where we also observe more 
extreme rainfall events. Similarly, there is generally more natural vegetation in the most 
rainfall-heavy areas in the case of Jamaica. Refining the flash flood indicator by incorpo-
rating local geography does not present itself as necessary, as it is questionable whether 

7 Builtmajority and Agriculturemajority refer to cells which have a share of built are above the 2/3 quantile or a 
share of cropland plus grassland above the 2/3 quantile, respectively.

6 Another example is Abdelkareem (2017) who maps flash flood risk for a specific catchment ("Wadi") in 
Egypt, using remote sensing data on rainfall, elevation, soil, and others.
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it might improve predictive performance. Instead, I explore heterogeneity in economic 
impact due to geography in Sect. 5.4.

4  Empirical Strategy

To develop an empirical strategy, we first need to consider the nature of the phenomenon 
studied, our variable of interest, and its relation with the outcome. The variable of interest 
is a binary indicator of whether, within a given month and a specific location, a rainfall 
episode was so extreme that there was likely a flash flood in the area. For identification, a 
Difference-in-Differences (DiD) setup with fixed effects is suggested—the panel structure 
of the data readily allows for the estimation of such a model with ordinary least squares 
(OLS). Three assumptions must be fulfilled for a causal interpretation of the effects: 
no anticipation effect, parallel trends, and linear additive effects. In the case of extreme 
weather events, these can be satisfied. Weather, especially extreme rainfall, is nigh impos-
sible to forecast for horizons longer than two weeks. There is seasonality in the likelihood 

Table 2  Summary statistics

Summary statistics of the final panel data. The top panel summarizes 
data for the observations with a flash flood, whereas the bottom panel 
does so for the other observations

Statistic Mean St. dev. Min Median Max

Flash flood cell × month observations (N = 150,065)
Night light 3.72 27.03 0.001 0.65 4442.77
Wind index 0.02 1.27 0.00 0.00 319.76
# Historical floods 8.00 1.85 1 9 10
Longitude − 78.75 8.17 − 91.95 − 77.35 − 60.05
Latitude 12.11 4.69 7.05 9.65 26.75
Year 2015.82 2.77 2012 2016 2021
Month 7.62 2.55 1 8 12
Elevation m 242.68 337.65 −0.52 113.31 3486.03
Terrain ruggedness 14.39 16.10 0.00 6.77 96.39
Forest area % 44.87 26.81 0.00 38.84 99.99
Built area % 0.94 3.38 0.00 0.17 84.22
Non flash flood cell × month observations (N = 1,403,071)
Statistic Mean St. dev. Min Median Max
Night light 6.52 63.19 0.001 0.53 7010.11
Wind index 0.01 0.79 0.00 0.00 327.47
# Historical floods 6.71 2.17 1 7 10
Longitude − 77.20 9.43 − 91.95 − 76.25 − 60.05
Latitude 13.06 4.81 7.05 11.25 26.75
Year 2016.31 2.74 2012 2016 2021
Month 6.20 3.50 1 6 12
Elevation m 331.30 480.71 − 0.52 131.38 3612.71
Terrain ruggedness 16.12 18.54 0.00 6.82 104.42
Forest area % 44.09 26.00 0.00 39.50 99.99
Built srea % 1.19 3.97 0.00 0.20 84.22
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of an extreme event, with seasons that are heavy in rain and seasons that are dry. Further, 
not all places bear the same risk: some areas close to mountains or in the path of persistent, 
high-moisture wind systems are more likely than others to experience extreme rainfall. 
Even then, knowing the underlying probability of extreme events in a location or during a 
specific time of the year does not allow us to predict the occurrence of a single event with 
sufficient confidence in weather forecasts. Reversing that argument means that, given loca-
tion and season, no further observable characteristics would lead to selection bias. Thus, 
there is a quasi-randomness in the occurrence of a flood that can be exploited to estimate a 
causal effect when controlling for observed differences in flash flood risk.

Some extreme rainfall episodes are likely attributable to tropical cyclones (TCs). 
Including the wind index derived in Sect. 2.4 separates the effect of TC wind damage from 
extreme rainfall. Similarly, there might be a spatial spillover of flood events across cells, 
including an index of floods in neighboring cells’ controls for potential spatial spillovers.8 
Assessing the dynamic response heterogeneity concerning geography or a country’s devel-
opment while controlling for the dynamics due to tropical storms and spillovers demands a 
model with clear serial correlation of the lagged indicators. Constructing impulse response 
functions (IRFs) would entail extrapolating from coefficient estimates at increasingly 
distant horizons. Instead, I use local projections introduced by Jordà (2005) and recently 
employed in the context of natural hazards by Naguib et  al. (2022) to study dynamic 
changes in night light due to tropical storms in India. Local projections are performed as a 
set of sequential regressions, where the dependent variable is shifted m steps ahead instead 
of introducing m lags of the flood indicator. An additional benefit of the local projection 
method is that it directly yields impulse-response functions with correctly specified confi-
dence bands. The specification I use is

Table 3  Logit regressions: SFF-indicator and geography

Standard-errors in parentheses. Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Results from a logistic regression of the binary indicator of confirmed flash floods on the flash flood indica-
tor derived in Sect. 2.2.2, elevation, a terrain ruggedness index (TRI) and % share of land use by area

Dependent variable Confirmed flash floods

Model (1) (2) (3)

(Intercept) − 2.5∗∗∗ (0.14) 0.59 (4.2) 0.87 (4.3)
FF-indicator 0.61∗∗ (0.29) 0.63∗∗ (0.30) 0.68∗ (0.41)
Elevation m − 0.0004 (0.001) − 0.0002 (0.001)
TRI − 0.01 (0.02) − 0.02 (0.02)
% Built area − 0.02 (0.05) − 0.006 (0.05)
% Cropland − 0.04 (0.09) − 0.04 (0.09)
% Grassland − 0.07 (0.06) − 0.08 (0.06)
% Forest cover − 0.02 (0.05) − 0.02 (0.05)
FF-indicator × builtmajority − 1.0 (0.86)
FF-indicator × agriculturemajority 0.82 (0.69)
Observations 935 935 935
Pseudo R 2 0.00760 0.02005 0.02844

8 The index of floods in neighboring cells is the sum of floods in cells with a common edge or vertex 
(queen type).
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where I run a series of m regressions where the coefficient �1 of the flood indicator fit asso-
ciated with regression m gives the effect of a flash flood on Δntlit+m , the cumulative growth 
in nightlights between t − 12 and t + m . Choosing growth relative to t − 12 instead of t − 1 
expresses growth relative to one year ago and allows for regressions at t − 1 , t − 2 , and 
t − 3 , which is indicative of the no anticipation assumption. Variables wnit and nflit are the 
TC damage index and the neighboring cell flood index, respectively. �1 gives us the effect 
of a 1% increase in economic damages due to TC winds and �1 the local effect for a flood 
event in a neighboring cell. �i are cell fixed effects, �t time fixed effects, �c are the country 
c specific linear time trends, and �pt the month of the year by province p fixed effect.9 This 
specification removes location and time-specific averages and allows for country-specific 
time trends and province-specific seasonality of night light growth, reducing the remaining 
variation to estimate the coefficients of interest and allowing for a causal interpretation.

The dependent night light variable requires some further discussion and modeling 
choices. Monthly emissions at night are the average of all daily measurements without 
cloud coverage. For approximately 6.3% of NASA’s Black Marble data in the study period, 
there is no cloud-free night in a month. Due to the much higher resolution of the night 
light compared to the rainfall data (0.25 to 6 arc-minutes or a 1 to 576 ratio of cells), the 
0.1◦ × 0.1◦ aggregates always provide a measure of night light emission but to a varying 
degree of accuracy due to cloud coverage. To account for that, I linearly down-weigh the 
panel data observations by the inverse of their share of cloud-covered Black Marble night 
light cells.

So far, little attention has been given to the error term. Neighboring cells likely affect 
the error term of the focal cell. With the current assumptions, such dependence is ruled 
out and potentially biases the estimation. Also, given the panel structure of the data, there 
is likely autocorrelation in the error term. To account for both, I use Driscoll and Kraay 
(1998) standard errors with an autocorrelation length of three months.

5  Results

Figure 4 shows impulse response functions from the model in Eq. 3 for a flash flood and a 
tropical storm. For both, leads up to t − 5 indicate no anticipation of night lights to the haz-
ard. A flash flood causes night light emissions to fall by around five percentage points over 
the course of the first five months after the incident. Then, they recover over the follow-
ing months such that their impact becomes insignificant. For tropical storms, the negative 
effect is immediate. For each 1 percentage point increase in the hurricane damage index, 
night light emissions fall by around 0.8% upon impact from which they also recover in the 
following months.

(3)
Δntlit+m = �1flit + �1wnit + �1nflit + �i + �t+

�ctimet + �pt(montht × provincei) + �it+m

9 The province is the level one administrative sub-unit for all countries but small island states, where the 
province is considered equal to the country. This yields a total of 282 provinces. Examples where the coun-
try equals the province include Saint Lucia and Martinique.
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5.1  Binary Versus Continuous Measurement

Section 2.2.2 discusses the difficulty in adequately measuring flash floods via a binary indi-
cator. To reduce the number of false positives, an IDF threshold exceedance in intensity 
of 2 mm/h is required in the definition of the indicator. An alternative to this informed but 
arbitrary cut-off is to use the threshold excess above the threshold instead of the binary 
indicator as a variable of interest. This reduces the weight of events barely over the thresh-
old, which are also more likely to be false positives.10 Changing the variable of interest 
in that manner comes at the cost of changing the interpretation of the findings to a less 
intuitive continuous variable. Figure 5 shows impulse response functions from the model 
in Eq. 3 where a threshold excess exit in mm/h is used instead of the binary indicator flit . 
Since the average excess is 3.9 mm/h, the estimated effect per 1 mm/h excess is smaller 
than in the binary case ( −1.5% compared to − 5%). The negative effect of a flash flood, as 
modeled by threshold excess, peaks again five months after the event. The IRF of the hur-
ricane destruction index is not affected.

5.2  Measurement Error

Another issue with the flash flood indicator, which only approximates the true incidence of 
a flash flood, is that it introduces measurement error in the form of false positives and false 
negatives. Because the indicator is a dummy variable, the measurement error is negatively 
correlated with the true variable, which results in what is referred to as non-classical meas-
urement error.11 Non-classical measurement error in the exogenous variable of interest is 
known to bias coefficient estimates (Pischke 2007).12 Modeling the flash flood incidence 
as continuous threshold excess likely reduces the severity of the measurement error but 
does not resolve it. The standard way of treatment is either by imposing additional assump-
tions to identify the parameters governing the bias or by using an instrumental variable 

Fig. 4  Local projection impulse response function for flash floods and tropical storms. Notes: Impulse 
response function of flash floods and tropical storms on night lights in percentage points. The black line 
plots the log-transformed coefficients with two-sided 95% confidence bands in blue. The regression model 
is as in Eq. 3 with Δntlit+m as the dependent variable

10 This is assuming that the likelihood of a flash flood increases with the extremeness in rainfall.
11 The continuous exit also suffers from non-classical measurement error since it still has a binary cut-off 
on one side.
12 Intersetingly, one of the earliest treatments of this issue in Aigner et al. (1973) was inspired by another 
paper that examines the socio-economic of a disease on the Caribbean island of St. Lucia.
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(Hsiao 2022). In the case of panel data, it has been shown that the data structure can be 
used for an instrumental variable approach without exogenous data and relatively mild 
assumptions (Griliches and Hausman 1986). Specifically, assuming that the measurement 
error is independently and identically distributed across units i and time t and the variable 
with measurement error xt is serially correlated, then one can use xt−1 as an instrument 
as long as T > 3 (Hsiao 2022). In the case of the flash flood indicator, it is unlikely that 
there is any deviation from the iid assumption across time, while Sect.  3 indicates that 
there is no deviation concerning geography. In addition, the linear correlation coefficients 
Cov(flit, flit−1) = 0.1726 and Cov(exit, exit−1) = 0.2236 are statistically significantly differ-
ent from zero.13

Figure 6 shows impulse response functions for flash flood rainfall excess and tropical 
storms where the flash flood excess exit is instrumented by exit−1 . In both cases, there is no 
evidence for anticipation in the periods before the hazard strikes. In the flash flood excess 
IRF, uncertainty increases compared to the case without IV in Fig. 5, but the general size 
and dynamic of the effect remain the same. The IRF of tropical storms remains unchanged, 
with an immediate negative effect short of − 1% that recovers in the following months, as 
expected.

To put these results into perspective, it is of interest to consider the correlation between 
the three variables of interest. The correlation between exit and wnit is positive but very 
small: cor(exit,wnit) = 0.004.14 This small correlation is partly driven by the much lower 
number of tropical storms compared to flash floods. The correlation between exit and exnflit 
is also positive and quite substantial: cor(flit,wnit) = 0.54 . This is owed to the much closer 
meteorological connection between the two variables.

5.3  Heterogeneity by Development

Evidence shows that flood events mainly affect low- and medium-developed countries 
(Loayza et al. 2012). The general development of a country could make households and 
firms more resilient directly or, similarly, be related to better insurance and government 
management of disasters. The human development index (HDI) is a summary measure 
of average achievement in key dimensions of human development and classifies coun-
tries into low, medium, high, and very high development.15 The HDI is calculated on the 
country level and available for virtually all states worldwide. Some Caribbean islands are 
overseas territories of larger countries, such as the USA (Virgin Islands, Puerto Rico), 
France (Guadeloupe, Martinique), or the Netherlands (ABC Islands), for which the HDI 
predominantly represents mainland development. Nevertheless, these Islands boast com-
paratively high development and are expected to be similarly impacted by a flash flood 
as other very high-development states in the region, such as the Bahamas or Panama. 

13 Pearson’s product-moment correlation suggests a 95% confidence interval of 
Cov(flit, flit−1) ∈ {0.171, 0.174} and Cov(exit, exit−1) ∈ {0.222, 0.225}.

14 Due to the large sample size, the correlation is nonetheless statistically significant. The 95% confidence 
interval is {0.0026, 0.0055}.

15 The HDI itself is often the subject of critique. For instance, it does not consider inequality directly. Still, 
it is a measure that, compared to GDP, is more resourceful in comparing development.
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Regressing an interaction between the HDI category as of 2021 and instrumented flash 
flood excess rainfall onto night light growth models potential heterogeneity in effect by 
country development16:

The HDI variable HDIlow,high is an indicator for countries with at least high develop-
ment, including very high HDI and territories of European countries or the USA, and 
countries with low or medium HDI.17 This splits the study region approximately in half, 
with 56% of the area falling into the low and medium HDI category, 44% into falls into 
the high and very high HDI category. Figure 7 shows impulse response functions from the 
model in Eq. 4 for flash flood excess rainfall, a tropical storm, and a flash flood in a neigh-
boring location. IRFs are, through the interaction terms, different for low and medium HDI 
and high and very high HDI. Comparing the resulting IRFs, we notice that (1) low and 
middle HDI countries drive the negative effect of flash floods, (2) the contemporary nega-
tive effect of tropical storms is driven by high and very high HDI countries, and (3) that 
there is a statistically significant positive spillover effect of a neighboring flood in low and 
middle HDI countries. In the case of a flash flood threshold exceedance, there is no statis-
tically significant effect for high and very high HDI countries, for both the directly effect 
locations as well as neighboring spillovers. In the case of tropical storms, the highly uncer-
tain IRF for low and medium HDI countries is peculiar. A possible explanation is that, for 
the study period, a much smaller number of tropical cyclones hit low and medium-develop-
ment countries such that the estimate is driven by two outlier hurricanes: Hurricane Mat-
thew hitting Haiti in 2016 and Hurricane Iota hitting Nicaragua in 2020. For high and and 
very high HDI countries, the cumulative hurricane damage index is more than 4 × larger 
and counts around 5 × more distinct storms such that any estimate is more precise and reli-
able. Still, a thorough investigation would be necessary to explain the origin of the tropical 
storms’ peculiar IRF in low and medium HDI countries.

5.4  Heterogeneity by Geography

The economic impact of a flash flood likely depends on local characteristics. These can 
include the share of built-up area, terrain ruggedness, or agricultural activity. In a steeper, 
more rugged topography, flood currents accumulate more force and a higher share of built-
up and urban area reduces the soil absorption capacity, potentially causing more detrimental 
impacts in case of a flood. Heterogeneity in effect by geography can be modeled via interac-
tion, similarly to Eq. 4 with the HDI. I run separate regressions for heterogeneity in topogra-
phy and heterogeneity in land use, respectively. For topography, I define four categories: flat 

(4)

Δntlit+m =�(exit × HDIlow,high) + �(wnit × HDIlow,high)

+ �(exnflit × HDIlow,high) + �i + �t + �ctimet

+ �pt(montht × provincei) + �it+m.

16 (exit × HDIlow,high) is instrumented by (exit−1 × HDIlow,high). . The neighboring floods are now also meas-
ured in terms of flash flood threshold excess in any neighboring locations, namely the sum of exceedances 
in neighboring locations exnflit , instead of being based on the binary indicator as before.

17 The only country with a low HDI is Haiti. Thus, I group it with countries with a medium HDI: Guate-
mala, El Salvador, Honduras, Nicaragua, and Venezuela.
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low elevation, rugged low elevation, flat high elevation, and rugged high elevation. A loca-
tion is low elevation if the average elevation is below 200 m above sea level, corresponding 
to the 0.61% quantile. A location is rugged if the terrain ruggedness index is above 10%, cor-
responding to the 56% quantile. The new discrete variable Topographyi takes the four values 
{low and flat, low and rugged, high and flat, high and rugged} and is interacted with exit,18

Full IRF curves for different topographies from the model in Eq. 5, for both the full sample 
and low and medium HDI countries only, are displayed in Fig. 9 in “Appendix”. It shows 

(5)
Δntlit+m =�(exit × Topographyi) + �1wnit + �1exnflit

+ �i + �t + �ctimet + �pt(montht × provincei) + �it+m.

Fig. 5  Local projection impulse response function for flash flood indicator excess intensity and tropical 
storms. Notes: Impulse response function of flash floods and tropical storms on night lights in percentage 
points. The black line plots the log-transformed coefficients with two-sided 95% confidence bands in blue. 
The flash flood impulse is excess intensity in mm/h on the binary flash flood indicator, and the tropical 
storm impulse is the tropical storm damage index. The regression model is as in Eq. 3 but with flash flood 
indicator intensity excess exit in mm/h instead of the indicator flit as the variable of interest

Fig. 6  IV local projection impulse response function for flash floods and tropical storms. Notes: Impulse 
response function of flash floods and tropical storms on night lights in percentage points. The black line 
plots the log-transformed coefficients with two-sided 95% confidence bands in blue. The flash flood impulse 
is the binary flash flood indicator, and the tropical storm impulse is the tropical storm damage index. The 
regression model is as in Eq. 3 but with exit that is instrumented with exit−1 to deal with non-classical meas-
urement error in exit under the assumption that the measurement error is iid across time and space but exit is 
serially correlated

18 (exit × Topographyi) is instrumented by (exit−1 × Topographyi).
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that the stronger impact of flash floods in low and medium development countries com-
pared to the full sample persists when considering heterogeneity by topography. The gen-
eral shape of the IDF curve is remarkably consistent as well, with a gradual increase of the 
negative effect reaching a maximum of four months post-flood that then recovers within 
the next months. Differences across topography are overall minimal and not significant. 
The case of rugged high elevation locations is a slight exception as they appear to be some-
what more negatively affected. Generally, topography does not matter.

For land use, I define three categories for locations dominated by built land (urban), by 
agriculture, or by natural land. A location is urban if 10% of the area is built, correspond-
ing to the 0.98% quantile. A location is agriculturally dominated if the share of grassland 
plus cropland is above 50%, corresponding to the 66% quantile. All other locations are con-
sidered to have predominantly natural land use, including forests, shrubs, or wetlands. The 
new discrete variable Landurb,agr,nat can be interacted with exit,19

Full IRF curves for different land uses from the model in Eq. 6, for both the full sample and 
low and medium HDI countries only, are displayed in Fig. 8 in “Appendix”. It is evident 
that the stronger impact of flash floods in low and medium development countries com-
pared to the full sample persists when considering heterogeneity by land use. The general 
shape of the IDF curve is remarkably consistent as well, with a gradual increase of the 
negative effect reaching a maximum of four months post-flood that then recovers within 
the next months. Differences across land use are minimal and not significant.

(6)
Δntlit+m =�(exit × Landurb,agr,nat) + �1wnit + �1exnflit

+ �i + �t + �ctimet + �pt(montht × provincei) + �it+m.

Fig. 7  Local projection impulse response function by human development index (HDI) for flash flood indi-
cator excess intensity, tropical storms and neighboring floods. Notes: Impulse response function of flash 
floods and tropical storms on night lights in percentage points. The black line plots the log-transformed 
coefficients with two-sided 95% confidence bands in blue. The regression model is as in Eq. 4. The flash 
flood excess intensity exit in mm/h, interacted with HDIlow,high , is instrumented with (exit−1 × HDIlow,high)

19 (exit × Landurb,agr,nat) is instrumented by (exit−1 × Landurb,agr,nat).
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6  Discussion

The analysis has five main findings. First, episodes of extreme rainfall that likely trigger 
flash flooding have a sizeable negative effect on economic activity as measured by night 
light emissions. Second, the dynamics after the flood differ from a tropical storm, the argu-
ably closest natural disaster commonly analyzed in economics. In the case of a flood, there 
is a slow onset of negative growth up to about months four and five before recovering in 
month ten. A tropical storm, in contrast, has a negative effect upon impact from where 
recovery is comparatively slower. This indicates that the two hazards’ destruction and 
influence on economic activity differ. The third main finding is that a country’s develop-
ment influences the average impact of flash floods. A flash flood’s estimated negative effect 
is driven by locations in low- and medium-developed countries. In addition, hurricane 
winds appear to have little effect on night lights in low and medium developed countries. 
Because the number of hurricanes in these countries was low during the study period and 
mainly driven by two outlier hurricanes, this tentative result should not be generalized and 
should be understood cautiously.20 Fourth, flash floods in neighboring locations have been 
explored. For low and medium developed countries, a positive spillover of flash floods 
in terms of night light growth can be found. While the positive spillover is around 2.5× 
smaller than the negative direct effect of a flash flood, it indicates the existence of regional 
economic interactions across locations that are affected by an event. However, the spillo-
ver effects are not statistically significant for the full sample. The last main finding is that 
geography, if aggregated into a larger unit of analysis, does not influence flash flood risk 
or flash flood impact within the region of Central America and the Caribbean. Neither for 
refining the extreme rainfall based indicator of flash floods nor for heterogeneity in effect 
did elevation, terrain ruggedness, or land use matter. However, geography might well be an 
indispensable component for analyzing the economic impact of flash floods in another set-
ting without spatial aggregation or by having a more climatically diverse study region (all 
of the study region is within the tropical climate zone).

To put the impacts of flash floods into perspective, we can compare the results with 
other studies on natural hazards such as hurricanes and urban floods. In the model with 
the excess flash flood threshold measure and IV for the whole study region, the effect of 
a flash flood peaks at 1.6% per mm/h in excess rainfall four months after the event. Since 
the average excess is 1.85, the average peak effect is a reduction in night light emissions 
of around 3%. The average storm reaches a damage index of 8.2 on average, which causes 
a reduction in night light of 6.1% and 7.4% in the month of the storm and the follow-
ing month, respectively. It follows that in this study, the average flash flood event is 2 × to 
2.5× weaker than the average tropical cyclone in terms of night light reductions. Ishizawa 
et al. (2019) investigate the impacts of hurricanes on monthly economic activity in a simi-
lar setup as this study via night lights for the Dominican Republic. Their estimated effect 
is highly dependent on storm intensity but is said to peak 9 months after impact and go 
to zero after 15 months. For the average storm, the effect peaks at about −7.5%, which is 
again 2.5× the effect of the average flash flood as estimated in this study. Kocornik-Mina 
et al. (2020) study floods in the context of cities and displacement due to flood risk. They 

20 In terms of research on the economic impacts of hurricanes, other studies that use longer study periods 
are, by design, more robust. However, the finding here substantiates the question of how a country’s devel-
opment influences hurricane risk.
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find that large floods “... reduce a city’s economic activity, as measured by nighttime lights, 
by between 2 and 8 percent in the year of the flood”. Since they estimate the effect in terms 
of yearly night light changes, their reduction between 2 and 8 percent is significantly larger 
than the average yearly effect found here. Equivalently averaging the point estimates of the 
12 months post-flood in the model with the excess flash flood threshold measure and IV, I 
find an average reduction of only 0.75% for the average event. Conceptually, their focus on 
large-scale urban floods should lead to more substantial impacts than the narrow notion of 
flash floods used here: flash floods constructed via the IDF-curve approach likely generate 
more small-scale events than the subset of floods with at least 100,000 people displaced 
and detailed inundation maps in the DFO data as in Kocornik-Mina et al. (2020).

Besides the effect size, we can also distinguish between the dynamics after a flash flood 
(delayed negative effect) and a tropical storm (immediate negative effect). To reconcile 
this difference, we need to consider the type of destruction each hazard brings. Strong 
winds from hurricanes directly destroy buildings and damage overland power lines.21 This 
destruction is immediately reflected in a lower night light emission and contrasts with the 
destruction brought by flash floods. While also destroying buildings, flash floods directly 
damage roads and other transportation structures which are only indirectly affected by hur-
ricane winds (Diakakis 2020). Since most roads are unlit in Central America and the Car-
ibbean, their destruction or deterioration does not directly cause night light emissions to 
fall. However, they hamper economic activity by increasing the cost of transporting goods 
and commuting to work (Hallegatte et  al. 2016). While there is little immediate impact 
on night light emissions in the short term, damaged roads hinder economic activity until, 
after some time, repair and reconstruction are completed. This could explain the results of 
flash floods’ lagged effect on night lights and that more developed countries with a higher 
quality infrastructure are less affected. However, a better understanding of how gaps in 
the transportation network in developing countries affect economic activity is necessary 
to substantiate this explanation. For one, work has to be done to understand how firms are 
affected when there is a flood in their vicinity. A fruitful route might be to consider specific 
industries, such as construction or manufacturing, separately.

The main strength of the paper, the construction of a flash flood indicator based on 
physical characteristics, is also its main weakness. On one side, it allows to flexibly and 
consistently define a hazard across multiple countries. This is the first study in econom-
ics to rigorously define localized flood events from rainfall data directly. Others, such as 
Cavallo et al. (2013) and Kocornik-Mina et al. (2020), rely on event databases that are not 
necessarily consistent across time or countries. At the same time, by not directly observing 
the hazardous event but rather inferring it from a decision rule related to rainfall charac-
teristics, I can not be certain to cover all events adequately. Strictly speaking, the results 
must be understood in terms of a rainfall event that likely causes some flooding in the area. 
Since the classification method has been calibrated on high-quality, exhaustive data for all 
flood events in Jamaica since 2000, it should perform well for the study region. However, 
extending the methodology to other regions or doing a global analysis requires appropriate 
calibration in each region (Hirpa et al. 2018).

Through empirical studies focusing on a specific type of natural hazard’s economic 
impact, we obtain a clearer picture of extreme weather’s and, in turn, climate change’s 

21 See the Saffir–Simpson Hurricane Wind Scale, which directly describes the damage to houses and the 
electricity infrastructure in its classification.
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influence on the economy. The flash floods investigated here are characterized by their fre-
quency, local occurrence, and the lagged dynamic reaction with a quick recovery. Other 
hazards do have different signatures on economic activity. With hurricanes, it has been 
suggested that their imprint on the economy is significant even several years afterward 
(Hsiang 2014), while droughts trigger specific migratory reactions (Kaczan and Orgill-
Meyer 2020). These findings could be assessed more formally and more thoroughly in a 
general equilibrium growth model that considers different natural disasters and their poten-
tial trajectories concerning climate change. There is a great need for such an undertaking: 
most integrated assessment models assume climate change impacts to be a single, non-
linear scalar of all outputs in all sectors in all locations. This omits practically all insights 
gained in the economic natural disasters literature. In conjunction with this neglect, it has 
to be noted that the uncertainty for climate change projections from economic growth is 
magnitudes larger than the uncertainty from the natural sciences. Thus, it is paramount for 
economists in the field to find precise, causal estimates for various channels through which 
climate change will impact the economy, natural disasters being one of them.

7  Conclusion

I study the dynamic effect of extreme rainfall events that lead to flash floods on local eco-
nomic activity measured by night light emission in Central America and the Caribbean. 
The average such event decreases local emissions by up to −5.6% in low and medium-
development countries, while there is little effect in higher-development countries. The 
results further suggest that floods cause a different dynamic reaction to hurricanes and 
other natural hazards. While tropical storms reduce night light emissions upon impact, 
flash floods have a delayed effect that gradually accrues over the following months before 
recovering. In the 12 months following a flash flood, the average effect of a flood in Central 
America and the Caribbean is only −0.75%, considerably lower than the effect of tropical 
storms or large-scale urban floods.

These findings have two main implications for policy. First, extreme rainfall episodes 
have a distinctly negative effect on economic activity in low and medium-developed coun-
tries. Before, the effect of extreme rainfall has often been masked by spatial or temporal 
aggregation. Since there appears to be little effect for higher-development countries, devel-
opment in key areas could be a way out. Future research has to be conducted to investigate 
what those key areas are and how one can induce resilience in lower-development coun-
tries. Second, because flash floods are such a high-frequency natural hazard with return 
periods of less than one year in many parts of the study region, they can have direct effects 
on a country’s economic development. In a warming and humid climate, extreme rainfall 
events are projected to increase in frequency and severity. I show that such an increase will 
likely impact the growth of developing countries in Central America and the Caribbean. 
Consequentially, the cost of future emissions should take this into account.
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Appendix

Wind Field Model

The model estimates the location-specific wind speed by taking into account the maxi-
mum sustained wind velocity anywhere in the storm, the forward path of the storm, the 
transition speed of the storm, the radius of maximum winds, and the radial distance to the 
storm’s eye. The model further adjusts for gust factor, surface friction, asymmetry due to 
the storm’s forward motion, and the shape of the wind profile curve. The source of storm 
data used is the HURDAT Best Track Data (Landsea and Franklin 2013). These 6-hourly 
track data are linearly interpolated to hourly observations. WINDcst , the wind experienced 
at any point i, during storm j at time t is given by:

where Vmst is the maximum sustained wind velocity anywhere in the storm, Tijt is the clock-
wise angle between the forward path of the storm and a radial line from the storm center to 
the ith cell of interest, Vhjt is the forward velocity of the TC, Rmjt is the radius of maximum 
winds, and Rijt is the radial distance from the center of the storm to point i. The remaining 
ingredients in Eq. (7) consist of the gust factor G and the scaling parameters D for surface 
friction, S for the asymmetry due to the forward motion of the storm, and B, for the shape 
of the wind profile curve.

In terms of implementing Eq.  7 one should note that the maximum sustained wind 
velocity anywhere in the storm Vmst is given by the storm track data, the forward velocity 
of the storm Vhst can be directly calculated by following the storm’s movements between 
successive locations along its track, the radial distance Rcst and the clockwise angle Tcst 
which are calculated relative to the point of interest c. All other parameters have to be 
estimated or values assumed. For instance, we have no information on the gust wind fac-
tor G, but a number of studies (see e.g. Paulsen and Schroeder 2005) have measured G to 
be around 1.5, and I also use this value. For S, I follow Boose et al. (2004) and assume it 
to be 1. While we also do not know the surface friction to determine D directly, Vickery 
et al. (2009) note that in open water, the reduction factor is about 0.7 and reduces by 14% 
on the coast and 28% further 50 km inland. I thus adopt a reduction factor that decreases 
linearly within this range as we consider points c further inland from the coast. Finally, to 
determine the shape of the wind profile curve B, I employ the approximation method of 
Holland (1980) where B is negatively correlated with central pressure and falls in the range 
of 1.5–2.5 (Xiao et al. 2011). I use the parametric non-basin-specific model estimated by 
Vickery and Wadhera (2008) to calculate the radius of maximum winds Rmst.

(7)

Vijt = GD

[

Vmjt − S
(

1 − sin(Tijt)
)
Vhjt

2

]

×

[

(

Rmjt

Rijt

)Bjt

exp

{

1 −

[

Rmjt

Rijt

]Bjt

}]1∕2
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Land Cover

Data on the land cover are from the Copernicus Global Land Cover Layers - Collection 
2 (Buchhorn et al. 2020). They provide global maps at a resolution of 100 m × 100 m for 
23 land cover classes (discrete classification) or alternative ten base classes for fractional 
classification. Classification accuracy is 80% for the discrete case. The base classes include 
built-up, permanent water, tree, and cropland cover, which is sufficiently detailed for this 
analysis. Consolidated maps are available for the years 2015–2018. The map from 2018 is 
used for all the analysis as the most recent consolidate.22 I use the fractional classification 
on the highest resolution before aggregating the fractions to the panel data cell level. That 
way, the fractional interpretation conserves its meaning.

Topography

Data on topography are from Amatulli et al. (2018). They provide a suite of global topo-
graphic variables at 1 km to 100 km resolution, namely elevation and terrain ruggedness. 
The terrain ruggedness index (TRI) is the mean of the absolute differences in elevation 
between a focal cell and its 8 surrounding cells. Elevation and TRI were gathered on the 
highest resolution of 1 km × 1 km, and then the average for each GPM/IMERG rainfall cell 
was calculated.

Heterogeneity IRFs

See Figs. 8 and 9. 

22 Arguably, land cover and flash flood severity are simultaneously and dynamically influencing each other, 
to some degree. Since no data is available for the whole study period, especially not on a monthly scale, 
the land cover data is static compared to rainfall or night light data. Note that the land cover data is only 
used for an exercise concerning heterogeneous effects for which the static picture of 2018 is likely a close 
enough approximation.
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Fig. 8  Local Projection impulse response function by dominant landuse for flash flood indicator excess 
intensity: full sample and low and medium HDI only. Notes: Impulse response function of flash floods in 
percentage points. The black line plots the log-transformed coefficients with two-sided 95% confidence 
bands in blue. The flash flood impulse is excess intensity exit in mm/h, interacted with Landurb,agr,nat , and 
instrumented with (exit−1 × Landurb,agr,nat) . The regression model is as in Eq. 6
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Fig. 9  Local projection impulse response function by dominant topography for flash flood indicator excess 
intensity: full sample and low and medium HDI only. Notes: Impulse response function of flash floods in 
percentage points. The black line plots the log-transformed coefficients with two-sided 95% confidence 
bands in blue. The flash flood impulse is excess intensity exit in mm/h, interacted with Topographyi , and 
instrumented with (exit−1 × Topographyi) . The regression model is as in Eq. 5
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