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Purpose: To explore the structural-functional loss relationship from optic-nerve-
head– andmacula-centred spectral-domain (SD) Optical Coherence Tomography (OCT)
images in the full spectrum of glaucoma patients using deep-learning methods.

Methods: A cohort comprising 5238 unique eyes classified as suspects or diagnosed
with glaucoma was considered. All patients underwent ophthalmologic examination
consisting of standard automated perimetry (SAP), macular OCT, and peri-papillary OCT
on the same day. Deep learning models were trained to estimate G-pattern visual field
(VF) mean deviation (MD) and cluster MD using retinal thickness maps from seven
layers: retinal nerve fiber layer (RNFL), ganglion cell layer and inner plexiform layer
(GCL + IPL), inner nuclear layer and outer plexiform layer (INL + OPL), outer nuclear
layer (ONL), photoreceptors and retinal pigmented epithelium (PR + RPE), choriocapil-
laris and choroidal stroma (CC + CS), total retinal thickness (RT).

Results: The best performance on MD prediction is achieved by RNFL, GCL + IPL and
RT layers, with R2 scores of 0.37, 0.33, and 0.31, respectively. Combining macular and
peri-papillary scans outperforms single modality prediction, achieving an R2 value of
0.48. ClusterMDpredictions showpromising results, notably in central clusters, reaching
an R2 of 0.56.

Conclusions: The combination of multiple modalities, such as optic-nerve-head
circular B-scans and retinal thickness maps frommacular SD-OCT images, improves the
performance of MD and cluster MD prediction. Our proposed model demonstrates the
highest level of accuracy in predicting MD in the early-to-mid stages of glaucoma.

Translational Relevance: Objective measures recorded with SD-OCT can optimize the
number of visual field tests and improve individualized glaucoma care by adjusting VF
testing frequency based on deep-learning estimates of functional damage.

Introduction

Glaucoma is among the leading causes of
irreversible blindness worldwide, with an estimated
prevalence of 3.5% in the population aged 40 to
80 years and an estimated number of over 110 million
people affected by 2040.1,2 In glaucoma, the progres-
sive demise of retinal ganglion cells (RGC) leads
to alterations of the retinal layers containing
RGC soma, axons, and dendrites, which can be
measured in the central retina or around the optic

nerve head using optical coherence tomography
(OCT). Functionally, loss of RGC leads to visual
field defects (i.e., scotomas), which follow distinct
development stages. These can be measured and
monitored using visual field testing. Perimetry has
several disadvantages, however. First, it is highly
subjective and depends strongly on the patient’s
concentration and alertness, generating highly variable
results. Second, it was estimated that finding visual
field defects using perimetry in glaucoma is only
possible when >50% of ganglion cells are already
missing.3
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Although OCT was initially used to diagnose
predominantly macular pathologies (age-related
macular degeneration, epiretinal gliosis, etc.), techno-
logical developments have yielded spatial resolu-
tions of 7 μm imaging coupled with automatic
retinal layer segmentation algorithms in modern
spectral-domain OCT (SD-OCT), it has now been
shown that localized (glaucomatous) defects of the
retinal nerve fiber layer (RNFL) can be recognized
reliably using SD-OCT even before visual field defects
become apparent in perimetry.4,5 Today, examining
the macula and the peripapillary RNFL using OCT
has found its way into routine clinical evaluation
for glaucoma. Given the drawbacks of perimetry
and the remarkably high resolution of modern SD-
OCT, it is reasonable to investigate whether objec-
tive measures recorded with SD-OCT can help in
the clinical setting to economize the number of
visual field tests or to help objectify visual field
tests.

Significant research has enhanced our comprehen-
sion of the link between structure and function in
glaucoma. Statistical or machine learning methods
have typically been used to quantitatively assess the
association between visual field (VF) measurements
and SD-OCT-derived structural measurements, result-
ing in varying levels of correlation depending on the
methodology, model assumptions, and available data.
Some studies have demonstrated a moderately high
correlation, whereas others have found no associa-
tion.6–8 Deep learning (DL) techniques have emerged
as a promising approach to deepen our understand-
ing of the structure-function relationship in glaucoma,
mainly because of their recent success in detecting and
predicting ophthalmic diseases.9,10 Current DL-based
methods use SD-OCT images as inputs to estimate VF
results and have shown promising functional estimates.
Christopher et al.11 used DL models based on RNFL
en-face images, achieving an R2 of 0.70 and mean
absolute error (MAE) of 2.5 decibels (dB) in predict-
ing MD for 24-2 VF tests. They also used DL models
from thickness maps from macular OCTs to predict
MD for 24-2 VF tests, achieving an R2 of 0.79 and an
MAEof 2.1 dB,12 as well as fromOCToptic nerve head
(ONH) en-face images and RNFL thickness maps,
obtaining an R2 of 0.70 and MAE of 2.5 dB.11 Park
et al.13 developed a DL architecture using a combina-
tion of macular and ONHOCTs to obtain a root mean
squared error of 4.70± 2.56 dB onMDprediction for a
cohort of 290 eyes. Yu et al.14 performed a longitudinal
study on 1678 participants, showing a beneficial contri-
bution to MD prediction (reduction of 0.06 dB of
median absolute error) when combining macular and
ONH scans with respect to macular scans only. As far

as we know, no existing literature currently explores the
structure-function relationship resulting from a combi-
nation of ONH circle and macular scans on a large
patient cohort and at a cluster MD level. Accordingly,
our research objective was to investigate whether deep
learning algorithms could be used to accurately predict
the visual field performance of glaucoma patients by
leveraging a combination of SD-OCT images obtained
from both the macula and the optic nerve head
regions.

The contribution of this work is twofold. First, the
VFMDprediction is improved thanks to the combina-
tion of macular and ONH OCTs. Second, MD evalu-
ation is refined and extended to specific visual field
clusters.

Methods

Cohort Description
In the University Eye Hospital Bern’s databank,

8598 OCT-VF triplets from 5238 eyes of 3119 patients
were located. The mean patient age was 62.7 ±
12.2 years, and the mean MD of SAP was −3.6 ±
4.3 dB. The distribution between the left and right
eyes is symmetrical, with each comprising 50.0% of
the total. The distribution of age, MD, and glaucoma
stage (GS)15 in the tested cohort of eyes are shown
in Figure 1 and Table 1.

All examinations and tests were performed at the
University Eye Hospital Bern, Inselspital, between
2010 and 2020. The results of a triplet of diagnostic
tests, all taken on the same day, had to be available
for analysis. This included standard automated perime-
try (SAP) performed using an Octopus 900 (Haag-
Streit, Köniz, Switzerland) and SD-OCTof themacula
and optic nerve head region (Spectralis OCT, Heidel-
berg Engineering, Germany). Excluded were those eyes
that suffered from an already-far-progressed glaucoma.
This included eyes with a global peripapillary RNFL<

50 μmbecause SD-OCT is unreliable to indicate further
changes below this critical border.16 Eyes with a visual
field mean defect above 23.1 dB or a best-corrected
visual acuity worse than 0.2 were not included in the
performed analysis because these are critical values
from a clinical perspective to perform visual field
tests reliably. Last, patients not meeting SAP reliabil-
ity scores (i.e., >20% false-negatives or false-positives
during SAP catch trials) or being under 40 years of age
were also excluded.

It is worth mentioning that typically VF testing is
not conducted in the presence of other ocular comor-
bidities. However, because of the size of the cohort,

Downloaded from tvst.arvojournals.org on 06/18/2024



Visual Field Prognosis From SD-OCTs TVST | June 2024 | Vol. 13 | No. 6 | Article 10 | 3

Figure 1. Cohort distributions of age, MD, and GS. (A) Cohort age distribution. (B) Cohort MD distribution. (C) Cohort GS distribution.

Table 1. Cohort Statistics

Triplets OCT-VF [-] 8598
GS 0 Triplets 526 (6.1%)
GS 1 Triplets 5478 (63.7%)
GS 2 Triplets 1691 (19.7%)
GS 3 Triplets 684 (8.0%)
GS 4 Triplets 219 (2.5%)

Eyes 5238
Patients 3119
Age (yrs) 62.7 ± 12.2
Laterality 50.0%

conducting a dedicated check on all included samples
was not feasible. Given these points, the probability of
occurrence of comorbidities in the cohort is considered
to be very low.

This study was approved by the University of Bern
ethics committee (KEK no.: 2022-01137) and followed
the tenets of the Declaration of Helsinki. Informed
consent was waived because of the retrospective design
of the study.

OCT Imaging

OCT recordings were performed using a Spectralis
OCT. The machine uses a confocal scanning laser
ophthalmoscope, obtaining approximately 40,000 A-
Scans/minute. The noise was reduced in the record-
ing by activating eye-tracking and setting the repeti-
tion rate of each line scan to 26 repetitions. Custom-
ary built-in recording algorithms of the OCT machine
automatically identified the optic nerve head and
macular regions of the eye fundus. This was then used
to record OCT line scans parallel to a line connecting
the center of the optic nerve head and the center of the
macula/fovea regions. The macula was then scanned
using 49 or 61 parallel horizontal B-scans capturing the

Figure 2. Clustered G pattern test points overlaid with ETDRS grid.

central 30× 30°. The peripapillary RNFLwas scanned
using a circular scan centered on the optic nerve head
center with a diameter of 3.5 mm.

Three different formats of SD-OCT recordings were
used in the study. The first was the 61-slice SD-OCT
(61 × 496 × 768 pixels) covering an area of 7.8 ×
1.9 × 9.2 mm, covering the complete Early Treat-
ment Diabetic Retinopathy Study (ETDRS) grid. The
second recording format was a 49-slice SD-OCT (49 ×
496× 512 pixels) covering an area of approximately 6.6
× 1.9 × 6.5 mm, fully covering the centered ETDRS
grid. The third was a 49-slice SD-OCT (49× 496× 512
pixels) covering an area of 5.9 × 1.9 × 5.8 mm of the
retina. The last scan format was only taken for further
analysis in the absence of better-fitting scans covering
the ETDRS grid.

SAP uses the G pattern17 to test the central 30°
of the visual field. OCT scans the central macular
region, which only covers parts of the area tested by
SAP (as demonstrated by the square image overlaid
in Fig. 2). The ETDRS grid only covers a region of
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Figure 3. Study workflow for baseline and DL models.

the area scanned by SD-OCT, extended for approxi-
mately 10° from the fovea (depicted by the black circle
in Fig. 2). Altogether, the ETDRS grid only covers
an area of the tested visual field in which a total
number of 13 test locations of SAP fall, as shown in
Figure 2.

Mean Defect and Cluster MD Prognosis
Models

We investigated two problems with significant clini-
cal impacts: the estimation of the MD and the estima-
tion of cluster MDs. Clusters are defined based on the
RNFL bundles’ entry into the optic disc.17 Clusters
are numbered from 1 to 10 in a counterclockwise
direction starting from the temporal location. Each
cluster is represented by a differently colored dot
in Figure 2. We evaluated a deep-learning approach
described below for both problems and compared it
to a baseline model composed of a linear regres-
sion model fitted on the retinal layer thicknesses,
averaged over the entire ETDRS grid in the case
of macular scans. Figure 3 illustrates our processing
pipeline.

Macular SD-OCTs were pre-processed using a
retinal segmentation algorithm18,19 to extract RNFL,
ganglion cell layer and inner plexiform layer (GCL
+ IPL), inner nuclear layer and outer plexiform layer
(INL + OPL), outer nuclear layer (ONL), photorecep-
tors and retinal pigmented epithelium (PR + RPE),
choriocapillaris and choroidal stroma (CC + CS) and
total retinal thickness (RT) segmentations. RT is equiv-
alent to the sum of all retinal layers and includes the
presence of intraretinal or subretinal fluid and pigment
epithelial detachment (PED), if any. Retinal layer
segmentations on the macula were exported as thick-
ness map images. The peri-papillary image obtained
from the ONH circle scan is used unsegmented. Both
imagemodalities are resized to a 224× 224 pixel image.

We then train one DL model for each retinal layer
thickness map and one model for the unsegmented
ONH scan. All model predictions are then combined
through linear regression to form a unique vectorial
or scalar value depending on whether the prediction is
made for MD or Cluster MD, as shown in Figure 4.
The macular-only model combines all models trained
on macular thickness maps. The combined model
merges predictions from all macular thickness maps
and the ONH scan. Data augmentation is applied as
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Figure 4. Training strategy for macular-only, ONH-only, and combined models.

random small rotations, and dropout is adopted to
avoid overfitting between training and validation data
sets. We use the first fold of the cross-validation set
to perform training and validation. We evaluate three
different network architectures: ResNet18, ResNet34,
and ResNet50, all pre-trained on ImageNet20 and
either partially frozen—up to layer 3, included—or
unfrozen. Models are trained for 50 epochs, tuning
the batch size, the learning rate, and the Adam
optimizer.

Evaluation of the DL Models

To test the adopted models, 10% of the obtained
groups of datasets were used. The remaining 90% of
the datasets were then used for training. The data were
stratified by the computedGS to ensure a similar distri-
bution of MD across the training and test data sets. A
nonoverlapping condition was enforced at the subject
level to avoid the presence of the same subject in both
splits. Detailed information is reported in Table 2. Two
metrics were used to offer complementary performance
insights:R2 value, which provides a measure unaffected
by value magnitude, andMAE, which estimates typical
error size.

We use the trained DL models to generate class
activation maps (CAMs)21 to highlight areas on the

thicknessmaps andONHB-scans thatmost impact the
model’s decisions. To perform this analysis, we adjusted
CAMs to accommodate regression issues by employ-
ing an expanded version.22 We measure the contribu-
tion of each pixel in the input images, and the result-
ing heatmap is superimposed on the macular thick-
ness maps and ONH B-scans to show which areas
of the retina are used model most for predictions.
CAMs were only calculated for the test dataset. Images
were manually selected to identify cases where the
model exhibited accurate or inaccurate predictions (see
Figs. 10–12).

The proposed model is compared to a baseline
model composed of a linear regression model fitted on
the layer thicknesses, averaged over the entire ETDRS
grid in the case of macular scans. The ETDRS grid is
composed of nine subfields, including a central field (C)
and eight other areas arranged around and named after
their distance and position with respect to the central
field (temporal inner and outer: T3, T6; nasal inner and
outer: I3, I6; superior inner and outer: S3, S6; inferior
inner and outer: I3, I6), as depicted in Figure 5.

ONH scans were pre-processed using the same
segmentation algorithm and averaged over the peri-
papillary region to obtain average thickness values for
each considered retinal layer. In total, we thus compute
7 (retinal layers on the macula) × 9 (ETDRS regions)
+ 7 (retinal layers on the ONH) = 70 segmentation-
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Table 2. Cohort Information on the Used Data Sets, Split by Training and Test

Training Set Test Set Full Data Set

Triplets 7738 860 8598
Eyes 4711 527 5238
Patients 2806 313 3119
Age (yr) 62.6 ± 12.2 62.9 ± 12.1 62.7 ± 12.2
Laterality 50.0% 50.0% 50.0%
Glaucoma stage 1.37 ± 0.82 1.37 ± 0.82 1.37 ± 0.82
MD (dB) −3.62 ± 4.28 −3.66 ± 4.30 −3.62 ± 4.28
Cluster 1 MD (dB) −2.74 ± 4.82 −2.84 ± 5.11 −2.75 ± 4.85
Cluster 2 MD (dB) −3.55 ± 5.50 −3.45 ± 5.31 −3.54 ± 5.48
Cluster 3 MD (dB) −4.05 ± 5.49 −3.87 ± 5.42 −4.03 ± 5.48
Cluster 4 MD (dB) −4.95 ± 5.86 −4.92 ± 6.09 −4.94 ± 5.88
Cluster 5 MD (dB) −3.57 ± 5.37 −3.44 ± 5.54 −3.55 ± 5.38
Cluster 6 MD (dB) −3.00 ± 5.03 −3.15 ± 5.47 −3.01 ± 5.07
Cluster 7 MD (dB) −3.65 ± 5.10 −3.79 ± 5.18 −3.67 ± 5.11
Cluster 8 MD (dB) −3.68 ± 5.31 −3.75 ± 5.25 −3.69 ± 5.31
Cluster 9 MD (dB) −3.40 ± 5.11 −3.32 ± 5.07 −3.33 ± 5.10
Cluster 10 MD (dB) −2.74 ± 4.53 −3.16 ± 5.16 −2.78 ± 4.60

Figure 5. ETDRS grid fields used as inputs for the baseline model.

based morphological features per triplet. The training
procedure for those models is based on a grid search
evaluated on a fivefold cross-validation.

Results

MD Prediction

Among the deep learning models considered for
this study, the ones providing the overall best perfor-
mance are Resnet18 architectures for macular thick-
ness maps and Resnet50 for ONHOCT scans. The best
performance was obtained with models pre-trained on

ImageNet and freezing the first three layers to control
overfitting, with a batch size of 8 and a learning rate of
10−4. Figure 6 depicts the truth-prediction plots for all
the models trained on individual thickness maps. The
retinal layers achieving the best performance in MD
regression are RNFL, GCL + IPL, and RT, with a
regression score of 0.37, 0.33, and 0.31 and a MAE
of 2.41, 2.42, and 2.50, respectively. Figure 7 shows
the ground truth-prediction plots obtained consider-
ing macular thickness maps, peri-papillary scans, or a
combination of the two. The best predictions based
on macular thickness obtained R2 = 0.41 (MAE =
2.33 dB), on peri-papillary scans R2 = 0.41 (MAE
= 2.22 dB) and combined macular and peri-papillary
scans R2 = 0.48 (MAE = 2.16 dB).

Figure 8 compares the best results obtained with
Resnet with a baseline regression model. Our proposed
method outperformed the baseline model for macular
scans (R2 = 0.41 vs. R2 = 0.24, MAE = 2.33 dB vs.
MAE = 2.72 dB), peri-papillary scans (R2 = 0.41 vs.
R2 = 0.16, MAE = 2.22 dB vs. MAE = 2.90 dB), and
combined scans (R2 = 0.48 vs. R2 = 0.28, MAE =
2.16 dB vs. MAE = 2.66 dB).

When assessing the combined model across various
glaucoma stages, it demonstrates its strongest perfor-
mance in predicting early and moderate glaucoma (GS
1 and 2). However, its performance diminishes for both
GS 0 and severe glaucoma cases (GS > 2). Additional
information and insights on this point can be found
in Figure 9 and Table 3.
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Figure 6. Scatterplots showing the correlation between measured values and deep learning G-pattern visual field (VF) mean deviation
(MD) estimates. Resnet18 trained on specific retinal macular thickness maps. The red band highlights the ±2 dB region. (A) retinal nerve
fiber layer (RNFL). (B) ganglion cell layer and inner plexiform layer (GCL+ IPL). (C) inner nuclear layer and outer plexiform layer (INL + OPL).
(D) Outer nuclear layer (ONL). (E) photoreceptors and retinal pigmented epithelium (PR + RPE). (F) choriocapillaris and choroidal stroma
(CC + CS). (G) retinal thickness (RT).

Contributors to the Final Prediction

To better understand how different features
contribute to the final MD estimation, informative
image regions are shown by overlaying CAMs on the
input image (see Figs. 10–12). The results show retinal
layers with the highest R2 scores, along with ONH
B-scans. Images of retinal thickness maps, unseg-
mented ONH scans, and CAMs that correspond to
MD estimations of G-pattern VF are presented as
examples, including both GS 0 and glaucomatous eyes.

Predicting Cluster MD

The computation of MD was extended to different
region clusters related to glaucoma to identify regions

of variability in model performance across the visual
field. Table 4 and Table 5 list the regression score and
MAE for baseline and deep learning models trained
with information from the macula and ONH scans.
This result is also visualized in Figure 14.

Figure 15 depicts the single contributions of
macular and optic disc information to the overall
regression performance of the combined model. ONH
circle scans contribute toMDpredictions in the periph-
eral visual field regions, specifically in the inferior and
nasal regions, where the increase in regression score
obtained by integrating ONH-based predictions in the
model is quantified in 0.13 for cluster 6. For the predic-
tion of MD in clusters 1, 2, 9 and 10, the combined
model relies solely on the information related to the
retinal layers on the macula. When estimating cluster
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Figure 7. Scatterplots showing the correlation between measured values in decibels and deep learning estimates of G-pattern VF mean
deviation (MD). (A) Macula-based predictions. (B) ONH-based predictions. (C) Combined predictions.

Figure 8. SummaryMAE and R2 for the baseline linear regressionmodel and ResNet onMDprognosis. ResNet18was used formacula scans,
and ResNet50 was used for ONH circle scans. Combined models were obtained by linear combination of single predictions.

MD, our combined DL approach showed the best
results in predicting central clusters, achieving an R2

value of 0.56 (MAE, 2.1 dB) for MD on cluster 9,
located in the central-temporal visual field region.

Discussion

Accurate estimation of visual function from struc-
ture can improve individualized glaucoma care by
allowing clinicians to adjust the frequency of VF
testing using DL estimates of functional damage. VF
testing can be expensive, time-consuming, and produce
variable results, leading to multiple tests and delayed
diagnosis of glaucoma. Accurate estimation of visual
function from SD-OCT imaging can identify disease
earlier and determine progression faster, enabling

individualized VF testing frequency and reducing the
overall need for VF tests. DL models can estimate
changes in VF results and postpone or recommend
further testing, providing cost savings and standard
metrics for monitoring patient visual function while
reducing reliance on VF testing.

The proposed DL method accurately estimated G-
pattern VFMD using macula-centered SD-OCT scans
and ONH circular scans, outperforming estimates
based on linear regression mean layer thicknesses.
Specifically, in assessing G-pattern VFs, our combined
DL approach showed an R2 value of 0.48 (MAE =
2.16 dB) for MD. Individually, the macular RNFL
and GCL + IPL layers and the whole macula thick-
ness showed the highest performance in estimating G-
pattern MD. PR + RPE and CC + CS were the worst-
performing layers. As explained in themethods section,
the macula-combined model included a linear regres-
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Figure 9. Boxplots related to sample-wise absolute error of our
best model across different GS values. Red line depicts MAE perfor-
mance across the GS spectrum. Metrics computed on the test set.

Table 3. MAE Values Across Different GS Values

GS 0 1 2 3 4

MAE (dB) 2.47 1.42 2.32 5.53 8.08
Metrics computed with our best model on the test set.

sion step that contributed to an increase in perfor-
mance compared to the single macular retinal layers
taken individually. However, the best performance
obtained from RNFL (R2 = 0.37, MAE = 2.41 dB)
did not differ substantially from the macula-combined
model performance (R2 = 0.41, MAE = 2.33 dB).
This suggests that layers may contribute different infor-
mation regarding function in glaucoma, among which
macular RNFL is the highest. The total retinal thick-
ness was among the three most informative layers in all
cases, as depicted in Figure 6. The retina contains infor-
mation about several additional layers not typically
monitored in glaucoma. Combining the macula infor-
mation with optic nerve head scans proved beneficial
(0.07 on R2, −0.16 dB on MAE).

Figure 8 summarizes the findings described so far:

1. Deep learning outperforms the baseline model
built on ETDRS average thickness values. The
higher complexity and information in the features
mainly explain such results.

2. Higher model complexity and added information
contained in macular and peri-papillary images
with respect to scalar thickness and volume values
are the main factors contributing to a perfor-
mance increase.

3. Combining ONH and macular information of
the eye retinal structure proves beneficial for all
models considered in the current study regarding
regression score and mean absolute error.

Moreover, in the comprehensive evaluation of the
model performance across diverse stages of glaucoma,
it shows its best performance in the prediction of early
and moderate glaucoma (GS 1 and 2). However, its
effectiveness diminishes notably in instances involving
both glaucoma suspects and those afflicted with severe
glaucoma.

It is plausible that these observations reflect
the clinical understanding of the structure-function
relationship in glaucoma. It’s worth noting that they
also could be explained by differences in dataset sizes
among glaucoma stages, potentially providing more
training data (Table 1) for stages where the model
performs better. However, this remains a hypothesis
and is not definitively established.

We used CAM techniques to locate the regions of
thickness maps the DL models used for their estima-
tions, which helped us comprehend their function-
ing. They provided examples of RNFL and GCL
+ IPL thickness maps, ONH scans, activation maps,
and the corresponding VF outcomes. The CAMs
conducted on ONH Bscans indicated that for mid-
severe and early-stage glaucoma, the peri-papillary CC
+ CS and RNFL layers played a crucial role in MD
prediction, as shown in the CAMs in Figure 13. The
CC+CS layer is rarely mentioned as a biomarker for
VF damage or a layer used in glaucoma manage-
ment. However, there is evidence in the litera-
ture that choroidal structural changes in glaucoma
are increased for patients with open-angle, normal-
tension, and pre-perimetric glaucoma and are not
necessarily associated with central retina dysfunc-
tion.23–26

The baseline model, trained using retinal layers’
average thickness on the macula and ONH, yields low
regression scores and cannot differentiate functional
loss among clusters. The reason is likely because of
the highly condensed information represented by the
input features. On the other hand, DL outperforms the
baseline model for all the clusters. However, it performs
poorly towards the peripheral clusters, especially in
the superior, inferior, and nasal regions. The higher
regression score is explained by the spatial information
contained in ONH images with respect to average layer
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Figure 10. Eye with severe glaucoma. Actual MD: −22.20 dB. Predicted MD: −16.18 dB. (A) Measured total deviation [dB] from VF exami-
nation. The red box shows an overlapped OCT scan region. (B) CAM of RNFL thickness map. (C) CAM of GCL + IPL thickness map. (D) CAM
of ONH circle scan.

Figure 11. Eye with mid glaucoma. Actual MD:−8.00 dB. Predicted MD:−6.98 dB. (A) Measured total deviation [dB] from VF examination.
Red box shows overlapped OCT scan region. (B) CAM of RNFL thickness map. (C) CAM of GCL + IPL thickness map. (D) CAM of ONH circle
scan. Activation present in temporal region.

thickness values used as input for the baseline model.
As expected, the central fields achieve the highest
regression score, with the outer clusters (4 to 7) being
the worst. Clusters 1 and 10, despite being in the center
region of the visual field and fully covered by the
macular OCTs, are less predictable than the surround-
ing clusters.

Several groups have previously applied DL strate-
gies to estimate VF outcomes, achieving results similar
to those of the current study, proving that regression
performance strongly depends on the MD distribution
of the study cohort. Christopher et al.12 used thick-
ness maps of retinal layers on the macula to predict
24-2 VF MD. They performed well (R2 = 0.79) on a

cohort with a mean MD = −4.5 dB. They also showed
how the prediction performance decays (R2 = 0.28) in
cohorts including early-glaucoma cases (mean MD =
1.3 dB). Considering these results, our method shows
good performance (R2 = 0.48) on a cohort including
glaucoma suspects, early-, mid-, and severe-glaucoma
stages (mean MD = −3.6 dB) on a broader VF test
pattern than the cited studies.

Some limitations to this study need to be consid-
ered when considering our results. First, it relied on
automatically extracted layer segmentations to gener-
ate thickness maps to use as input for the DL models.
This means the models can be sensitive to segmen-
tation errors, with erroneous segmentation leading to
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Figure 12. Eyewith early glaucoma. Actual MD:−0.60 dB. PredictedMD:−1.80 dB. (A) Measured total deviation [dB] from VF examination.
Red box shows overlapped OCT scan region. (B) CAM of RNFL thickness map. (C) CAM of GCL + IPL thickness map. (D) CAM of ONH circle
scan.

Table 4. R2 Score of Cluster MD Prediction for Baseline and Deep Learning Models

Cluster 1 2 3 4 5 6 7 8 9 10

Baseline 0.27 0.30 0.24 0.18 0.09 0.12 0.18 0.25 0.34 0.25
Deep Learning 0.44 0.50 0.47 0.28 0.21 0.27 0.36 0.46 0.56 0.41

Table 5. MAE (dB) of Cluster MD Prediction for Baseline and Deep Learning Models

Cluster 1 2 3 4 5 6 7 8 9 10

Baseline 2.77 3.00 3.35 4.24 3.86 3.40 3.28 3.19 2.80 2.76
Deep Learning 2.36 2.33 2.69 3.94 3.38 3.00 2.90 2.64 2.12 2.34

inaccurate estimates. It should be noted that the quality
and segmentation of the images could not be reviewed
manually due to the amount of collected data. Another
area for improvement is the unknown generalizability
of the results presented to other populations. Gener-
alizability of the DL models to external datasets was
not possible due to the high specificity of the dataset
used for this study. The study population collected may
not be representative of other datasets in terms of
age, race, collection protocols, or some other unknown
confounding variable, and themodelsmay have learned
structure-function relationships specific to these data.
Macular inputmodalities present high heterogeneity of
the portion of the macula covered by the scans. The
variation of the amount of macula captured during
acquisition affects both training performance and the
degree of overlap with the visual field. Also, the G-
pattern for visual field testing is very large and estimat-

ing the functional information over such an extended
region is challenging. An alternative could be to use a
narrower pattern (i.e., 24-2), which may improve the
estimation performance because of a higher overlap
between structural and functional information.

The rationale behind using thickness maps for
macular OCTs and unsegmented images for ONH
OCTs lies in the intricacy and multidimensionality of
unsegmented macular volumes. These volumes contain
a vast amount of data, necessitating complex models
to identify significant patterns effectively—a level of
complexity beyond the scope of the current study.
Thus, to streamline the data and facilitate model inter-
pretation, the decision was made to reduce the infor-
mation in macular OCT volumes through segmenta-
tion preprocessing, ultimately utilizing thickness maps
as model inputs. It is worth noting that this approach
was not required for ONH scans because they are
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Figure 13. CAMs overlaid on representative peri-papillary scans for different glaucoma stages. The same color scale was used for all CAMs.

Figure 14. Regression score for cluster MD prediction. Comparison between linear regression baseline model and the proposed method.
(A) Baseline model. (B) Deep learning model.

acquired in single-B-scan mode. Additionally, apply-
ing a preprocessing step to ONH scans would yield
a thickness vector for each considered layer in the
study. Hence, unsegmented image data sufficed for
ONH scans, eliminating the need for segmentation
preprocessing. Our future work will investigate using
unsegmented macular scans to reduce the reliance on
segmentation as a preprocessing step.

This study proposed a DL algorithm to investi-
gate the structure-function relationship in glaucoma
patients. We showed that using our DL approach
to extract relevant information from OCT images
could lead to new biomarkers for clinical decision-
making and improve personalized patient care. DL-
based estimates proved to be accurate in determin-
ing functional loss based on VF metrics, with model

Downloaded from tvst.arvojournals.org on 06/18/2024



Visual Field Prognosis From SD-OCTs TVST | June 2024 | Vol. 13 | No. 6 | Article 10 | 13

Figure 15. Comparison between regression score on cluster MD achieved by macula and ONH information, relative to combined perfor-
mance. (A) Regression score of macula-based prediction. (B) Regression-score of ONH-based prediction. (C) Difference in regression score
betweenmacula-basedandONH-basedprediction.Greenareas indicate ahigher regression score formacula-basedprediction. (D) Contribu-
tion ofmacula-based prediction to ONH-based prediction, expressed in terms of regression score. (E) Contribution of ONH-based prediction
to macula-based prediction, expressed in terms of regression score.

accuracy depending on the severity of functional loss
as supported by our results and the existing litera-
ture. These techniques offer clinicians a more precise
way of estimating function from SD-OCT images and
tailoring the frequency of VF testing to each patient’s
needs. Therefore, given the widespread use of SD-OCT
imaging in glaucoma care, it is crucial to take advan-
tage of DL to extract as much relevant information as
possible from the images.
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