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PatchSorter: a high throughput deep
learning digital pathology tool for object
labeling
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The discovery of patterns associated with diagnosis, prognosis, and therapy response in digital
pathology images often requires intractable labeling of large quantities of histological objects. Herewe
release anopen-source labeling tool, PatchSorter,which integratesdeep learningwith an intuitiveweb
interface. Using >100,000 objects, we demonstrate a >7x improvement in labels per second over
unaided labeling, withminimal impact on labeling accuracy, thus enabling high-throughput labeling of
large datasets.

The increasing digitization of routine clinical histology slides into whole
slide images (WSI) has spurred great interest in the development of WSI-
based biomarkers for diagnosis, prognosis, and therapy response1–3. These
biomarkers are typically based on patterns associated with the location and
type of individual histologic objects (e.g., cells—lymphocytes/epithelial;
glomeruli—globally sclerotic (GS)/non-sclerotic (non-GS/SS)/segmentally
sclerotic (SS); tubules—distal/proximal; tumor buds—present/absent).
While current hardware and machine learning algorithms can locate and
type objects at scale, the manual assignment and review of large labeled
datasets used to train or validate models remains arduous. For example, a
single WSI may contain over 1 million cells, which, if requiring a modest
1 second per cell to label, would result in ~12 non-stop days of effort. To aid
experts (e.g., pathologists) in this labeling process, several image analysis
algorithms have been proposed4–9. However, these algorithms tend to either
(a) not be integrated into polished, user-friendly tools, making them
unsuitable for usage by domain experts, or (b) are of a closed source, for-
profit nature, creating a barrier to their broad usage, whichpotentially limits
their continuous improvement via the facile integration and evaluation of
new algorithms10 (Supplementary Table 1).

Appreciating the need for an open-source force multiplier for labeling
histological objects, we here describe and make available to the community
PatchSorter (PS). PS is a user-friendly, browser-based tool, which allows the

user to leverage deep learning (DL) to quickly review and apply labels at a
group, as opposed to a single object, level (Fig. 1).Wedemonstrated that this
“bulk” labeling approach improves labeling efficiency across four use cases,
spanning three levels of increasing object complexity (i.e., objects comprised
of increasing number of cells and cell types) (Table 1).

PS enables labeling speed improvements by using DL-derived features
to embed patches containing the object of interest (e.g., glomeruli) into a
two-dimensional embedding space, such that similarly presenting objects
are proximally located. The user then reviews patches within a localized
region that are likely to correspond to the same class, thus enabling the
assignment of labels in bulk (i.e., assignment of the same label to multiple
objects at once) with increased efficiency. The DL model and associated
embedding space is then iteratively refinedwith the user’s feedback, yielding
improved class separability, further improving subsequent labeling effi-
ciency (Supplementary Figs. 1, 2).

To evaluate this improved efficiency, a labels per second (LPS) metric
was compared between PS and an unaided approach, Quick Reviewer (QR,
see Methods)11, across four use cases (Table 1, see Methods) totaling over
120,000objects.QRwasused to label a randomsubset of thedata to estimate
manual LPS (LPSM) per use case. Efficiency improvement was measured as
the ratio (θ) between PS’s LPS (LPSPS) and LPSM. To ensure labeling effi-
ciency improvements did not come at the cost of label fidelity, concordance
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betweenQRandPS-assigned labels wasmeasured. Labeling for all use-cases
was conducted by board-certified pathologists, after having received an
introduction to the PS and QR user interfaces.

These results indicate that (a) PS provides sizable efficiency improve-
ments in labeling objects of all levels of cellular and structural complexity,
while (b) not coming at the cost of a loss of labeling accuracy (Table 1).

Interestingly, differences remain in labels generated via PS and QR. This
difference can be at least partially attributed to label uncertainty related to
ambiguous objects, wherein labeling is likely to suffer from inter/intra-
observer variability (Supplementary Figs. 3–6).

The usage of PS appears to proceed in two distinct workflows: (a) rapid
bulk labeling on the periphery of the embedding space where objects with
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more obvious labels tend to be grouped and (b) slower intricate labeling at
the interface between classeswhere object labels tend to bemore challenging
to determine. Notably, these challenging data points often drive improved
class separation. As such, our suggested best practice is to alternate between
the two workflows: (1) when class separation is high in the embedding plot,
the operator should focus on bulk labeling, while (2) if class separation is
low, labeling should be performed at the interface between classes. This
interface labeling should result in improved class separation in the next
embedding iteration, thus facilitating again bulk labeling (Supplementary
Fig. 1).

The transition point between these two workflows appears to be use-
case specific (Fig. 2). While in the nuclei use-case labeling speed improves
withDL training, in the glomerular use case, amore time-consuming careful
evaluation is required throughout the task, due to the difficult nature of
differentiating between transitioning classes (e.g., SS with small areas of
scarring mimicking non-GS/SS or with extensive segmental sclerosis
mimicking GS).

From a usage perspective, after PS installation, no internet connection
is required, enabling its use in clinical environments where data may not be
anonymized. PS canbe installed locally on commoditydesktops or deployed
on servers for remote access by experts (i.e., bringing the expert to the data),
as datasets become too large to quickly transfer and clinical environments
further restrict the installation of third-party software. While PS has been
validated in this study on hematoxylin and eosin (H&E) and periodic acid-
Schiff (PAS) staining, given the DL-based back end, PS can be considered
agnostic to stain type and be used with any stain, image, or object type.

In conclusion, PS is a user-friendly, high-throughput object labeling
tool being publicly released for community usage, review, and feedback. PS
has demonstrated significant improvement in efficiency in object labeling in
the hands of domain experts without sacrificing labeling accuracy. The
source codeofPS is freely available foruse,modification, and contributionat
www.patchsorter.com.

Methods
PatchSorter workflow
PS abstracts the concept of use cases by allowing the user to create a separate
project per use case in a single PS instance. PS manages projects as fully
independent entities, keeping track of project-specific model weights,
images, and object labels. This added level of abstraction also has the
advantage that it creates a unified PS workflow (see Supplementary Fig. 2)
on a project and, therefore, also use case level. For each use case then,
following the PS workflow, images containing regions of interest (ROIs)
from multiple WSI were uploaded to PS together with a corresponding
segmentation mask highlighting object location. PS then extracts patches,
with user-configurable patch sizes, around the center of these objects to
create an internal database for high-speed training. While a number of
different self-supervised approaches are supported by PS (e.g.,
BarlowTwins12 and AutoEncoder13), a SimCLR14 using a ResNet1815 back-
bone was trained using contrastive loss, creating a use-case-specific DL
feature space. Feature vectors are computed for eachpatchusing this learned
feature space, and are subsequently embedded using uniform manifold
approximation and projection (UMAP)16 into two dimensions. As a result
of this process, objects which look the same tend to be plotted near each
other in the embedding plot. This allows the user to lasso regions on the

embedding plot and provide the label for the selection in the grid plot
(Fig. 1a). Asmore objects are labeled, PS is increasingly able to learn amore
discriminative feature space for the categories of the specific task, by fine-
tuning the self-supervisedDLmodel on the newly provided labels in a semi-
supervised fashion via the inclusion of an additional cross-entropy super-
vised loss function. As a result, subsequent iterations should demonstrate
improved localized clustering “purity” (i.e., objects in the same cluster have
the same label). This approach has two consequences, (a) the user can avoid
intractably manipulating individual objects and instead provide bulk
annotations to groups of objectswith a single input, and (b) as theDLmodel
(and thus the embedding space) is refinedwith the user’s feedback, the user
can begin to see regions in the 2d space, where the underlying model is
struggling to differentiate between class-types. The visibility of such regions
affords the user the opportunity to better invest their time in selecting
objects that, when labeled are most likely to further improve class separ-
ability in the next iteration, which in turn further improves subsequent
labeling efficiency.

To facilitate the efficiency of this bulk labeling process, features from
modern operating systems were implemented, such as drag-select and
numerous intuitive keyboard shortcuts for (a) selecting all objects, (b)
inverting the selection, as well as (c) changing the desired label (e.g., “1”
selects the first class). If specific objects of interest are sought, PS provides
content-based image retrieval, wherein the user may upload a patch of the
object of interest, and similar objects fromthedatasetwill appear for labeling
within the standard workflow. PS was designed in a decoupled, modular,
manner such that its backend technologies can easily be exchanged to
evaluate different DL technologies, with minimal modifications to the base
application. To ease integration with other workflows and pipelines, the
output of PS is highly portable: mask images with color indicating class
membership (Supplementary Fig. 1d). For more advanced users, the
internal database can be directly employed in common downstream tasks,
such as training large custom DL models. It is important to note, that the
user retains full control over the accuracy of object labels at all times, and
only confirmed labels are stored. Usefully, these newly generated ground
truth labels (as well as predicted labels), can be visualized through PS for
rapid tile-level review, wherein individual object labelsmay still bemodified
as needed (Fig. 1e).

Manual unaided baseline efficiency estimation
Quick Reviewer (QR)11, an open-source object labeling tool, was employed
as the unaided baseline approach for comparison against PS. QR is a simple
web-based framework which presents an image patch to the user, one at a
time, and collects their label determination via a button click. It should be
noted thatQRalreadyoffers notable efficiency advantagesover trueunaided
manual object labelingpipelines, as objects are directly presented to the user,
which obviates the time-consuming process of (a) finding specific objects in
WSIs and (b) transitioning between different WSIs. As such, QR times can
be considered optimistic as compared to a “fully” unaided approach, which
are increasingly becoming less common in practice.

Metrics for evaluating PS efficiency improvement
For comparing PS toQRwe introduce a labels per second (LPS)metric. For
each of the 4 use cases described below, QR was used to label a random
subset of the data to estimate LPS and extrapolate manual LPS (LPSM) for

Fig. 1 | PatchSorter user interface. a The embedding plot after initial embedding
(left) with the corresponding grid plot (right). The two-dimensional embedding plot
places patches with the same deep-learned features in close proximity, causing
objects with the same object class to cluster. The user lassos points (black contour
with green arrow), which then appear in the grid plot for labeling using efficient
keyboard shortcuts. In the embedding plot, a subset of patches can be overlaid to aid
in selecting regions in the embedding space (orange arrow). b The embedding plot
allows for coloring patches by prediction and ground truth (purple arrow). The
embedding plot shows the same dataset as (a) after eight model iterations where the

embedding space is well separated by ground truth labels. Hovering over a point in
the embedding space shows the corresponding patch (red arrow). c Grid plot col-
oring shows current predictions and ground truth. The inner square color represents
ground truth while the outer square color represents model prediction, with black
indicating that the patch is not yet labeled. Right-clicking on a patch in the grid plot
shows a larger region of interest (ROI) for context (green arrows). d From the image
pane, prediction and ground truth labels can be visualized (blue arrow) in the output
reviewer. e Here, object labels can be updated via a right click on the object (yel-
low arrow).
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the entire dataset. For PS, we measure LPS in total time and human time
(LPSPS). The difference between human time and total time is the inclusion
ofmodel training andpatch embedding in total time,while it is removed for
human time, as the human reader can be dismissed to perform other non-
labeling related tasks. Efficiency improvement is thenmeasured as the ratio
(θ) between LPSPS and LPSM. To ensure these labeling efficiency
improvements did not come at the cost of unacceptable fidelity loss, the
subset of data manually labeled is quantitively compared using the con-
cordancemetric to the labels produced via PS. Given a set of objects labeled
inbothQRandPS,wemeasure the concordancemetric as thepercentage of
objects in the set with label agreement in PS andQR (i.e., accuracymeasure
in multiclass classification). To preclude the potential effects of inter-
observer variability on label concordance, object labeling for both QR and
PS in a use case was conducted by the same pathologist.

Use case 1: nuclei labeling in triple-negative breast cancer
Tumor-infiltrating lymphocytes (TILs) have emerged as a biomarker of
interest in breast cancer, with mounting evidence of their prognostic and
predictive value in triple-negative breast cancer17. TILs are labeled in
accordance with the immune-oncology working group guidelines for
immune infiltration scoring in breast cancer18 into lymphocyte and non-
lymphocyte.

To begin, 2000 1000 × 1000 pixel image tiles were randomly cropped
from n = 21 fully deidentified H&E WSIs scanned at 40x Magnification
from theMATADOR19 cohort, ensuring sufficient quality (e.g., exclusionof
tissue folds or blurry regions). ROIs were stain normalized based on a
reference tile from the MATADOR19 cohort using the Vahadane stain
normalization20 implementation from StainTools (https://github.com/
Peter554/StainTools). Using the HoverNet21 implementation from
histocartography 22, nuclei were segmented to provide the object location
information toPS. Following thePSworkflow(SupplementaryFig. 2),ROIs
and corresponding object segmentationmaskwere uploaded into PSwhere
nuclei were extracted from the ROI into 64 × 64-pixel patches with the
nuclei centered.

For the QR experiment, an additional label was included to capture
patches where no nucleus is present in the patch center due to nuclei
segmentation errors. As in this use case, the user was forced to label the
whole cohort, and a decision for every patch had to be reached. In use cases
which employ large-scale automatic object detection, the inclusion of a
general negative “non-object” class in PS might be worth considering. The
concordance metric was calculated only on objects with corresponding PS
labels. Labeling of the nuclei was conducted byH.M.H. for bothPS andQR.

Use case 2: detection of tumor budding in pulmonary squamous
cell carcinoma
Tumor buds, defined as clusters of cancer cells composed of fewer than five
cells23, is an invasive pattern that has been described in solid tumors (e.g.,
colon cancer). Tumor budding has attracted interest as a prognostic bio-
marker in lung cancer, with the presence of tumor buds being associated
with worse patient outcomes.

Here, 27 2000 × 2000 pixel ROIswere extracted at 40x from n = 3 fully
deidentifiedH&Estained lung cancer samples.Au-net24modelwas applied
to eachROI to segment potential tumor bud candidates for further labeling
into absent/present. ROIs were stain normalized using the Vahadane stain
normalization20 method implemented in StainTools and each ROI was
downsampled to 500 by 500 pixel using nearest-neighbor interpolation.
1761 tumor bud candidates were extracted into 64 × 64-pixel patches by PS
with a single potential tumor bud centered.

Small changes to the PS user interface were made to show a larger
256 × 256 image instead of the 64 × 64 image used for training the DL
model. This provided additional context was requested by the reader to
improve their decision-making comfort; these changes are available in the
PS code repository. In QR, patches were presented with an overlay of the
u-net segmentation mask for indicating tumor bud position in the ROI, as
multiple tumor buds might be present in the ROI.T
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In addition to absent/present, PS and QR were set-up to include an
“unsure” label, allowing for the labeling of patcheswhere thepathologistwas
not comfortable inmaking a definitive decision during the experiment. The
reported accuracy is measured between all labels present in QR and PS
(absent/present/unsure).

Discussion of the discordant cases between QR and PS indicated that
the additional context provided by QR led the pathologist to be less con-
fident in labeling patches as “absent”, while in PS, patch similarities to other
“absent” examples in the embedding space led the pathologist tomore likely
label these patches as ‘absent’ (Supplementary Fig. 4). Therefore, the user-
perceived agreement between PS and QR is likely higher than the con-
cordance score indicates. Tumor buds were labeled by M.M. for both
PS and QR.

Use case 3: renal tubular classification
Tubules are a major component of the nephron, the functional unit of the
kidney. The twomajor types of tubules in the kidney cortex are the proximal
and distal tubules, and they are vulnerable to a variety of injuries across
diseases (e.g., atrophy, acute injury, osmotic changes, etc.). For this use case,
tubules were labeled into four classes: proximal, distal, abnormal, and other
(i.e., false positive from the a priori tubule segmentation step and collecting
ducts or thin limb of loop of Henly tubules in the medulla)25.

About 216 ROIs were extracted from fully deidentified WSI from the
NEPTUNE26 PAS WSI cohort at 20x Magnification and uploaded into PS.
ROIs were stain normalized using the Vahadane stain normalization20

implementation fromStainTools. 10,129Tubuleswere extracted into 256by
256-pixel patches with a single tubule centered based on tubule annotations
created in QuPath27. Finally, a subset of 2298 tubules were labeled by L.B.
using PS to estimate labeling efficiency.

Use case 4: renal glomerular classification
Glomeruli, the filtration organelles of the kidney nephrons, can undergo a
variety ofmorphologic changes. For this use case,we selected diseaseswhere
glomeruli can undergo segmental to global scarring. Glomeruli were labeled
into five categories: globally sclerotic (GS), segmentally sclerotic (SS), non-
sclerotic glomeruli (non-SS/GS), non-glomeruli (i.e., false positive from a
priori glomeruli segmentation step) and uncertain (i.e., distinction between

SS and GS is challenging by visual inspection)28,29. The high complexity of
these organelles consisting of various cell types, a capillary tuft, a mesangial
stalk, a urinary space, and a capsule, and the high heterogeneity in image
presentationofGSandSSglomeruli, allows for the showcasingPS’s ability to
provide improved labeling efficiency of complex objects. The reported
accuracy ismeasuredbetweenGS, SS, non-GS/SS, andnon-glomeruli labels.
Cases labeled as uncertain were excluded as their ambiguous nature would
not lead to meaningful conclusions regarding the concordance between
PS and QR.

For the experiment, 16,158 glomeruli from 241 fully deidentified
NEPTUNE26 and CureGN30 PAS WSIs were used. Glomeruli were pre-
viously manually segmented using QuPath27 and preprocessed into 256 by
256-pixel ROIs extracted at 40x magnification, each containing a singular
glomerulus centered in the ROI. ROIs were normalized using Vahadane
stain normalization20 using the StainTools library. ROIs and corresponding
segmentation masks were uploaded into PS according to the PS workflow
(Supplementary Fig. 2). Patches were created using the full ROI. Glomeruli
were labeled by L.B. for both PS and QR.

Configuration and hyperparameters
The default version of PS is nearly fully configured. The few hyper-
parameters of interest are easily modifiable through the configuration
file. In the use cases discussed here, the hyperparameters requiring
change relate to the patch size extracting the objects from the ROI
images as well as the encoder size of theDLmodel, governing howmuch
information for a given patch can be used by the model to assess patch
similarities. Patch size was chosen based on object size and magnifi-
cation, such that each object is fully visible in a patch. In the use cases
presented (see Table 1), the encoder size was set equal to the patch size.
For example, in the glomeruli classification use case, the patch size was
configured as 256× 256 pixels, with the encoder size being configured as
256. This parameter-setting approach appears to yield a sufficient
starting point for using PS efficiently.

Experiment setup
Each experiment was conducted on an Ubuntu Server 20.04LTS equipped
with a Nvidia GeForce RTX 2080 Ti.

Fig. 2 | Time-dependent variability in labeling speed across different use cases.
Efficiency metric LPSPS over time measured in 5-minute intervals visualizing the
time-dependent variability in labeling speed of PS for the a nuclei, b tumor bud,
c tubules, and d glomeruli use case. The x-axis is the human annotation time in
minutes and the y-axis is the labeling speed per second for a given time interval.
Labeling performance over time varies per use case. For anuclei labeling, a consistent
performance increase over time is noted, consistent with the observed increase in
class separation in the embedding space, as more labels were available to the model.
As the entire dataset is labeled, performance decreased as easy-to-discern object
labels were exhausted. For b tumor bud candidates, initial labeling efficiency was

onlymarginally higher thanmanual baseline LPS. Asmore objects were labeled over
time, labeling efficiency increased. For c tubule labeling, the initial embedding
allowed for bulk annotation. In subsequent iterations, class separation decreased due
to changes to the initially assigned labels and the imbalanced labeling of the four
classes during the initial labeling phase. However, the addition of more object labels
over time improved class separability and led to an increase in labeling efficiency in
later iterations. Lastly, for d glomeruli labeling, the initial embedding allowed for
bulk annotation of non-SS/GS, GS, and SS at the edge of the embedding plot, while
later, nuanced labeling had to be employed due to the task’s difficulty.
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Data requests should be forwarded to the corresponding authors of the cited
sources.

Code availability
All used software libraries and custom software are listed at https://github.
com/choosehappy/PatchSorter.
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