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Highlights 

• First study to use complexity measures to investigate ECT-effects 

• Significant increase of Higuchi's fractal dimension (HFD) following ECT 

• Right anterior hippocampal HFD was associated with reduction in depression severity 

• Predictive value of temporal pole fractal dimension of cortical morphology (FD-CM)  

• Complexity measures provide a novel complementary measure to investigate ECT 
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Abstract 

Background: Numerous studies show that electroconvulsive therapy (ECT) induces hippocam-

pal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study 

aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathe-

matical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for 

fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we 

explore the potential of these complexity measures to predict ECT treatment response. 

Methods: Twenty patients with a current depressive episode (16 with major depressive disorder 

and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty 

healthy controls matched for age and sex were also scanned twice for comparison purposes. 

Resting-state fMRI data were processed, and HFD was computed for anterior and posterior 

hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calcu-

lated and correlations between HFD changes and improvement in depression severity were ex-

amined. For FD-CM analyses, we preprocessed structural MRI with CAT12's surface-based 

methods. We explored group-by-time effects for FD-CM and the predictive value of baseline 

HFD and FD-CM for treatment outcome.  

Results: Patients exhibited a significant increase in bilateral hippocampal HFD from baseline 

to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions 

in depression severity. We found no group differences and group-by-time effects in FD-CM. 

After applying a whole-brain regression analysis, we found that baseline FD-CM in the left 

temporal pole predicted reduction of overall depression severity after ECT. Baseline hippocam-

pal HFD did not predict treatment outcome.  

Conclusion: This study suggests that HFD and FD-CM are promising imaging markers to in-

vestigate ECT-induced neuroplasticity associated with treatment response.   
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Introduction 

Depression is a highly prevalent mental disorder and globally the leading cause of disability 

(WHO, 2021). One-third of patients with depression remain resistant to treatment regimens 

with pharmacotherapy (Rush et al., 2006). More than 50% of these patients respond to treatment 

with electroconvulsive therapy (ECT) (Group, 2003; van Diermen et al., 2018). ECT-induced 

volume increase in limbic structures, including bilateral hippocampi and amygdalae, are well-

documented findings observed in multiple studies (Bracht et al., 2023; Gryglewski et al., 2021; 

Nordanskog et al., 2010; Takamiya et al., 2018). Whilst some studies found associations be-

tween overall volume increase and clinical improvements (Joshi et al., 2016; Nordanskog et al., 

2010), findings of a meta-analysis and a large mega-analysis, suggest that overall volume in-

crease in the hippocampi is unrelated to treatment response (Gryglewski et al., 2021; Oltedal et 

al., 2018). Consequently, it was proposed that overall enlargements of the entire hippocampus 

might rather be a non-specific effect of ECT than the primary driver of treatment response.  

However, other findings suggest that clinical response may be related to structural and func-

tional alterations in specific segments or subcompartments of the hippocampi (Bracht et al., 

2023; Leaver et al., 2019; Leaver et al., 2021; Nuninga et al., 2020). Accordingly, it was hy-

pothesized that changes in functional networks of these subcompartments distinguish ECT-re-

sponders from non-responders (Leaver et al., 2021). Furthermore, ECT-induced structural 

changes have not only been identified in the hippocampi but also in hippocampal connection 

pathways of extended networks related to anterior or posterior hippocampi (Kubicki et al., 

2019), which were associated with a disruption of the hippocampus-default mode network 

(Denier et al., 2023; Gbyl et al., 2024). Thus, for further advancement, novel methods are re-

quired that complement and exceed the interpretation of measures that simply assess overall 

grey matter volume or structural and functional connectivity. 

                  



Electroconvulsive Therapy and Fractal Dimension 

 

 

5 

 

 

The incorporation of mathematical complexity analyses offer a transformative perspective on 

existing data, serving as a valuable complementary measure to conventional neuroimaging met-

rics. Fractal dimension (FD), originally introduced by the renowned mathematician Benoit 

Mandelbrot in 1967, represents a pivotal concept. It furnishes a quantitative measure of intri-

cacy and self-similarity, opening new avenues for understanding complex neurological phe-

nomena  (Mandelbrot, 1967). Fractals are captivating geometric constructs known for their in-

tricate detail and repeated patterns across various scales, maintaining a similar structure regard-

less of magnification levels (Kenneth, 1990; Mandelbrot and Mandelbrot, 1982). In contrast to 

traditional Euclidean geometry, which deals with shapes of integer dimensions (e.g., lines [1D], 

planes [2D], solids [3D]), Fractal Dimension (FD) expands this concept to embrace non-integer 

dimensions (e.g., dimension of 1. 3̅). This unique property makes FD also a valuable tool for 

quantifying the complexity and irregularity present in neuroscience measurements (Burns and 

Rajan, 2015; King et al., 2009). It allows to decipher and model intricate data, finding wide-

spread utility in the analysis of cortical morphology within a clinical context (Meregalli et al., 

2022), and also in studies involving patients with depression (Schmitgen et al., 2020; Schmitt 

et al., 2022). Traditionally, the assessment of FD in cortical morphology (FD-CM) relies on the 

box-counting method (Madan and Kensinger, 2016). However, more expedient approximation 

techniques exist, such as the reconstruction of spherical harmonics (Yotter et al., 2011b). Re-

gional FD-CM represents a comprehensive gauge of gyrification, amalgamating data from fold-

ing frequency, sulcal depth, convolution of gyral shape, and cortical thickness into a singular 

metric. This composite measure has the potential to offer insights into dendrite complexity and 

synaptic density (Im et al., 2006), enriching our understanding of cortical intricacies. 
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Paralleling efforts in quantifying spatial fractals, Higuchi's Fractal Dimension (HFD) emerges 

as a powerful technique for quantifying the intricacy and self-similarity within one-dimensional 

data, such as time series (Higuchi, 1988; Liehr and Massopust, 2020). In contrast to other non-

linear methods it is considered as highly accurate in estimating FD (Kesić and Spasić, 2016). 

HFD analysis has proven invaluable in unraveling the complexities and altered connectivity 

patterns within the brains of individuals affected by various neurological disorders including 

migraine and neurodegenerative diseases (Djuričić et al., 2023; Garehdaghi and Sarbaz, 2023; 

Porcaro et al., 2020; Porcaro et al., 2022; Varley et al., 2020). Surprisingly, while HFD has 

gained traction in exploring depressive disorders, primarily using ECG (George et al., 2023) 

and EEG data (Kaushik et al., 2023; Kawe et al., 2019; Lord and Allen, 2023), it has remained 

largely unexplored in the realm of neuropsychiatric disorders and functional MRI data. Trans-

ferring HFD to functional neuroimaging might present an opportunity to harness HFD's poten-

tial for gaining fresh insights into the landscape of these complex conditions. In the context of 

depression and ECT, the hippocampus in particular is interesting for further investigations with 

HFD. HFD has been proven effective in revealing the intricate temporal EEG patterns of hip-

pocampal activity in rats (Spasic et al., 2011). 

 

This is the first study that exploits HFD and FD-CM to explore ECT-induced neuroplasticity 

through the lens of complexity measurements. We applied these measures in a sample of 20 

patients with depression who were scanned before and after an ECT-index series and in 20 

healthy controls who were also scanned twice. It was the primary objective of this study to 

investigate whether ECT induces changes of functional MRI signal complexity in the anterior 

and posterior hippocampi as assessed with HFD. Secondary outcome measures were associa-

tions between changes in HFD and improvements in depression severity and the predictive 

value of baseline measures of FD-CM and HFD for treatment outcome. In essence, our study 
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sought to introduce FD metrics including FD-CM and HFD into the analysis of depression and 

ECT treatment, shedding new light on the phenomena of ECT induced neuroplasticity. 

 

Methods 

Participants 

This same sample was used in previous analyses (Bracht et al., 2023; Denier et al., 2023). Base-

line measurements of patients with major depressive disorder (MDD) or bipolar disorder (BD) 

and healthy controls (HC) were also included in larger samples investigating cross-sectional 

group differences (Bracht et al., 2022a; Bracht et al., 2022c; Denier et al., 2024; Mertse et al., 

2022). We recruited 20 patients with a current depressive episode who were scheduled for an 

ECT-series at the University Hospital of Psychiatry and Psychotherapy Bern. Inclusion criteria 

were a diagnosis of MDD or BD according to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5) by the American Psychiatric Association (APA, 2013) and age between 18-

65 years. Patients with neurological disorders, substance use disorders, psychotic disorders, 

personality disorders, known claustrophobia, or other contraindications to undergo an MRI scan 

were excluded. We conducted diagnostic screening using the Mini International Neuropsychi-

atric Interview (MINI) (Sheehan et al., 1998) and the Structured Clinical Interview for DSM-

IV Axis II (SCID-II) (Wittchen et al., 1997). The Edinburgh Handedness Inventory (Oldfield, 

1971) was used to assess handedness. Depression severity was assessed using the 21-item Ham-

ilton Rating Scale for Depression (HAMD) (Hamilton, 1967). The depression rating scales were 

administered both before and after the ECT-index series on the day of the MRI scan. We also 

included 20 healthy controls (HC) who were matched with the patients regarding age and sex. 

HC underwent the same assessments. All subjects provided written informed consent, and the 
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study was approved by the local cantonal ethics committee (KEK-number: 2017-00731). For 

more details of the sample, see table 1. 

 

ECT treatment 

The ECT-treatments, using a Thymatron IV system, were conducted in the anesthetic recovery 

room of the University Hospital in Bern, Switzerland. Most patients (n=17) received right uni-

lateral stimulation as their primary treatment approach. However, among these 17 patients, five 

switched to bitemporal stimulation, and one patient switched to bifrontal stimulation during the 

ECT-index series. Additionally, two patients underwent an ECT-index series with bitemporal 

stimulation, while one patient received bifrontal stimulation. The decisions regarding the initial 

placement of electrodes and any subsequent switches during the ECT-index series were based 

on each patient’s clinical presentation and progress. The titration-based method was employed 

to determine the initial seizure threshold and stimulus intensity. General anesthesia was admin-

istered using etomidate, and succinylcholine was utilized for muscle relaxation. The quality of 

the seizures was monitored using electroencephalogram (EEG) and electromyography (EMG) 

recordings. The ECT patients received an average of 12.7 ± 4.0 ECT sessions between the MRI 

scans. 

 

MRI acquisition 

Each participant underwent two MRI scans using a 3 Tesla MRI scanner (Magnetom Prisma, 

Siemens, Erlangen, Germany) with a 64-channel head and neck coil at the Swiss Institute for 

Translational and Entrepreneurial Medicine (SITEM) associated with the University Hospital 

of Bern. The ECT group was scanned before and after an ECT-index series, while the HC group 

was also scanned at two timepoints, with a similar duration between scans. For the acquisition 

of T1-weighted data, a bias-field corrected MP2RAGE sequence was employed. The following 
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parameters were used for the MP2RAGE acquisition: field of view (FOV) = 256×256 mm2, 

matrix = 256×256, slices = 256, voxel resolution = 1×1×1 mm³, repetition time (TR)/echo time 

(TE) = 5000/2.98 ms, inversion time (TI) = 700 ms, and echo time 2 (T2) = 2500 ms. Resting-

state functional MRI (rs-fMRI) was acquired using echo planar imaging (EPI) continuously for 

8 minutes, with participants in an ‘eyes closed’ condition. The following parameters were used 

for the acquisition: 480 volumes with 48 slices per volume, FOV = 230×230 mm2, matrix = 

94×94, voxel resolution = 2.4×2.4×2.4 mm³ isotropic, TR = 1000 ms, and TE = 30 ms. 

 

Pre-processing of resting-state fMRI 

Rs-fMRI pre-processing was conducted using the CONN 21a toolbox (Whitfield-Gabrieli and 

Nieto-Castanon, 2012) and involved several procedures. First, the EPI volumes were realigned 

and co-registered to the MP2RAGE images. Segmentation and normalization to the MNI space 

were then performed, followed by smoothing with an FWHM kernel of 8 × 8 × 8 mm.   In 

contrast to traditional analysis of low frequency fluctuations (0.01 – 0.1 Hz) no band-pass filter 

was applied to analyze the whole spectrum. 

 

Calculation of Higuchi’s fractal dimension (HFD) in resting-state fMRI 

Higuchi introduced an algorithm to determine the FD of a time series by quantifying the intri-

cacy of waveforms (Higuchi, 1988). We used Matlab R2023a (Mathworks, Natick, Massachu-

setts) and the higuchi_fractal_dimension.m script of the Complexity toolbox 

(https://github.com/kayjann/complexity/tree/master) and performed calculations on UBELIX 

(http://www.id.unibe.ch/hpc), the HPC cluster at the University of Bern.   

The signal in each voxel 𝑥 of rs-fMRI with 𝑁 = 480 time points is defined as a time sequence 

𝑥(1), 𝑥(2), … , 𝑥(𝑁). From this time sequence, we calculated self-similar time sequences 

𝑋𝑚
𝑘 : 𝑥(𝑚), 𝑥(𝑚 + 𝑘), 𝑥(𝑚 + 2𝑘), … , 𝑥(𝑚 + int [

𝑁−𝑚

𝑘
] 𝑘) for 𝑘 ∈ {1, … , 𝑘𝑚𝑎𝑥} and 𝑚 ∈
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{1, … , 𝑘}. Parameter 𝑘 is the time interval and 𝑘𝑚𝑎𝑥 is a free parameter which we defined as 

𝑘𝑚𝑎𝑥 = 5. The formula 𝑧 = int [
𝑁−𝑚

𝑘
] is defined as the upper border of total in time intervals 

of a sequence with length 𝑘 with int as the integer part of the fraction. For each time sequence 

𝑋𝑚
𝑘  we computed the length 𝐿𝑚(𝑘) =

𝑁−1

𝑧𝑘2
(∑ |𝑥(𝑚 + 𝑖𝑘) − 𝑥(𝑚 + (𝑖 − 1)𝑘)|𝑧

𝑖=1 ). The mean 

curve length for each time interval 𝑘 = 1, … , 𝑘𝑚𝑎𝑥 was calculated as 𝐿(𝑘) =
∑ 𝐿𝑚(𝑘)𝑘

𝑚=1

𝑘
. HFD 

is defined as the best fitting function the double logarithmic dataset {ln(𝐿(𝑘)) , ln (1/𝑘)}. See 

figure 1. 

For computation of anterior and posterior hippocampi, we used the uncal apex as a standard for 

landmark-based segmentation of the bilateral hippocampi obtained by the Automatic Anatom-

ical Labelling (AAL) atlas (Tzourio-Mazoyer et al., 2002) by defining a separation plane in 

standard MNI space of y = -21 (Bracht et al., 2023; Poppenk et al., 2013). We extracted mean 

values of the anterior and posterior bilateral hippocampi for HFD using Matlab. 

 

Calculation of fractal dimension using structural imaging 

We performed structural MRI data pre-processing of MP2RAGE images using the Computa-

tional Anatomy Toolbox (CAT12, http://www.neuro.unijena.de/cat/). We used standard fully 

automated pipelines for processing surface-based morphometry and reconstruction of the sur-

face (Dahnke et al., 2013; Gaser et al., 2022). For measurement of FD-CM, CAT12 imple-

mented an approach using spherical harmonic reconstructions (Yotter et al., 2011a; Yotter et 

al., 2011b). The surface shape of the brain was reconstructed multiple times by increasing band-

width of frequency of spherical harmonic reconstructions. Local FD-CM was calculated by 

finding the slope of a double logarithmic plot regressing area versus dimension with pairs 

{ln(surface area) , ln (scale of measurement)}. Prior to the second-level analyses, local FD-

CM information was re-parameterized into a standard coordinate system across all subjects and 

                  



Electroconvulsive Therapy and Fractal Dimension 

 

 

11 

 

smoothed with a recommended large Gaussian full width at half maximum kernel of 20 mm. 

See figure 2. 

 

Statistical analyses 

Primary outcome measure 

We used the Statistical Package for Social Sciences SPSS 29.0 (SPSS, Inc., Chicago, Illinois) 

to analyze HFD. We measured reliability of hippocampal HFD measurements within HC using 

Cronbach’s α and intraclass correlation coefficient (ICC) (Vaz et al., 2013). To investigate if 

time effects between the 2 MRI-scans differ between ECT-patients and HC, two separate re-

peated measures ANCOVAs with the independent variable group (ECT, HC), the within subject 

factors timepoint (baseline, follow-up) and hemisphere (left, right), the covariates age and sex 

and the dependent variables HFD (anterior and posterior hippocampus) were calculated. Sig-

nificant group × time effects were followed up using post hoc paired t-tests comparing HFD. 

 

Secondary outcome measures 

To investigate if there are associations between HFD changes over time and clinical improve-

ment (relative changes between baseline (bl) and follow-up (fu): HAMD%∆ =

HAMD𝑏𝑙−HAMD𝑓𝑢

HAMD𝑏𝑙
× 100%.) within patients, we calculated exploratory Spearman correlations.  

To investigate the predictive value of baseline hippocampal HFD, we performed 4 separate 

regression analyses (anterior, posterior, left and right hippocampi), adjusting for age, sex and 

global HFD. P-values were Bonferroni corrected (
𝑝

4
). 

To investigate longitudinal changes in FD-CM, we conducted a group-by time whole-brain 

analysis using a 2 × 2 repeated measures ANCOVA flexible-factorial design in SPM12/CAT12. 

As covariates of no interest we defined total intracranial volume (TIV), age and sex. Inference 
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statistics were done with a peak-level threshold of p < 0.05 and a Holm-Bonferroni correction 

of p < 0.05. 

To determine the predictive value of baseline FD-CM for HAMD reduction during the ECT-

series a whole-brain multiple regression analysis was performed using baseline measures of 

FD-CM, adjusting age, sex and total intracranial volume, as covariates of no interest. Multiple 

regression was performed using the cortical parcellations of the Destrieux (aparc.a2009s) atlas 

(Destrieux et al., 2010). Inference statistics were done with a peak-level threshold of p < 0.05 

and a Holm-Bonferroni correction of p < 0.05. 

 

Additional exploratory analyses 

In addition, we performed exploratory analyses regarding group differences at baseline, asso-

ciations between the complexity measures HFD, FD-CM, and conventional structural and func-

tional neuroimaging measures, and the predictive value of FD-CM on hippocampal HFD-

changes (see supplementary material).  

 

Results 

Primary outcome measure 

All hippocampal HFD values within HC showed no change over time with a good Test–Retest 

reliability as measured by Cronbachs’α and ICC (see table 2). Longitudinal analyses revealed  

significant group × time interactions for anterior hippocampal HFD (F1,36 = 5.071, p < 0.037, 

η2 =0.123) and posterior hippocampal HFD (F1,36 = 6.001, p < 0.019, η2 =0.143). Follow up 

paired t-tests revealed significant increase of HFD values over time in the left anterior and 

bilateral posterior hippocampus within ECT patients (see table 3 and figure 3). 
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Secondary outcome measures 

Within patients, clinical improvement in HAMD correlated positively with HFD increase in the 

right anterior hippocampus (r = 0.49, p = 0.03; r = 0.45, p = 0.07 after removal of one case [+2,8 

SD]), but not in other hippocampal structures (see figure 4). 

There was no significant group-by-time effect that survived Holm-Bonferroni correction. 

Within ECT patients higher baseline FD-CM in the left temporal pole predicted clinical im-

provement in the ECT group as assessed with reduction in total HAMD scores. See table 4 and 

figure 5. Baseline hippocampal HFD values did not predict clinical improvement in HAMD 

after Bonferroni correction (see table 5). 

 

Discussion 

Our study aimed to investigate neuroplastic changes in patients with a current depressive epi-

sode undergoing ECT treatment by applying two complexity measurements of functional and 

structural MRI.  This is the first study that investigates changes in HFD in a neuropsychiatric 

population using rs-fMRI. Through calculation of HFD, a functional metric of complexity, we 

demonstrated an ECT-induced increase in time-series complexity in bilateral hippocampi in 

patients. The increase in the right anterior hippocampus was positively associated with clinical 

improvement. In addition, by analyzing baseline FD-CM of structural data, we found that higher 

complexity of the left temporal pole was predictive for treatment response. 

 

Our main finding was an ECT-induced increase in time-series complexity in bilateral anterior 

and left posterior hippocampi as assessed with HFD. Higher HFD post-ECT suggests increased 

complexity and irregularity in the blood-oxygen-level-dependent (BOLD) signal fluctuations, 

potentially indicating more intricate brain dynamics and communication across brain regions. 
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This could reflect diverse cognitive processes or task demands influencing the fractal properties 

of the brain’s activity. Increase in the HFD in the right anterior hippocampus was associated 

with reductions in overall depression severity. Our results suggest a differential role of the an-

terior and the posterior hippocampi for treatment outcome and complement previous research 

separating these hippocampal compartments (Bracht et al., 2023; Leaver et al., 2019; Leaver et 

al., 2021). Our finding of an association between an increase of HFD in the right anterior hip-

pocampus and clinical improvements fits the finding of (Leaver et al., 2021) who reported an 

ECT-induced volume increase in the right anterior hippocampus that was specific for ECT-

treatment responders. However, Leaver et al. also reported that an increase in cerebral blood 

flow (CBF) in ECT-responders was located in the right middle and left posterior hippocampus 

(Leaver et al., 2021). Our previous analysis of this sample revealed an association between 

volume increase of the right posterior hippocampus and clinical improvement (Bracht et al., 

2023). Thus, associations between volumetric and functional changes of hippocampal subcom-

partments and clinical response remain to be elucidated. In light of our previous finding of 

reduced functional connectivity between the hippocampus and the default mode network after 

ECT (Denier et al., 2023), the question arises as to how HFD and functional connectivity are 

related. Researchers have explored how the fractal dimension of brain activity, as measured by 

methods like HFD, relates to functional connectivity patterns within the brain (Varley et al., 

2020). Higher HFD values might indicate more complex or organized dynamics in the brain’s 

activity, which could potentially relate to different patterns of functional connectivity. Con-

versely, changes in functional connectivity patterns might also influence the HFD of brain ac-

tivity. Overall, the relationship between functional connectivity and HFD is a topic of ongoing 

neuroscience research, aiming to understand the underlying principles governing the organiza-

tion and dynamics of brain activity. However, by analyzing the connectivity strength of the 

hippocampus to the rest of the whole brain using the intrinsic connectivity (IC) we found neither 
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significant group differences nor changes over time in IC (see supplementary material S3 and 

table S1). 

 

In addition to our finding of changes of HFD, we identified predictors of treatment outcome 

using FD-CM, a structural measure of complexity. Applying a multiple regression analysis of 

the whole brain, we found that higher FD-CM in the left temporal pole predicted clinical im-

provement following an ECT-index series. The identification of a structural measure located in 

the temporal pole makes sense because it is near the anterior hippocampus a region with con-

nection pathways that have been linked to ECT-treatment response (Kubicki et al., 2019) and 

to structural grey matter remodeling in treatment responders (Leaver et al., 2021). In addition, 

volume reductions in the temporal pole have been reported in patients with MDD and BD 

(Neves et al., 2015; Webb et al., 2014). FD-CM is a measure of complexity that incorporates 

structural features such as gyrification, folding frequency, sulcal depth, convolution and gyral 

shape. Sulcal patterns are mainly determined before birth and stable across the lifespan (Cachia 

et al., 2016; Tissier et al., 2018), and are linked to cognition (Cachia et al., 2021). Thus, there 

may be strong impact on individual developmental processes related to genetics (Huang et al., 

2023). If replicated in larger samples, FD-CM may contribute to distinguish ECT-treatment 

responders to non-responders in the future. 

 

Our results provide further support for concepts that link hippocampal neuroplasticity to ECT 

treatment response. However, neuroimaging does not provide definite answers on the underly-

ing neurobiological processes. Animal studies have demonstrated that seizures induced by elec-

troconvulsive shocks are associated with enhanced hippocampal proliferation of neural stem-

like cells, synapse formation, gliogenesis and angiogenesis (Chen et al., 2009; Hellsten et al., 

2005; Newton et al., 2006; Olesen et al., 2017; Scott et al., 2000; Segi-Nishida et al., 2008; 
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Wennström et al., 2004). The exact mechanism through which ECT enhances neurogenesis is 

not fully understood, but it likely involves the stimulation of various neurotrophic factors (e.g. 

brain-derived neurotrophic factor (BDNF), endothelial growth factor (VEGF) and basic fibro-

blast growth factor) which are believed to modulate hippocampal circuitries (Bolwig, 2011; 

Newton et al., 2003; Ueno et al., 2019). Furthermore, hippocampal N-methyl d-aspartate 

(NDMA) receptor (NR2B subtype) expression, important in neuroplasticity, was found to be 

increased after ECT (Dong et al., 2010) and simultaneously linked with reduction of depression 

severity and disturbed spatial memory (Dong et al., 2010). Preclinical work also identified an 

increase in dendritic growth and increased synaptic density at excitatory synapses in the ventral 

CA1 of the hippocampus as the major contributor to the observed hippocampal volume increase 

following ECT (Abe et al., 2024b).(Abe et al., 2024a) In humans, in contrast to the well-studied 

and replicated volumetric changes in the hippocampus, findings regarding neurotrophic factors 

are still limited. One recent ECT-study has shown, that hippocampal volume increase is partic-

ularly associated with VEGF (Van Den Bossche et al., 2019). Furthermore, ECT-induced hip-

pocampal volume increase may be related to the dose of ECT-sessions and to electrode place-

ment. However, recent research suggests that these factors may not only be related to antide-

pressive response but also to cognitive side effects (Argyelan et al., 2021; Bracht et al., 2023; 

Joshi et al., 2016; Leaver et al., 2022; Subramanian et al., 2022). 

 

Overall, the search for further hippocampal and temporal lobe metrics continues to be of inter-

est, as classical morphology and connectivity analyses to date have not yielded a conclusive 

picture (Gryglewski et al., 2021; Oltedal et al., 2018). In our data, we used HFD, a measure of 

functional complexity that so far has not been applied to ECT-research. It is worth mentioning 

that identified HFD changes did not correlate with volumetric and cerebral blood flow (CBF) 
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increases after the ECT-index series (see supplementary material S2, figure S2 and S3). There-

fore, HFD measurement could be regarded as a complementary assessment to conventional 

neuroimaging methods. This suggests that HFD-assessed functional complexity is independent 

from MRI-assessed volumetric and CBF measures. Furthermore, it supports assumptions that 

the neurobiology of treatment response is too complex to be simply attributed to volumetric 

measures. Further research is needed to understand what the HFD measure represents in rs-

fMRI. The functional aspects of the hippocampus in ECT treatment are far from being fully 

understood. It has been proposed, that neuroplastic changes in the hippocampus and its interac-

tions with other brain regions, such as the thalamocortical and cerebellar networks, may play a 

role in the antidepressant response to ECT (Leaver et al., 2021). In a previous study, we pro-

posed that remodeling of structural and functional connectivity between the hippocampus and 

the self-referential default mode network may be associated with a reduction in rumination, a 

core feature of depression (Denier et al., 2023). Overall, it is likely that hippocampal commu-

nication behaviour is becoming more complex, which may be due to neurogenesis, synaptogen-

esis and dendritogenesis (Sartorius et al., 2022). This in turn may be associated with clinical 

improvements in depression pathophysiology, which is likely related to hippocampal pathology 

(Bracht et al., 2022b; Schmaal et al., 2016).  

 

While to the best of our knowledge HFD has not been applied in rs-fMRI in mood disorders, 

researchers applied the Hurst Exponent (HE), another mathematical metric of complexity. By 

comparing HFD and HE, HFD focuses on the local self-similarity and roughness of a time 

series, and HE is more concerned with the long-range statistical dependence and self-similarity 

of data. They are used for different purposes and provide different insights into the structure 

and behaviour of time series data (Krakovská and Krakovská, 2016). By assessing temporal 

dynamic of brain activity HE of the ventromedial prefrontal cortex was positively associated 
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with rumination and mediated the association between rumination and depression (Gao et al., 

2023). Using machine learning classification approaches the HE metric also helped to distin-

guish between major depression and healthy controls (Wei et al., 2013) and between remitted 

and current major depression (Jing et al., 2017). This highlights the potential of complexity 

measures for understanding the neurobiology of depression and remission plasticity.  

 

Our study has certain limitations. Firstly, the sample size is modest and findings warrant repli-

cation in larger data sets (e.g. combining data with help of consortia (Oltedal et al., 2017)). 

Secondly, the population of depressed patients exhibits heterogeneity in terms of diagnoses, 

encompassing both MDD and BD, as well as variations in clinical characteristics such as the 

severity and duration of episode. However, this reflects clinical practice and therefore increases 

external validity. Thirdly, investigated measures of HFD and FD-CM are complex and do not 

allow for a straightforward neurobiological interpretation. Additional comprehensive research 

is imperative to deepen our understanding of the interplay between HFD and FD-CM and con-

ventional metrics such as cortical thickness or functional connectivity, as well as their specific 

role in the reduction of depression symptomatology and well-known temporary impairment of 

memory functions after ECT. Furthermore, additional measurements, such as task-based fMRI 

or simultaneous EEG-fMRI recordings, may complement the understanding and interpretation 

of increased HFD complexity. Fourth and finally, HFD and FD-CM reveal only monofractal 

patterns in the brain. A monofractal process is characterized by a single dimension, which 

means that the complexity of a time series is the same across all scales. Future research may 

apply wavelet-based multifractal analysis to overcome limitations of capturing the full com-

plexity of an fMRI time series, as already successfully applied in EEG, magnetoencephalog-

raphy (MEG) and fMRI data (Ciuciu et al., 2017; La Rocca et al., 2018). 
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In conclusion, this study marks the pioneering exploration of HFD and FD-CM in the context 

of mood disorders and ECT. Our findings revealed a bilateral HFD increase in anterior and 

posterior hippocampi. Notably, the increase in HFD in the right anterior hippocampus was as-

sociated with clinical improvements. In addition, FD-CM measurements in the left temporal 

pole may be predictive for treatment response. Collectively, the utilization of complexity meas-

urements such as HFD and FD-CM represent a novel and intriguing avenue for investigating 

neuropsychiatric disorders, particularly in patients undergoing ECT-treatment. Future studies 

with larger datasets are needed to further assess their predictive capabilities and associations 

with clinical improvements more comprehensively.  
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Table legends 

Table 1: Clinical characteristics of groups. See Denier et al., 2023 (Denier et al., 2023). 

 ECT  

(n=20) 

HC 

(n=20) 

Analyzes 

Age (years) 44.9 ± 12 43.6 ± 14 p = 0.75 

Sex (female, male)  8, 12 8, 12 p = 1.00 

Handedness 

(right, left, ambidextrous)  

15, 2, 3 17, 2, 1 p = 0.57 

HAMD-21 (Baseline) 21.4 ± 5.3 0.65 ± 1.0 p < 0.001 ** 

Duration of episode (months) 19.8 ± 17 n/a n/a 

Number of episodes 5.2 ± 4 n/a n/a 

Time between scans (days) 52.6 ± 24 61.2 ± 17 p = 0.20 

HAMD-21 (Follow up) 10.9 ± 8.1 0.25 ± 0.8 p < 0.001 ** 

n (remitter1) 9 n/a n/a 

n (responder or remitter2) 11 n/a n/a 

n (non-responder) 9 n/a n/a 

 

Demographic and clinical variables were compared between ECT and healthy controls using 

an independent t-tests and χ2 tests.  Abbreviations: ECT: electroconvulsive therapy; HC: healthy 

controls; 1 remitter: HAMD-21 < 8 points; 2 responder or remitter: HAMD-21 reduction > 

50%; n/a: not applicable.  
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Table 2: Test-Retest reliability for hippocampal HFD in healthy controls 

HFD T1 mean (SD) T2 mean (SD) Cronbach’s α ICC | ∆ Mean | | ∆ SD | 

Ant. hippo-

campus left 
1.928 (0.043) 1.935 (0.05) 0.844 0.732 0.0069 0.0344 

Ant. hippo-

campus right 
1.923 (0.046) 1.927 (0.054) 0.837 0.72 0.0041 0.0375 

Post. hippo-

campus left 
1.933 (0.037) 1.937 (0.05) 0.868 0.767 0.0045 0.03 

Post. hippo-

campus right 
1.927 (0.038) 1.933 (0.045) 0.825 0.702 0.0052 0.0321 

 

HFD: Higuchi’s fractal dimension; ICC: intraclass correlation coefficient; SD: standard devia-

tion; T1: first MRI scan; T2: second MRI scan; ∆: difference.  
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Table 3: Post hoc paired t-tests for anterior and posterior hippocampal HFD in baseline vs. 

follow-up. 

Hemisphere ECT HC 

HFD of anterior hippocampus 

left T19 = -2.240, p = 0.037 T19 = -0.895, p = 0.554 

right T19 = -1.617, p = 0.122 T19 = -0.495, p = 0.627 

HFD of posterior hippocampus 

left T19 = -2.166, p = 0.043 T19 = -0.667, p = 0.513 

right T19 = -2.303, p = 0.033 T19 = -0.724, p = 0.478 
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Table 4: Significant association of clinical improvement (%∆ HAMD) and baseline FD-CM. 

Direction Region 

(aparc_a2009s) 

Hemisphere T-value Holm-Bonfer-

roni p-value 

positive temporal pole Left 3.324 0.020 

negative none    

 

aparc.a2009s: Destrieux atlas.  
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Table 5: Association of clinical improvement (%∆ HAMD) and baseline HFD. 

Baseline HFD T-value p-value Bonferroni correction 
𝒑

𝟒
 

Anterior hippocampus left -1.805 0.091 0.364 

Anterior hippocampus right -2.305 0.036* 0.144 

Posterior hippocampus left -2.351 0.033* 0.132 

Posterior hippocampus right -1.339 0.201 0.804 

 

*p < 0.05  
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Figure 1: HFD distribution and visualization in a sample subject. 

 

A: Color-coded HFD map of grey matter. B: Binary masks of anterior (red) and posterior (blue) 

parts of the hippocampi. C: HFD Histogram of total grey matter and anterior/posterior part of 

the hippocampi. L: left; MNI: Montreal Neurological Institute space.  
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Figure 2: Overall mean of baseline FD-CM. 

 

 

LH: left hemisphere; RH: right hemisphere.  
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Figure 3: Hippocampal group differences in HFD. 
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Figure 4: Positive association of clinical improvement and increase in HFD in the right anterior 

hippocampus. 
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Figure 5: Positive association of the baseline FD-CM of the temporal pole and clinical im-

provement. 
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