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Abstract 
Context Anthropogenic landscape change is an 
important driver shaping our environment. Historical 
landscape analysis contributes to the monitoring and 
understanding of these change processes. Such anal-
yses are often focused on specific spatial scales and 
single research methods, thus covering only limited 
aspects of landscape change.
Objectives Here, we aim to assess the potential of 
combining the analysis of historical aerial imagery 

and local stakeholder interviews for landscape change 
studies using a standardized mapping and interview-
ing approach.
Methods We compared six agricultural landscapes 
across Europe and mapped land-cover using histori-
cal aerial imagery (starting between 1930 and 1980, 
depending on data availability, until recent years) 
with an object-based image analysis and random for-
est classification. For local perspectives of landscape 
change, we conducted oral history interviews (OHIs) 
with (almost) retired farmers. Comparing recorded 
landscape changes from both approaches provided Supplementary Information The online version 

contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10980- 024- 01914-z.
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insight into advantages of combining these two 
methods.
Results Object-based analysis enabled the identifi-
cation of high-resolution land-cover dynamics, with 
scale enlargement and cropland/grassland expansion 
being the most commonly recurring trends across 
European landscapes. Perceived landscape changes 
identified in the OHIs included changes in farm man-
agement, landscape structure, and infrastructure. 
Farmers also reported drivers and personal values 
associated with landscape change. Combining the two 
historical landscape analysis tools resulted in a quali-
tative and quantitative understanding of changes in 
land-cover, land use, and land management.
Conclusions Comparing physical land-cover change 
with local farmer perspectives is key to a compre-
hensive understanding of landscape change. There 
are different ways the two methods can be combined, 
leading to different venues for science and policy 
making.

Keywords Agricultural landscape · Landscape 
history · Land-use change · Mixed-method approach · 
Object-based image analysis · Oral history

Introduction

Landscape change influences biodiversity and ecosys-
tem services (Tscharntke et al. 2005; van Zanten et al. 
2014), but also heritage and the social and personal 
identity of local actors (Dossche et al. 2016; Arnaiz-
Schmitz et  al. 2018). In Europe, most of the land 
area is managed and thus directly shaped by human 
actions (Antrop 2004). It is critical to manage these 
lands in more sustainable ways, as unsustainable land 
use and management are detrimental to ecosystem 
functioning (Helfenstein et  al. 2020). As landscape 
is an important action field for more sustainable land 
use (Weltin et  al. 2018), understanding landscape 
change is essential (Bürgi et al. 2022).

The study of land-use and land-cover change 
(LULCC) and the proximate and underlying driv-
ers thereof (García-Martín et  al. 2021) has become 
a focus of landscape change research. Complemen-
tary to this aspect of landscape change, there has 
also been a growing interest in landscape perception, 
reflected in the European Landscape Convention, 
which emphasizes landscape as “an area as perceived 
by people” (Council of Europe 2000). Research based 
on this topic typically examines landscape change 
through the lens of, e.g. landscape identity (Butler 
and Sarlöv-Herlin 2019) or planning (Hersperger 
et  al. 2020; Gonçalves and Pinho 2023). In recent 
years, landscape change research progressed through 
an increase in the efficiency of land-cover mapping 
(Sertel et al. 2022; Feizizadeh et al. 2023), as well as 
an improved understanding of perceived landscape 
changes based on participatory approaches (Lubis 
and Langston 2015; Fagerholm et al. 2021).

Spatial data is a critical source for landscape 
change research, and improved availability of spatial 
data in recent years has opened new doors for study-
ing and understanding landscape change. Specifically, 
advances in digitization and open data policies have 
increased the accessibility and availability of histori-
cal digital maps and aerial imagery. Comparing his-
torical and recent topographical maps, e.g. through 
manual digitization, can provide insights into long-
term historical landscape changes (Loran et al. 2018; 
Matasov et  al. 2019). Meanwhile, recent advances 
in machine learning and computational capabilities 
have enabled progress in the automated identification 
of landscape structures in historical maps, including 
buildings (Heitzler and Hurni 2020), roads (Jiao et al. 
2024), and sand dunes (Groom et al. 2021), reducing 
the effort of manually digitizing such maps. How-
ever, maps are an abstraction of reality, and landscape 
representation in maps is strongly dependent on the 
mapping method and focus issued by the responsible 
authority. Further, the definitions of map elements 
can differ between mapping products (Svenningsen 
et al. 2022). For example, the definition of wetlands 
in Swiss maps changed from ‘not passable by horse’ 
in earlier maps toward a distinction based on reed 
vegetation (Gimmi et al. 2011). The semantic discrep-
ancies between maps for different regions or points in 
time hence limit their comparability.

Historical aerial imagery and satellite imagery pro-
vide an additional important source of information 
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regarding past landscape change, although mostly 
restricted to the second half of the twentieth century 
(Baessler and Klotz 2006; Brown et  al. 2018; Wang 
et al. 2022). While historical aerial imagery has been 
used to manually digitize land use and assess its 
change (Baessler and Klotz 2006), there has been a 
recent increase in studies using automated classifica-
tion of historical aerial imagery, based on both pixel-
based approaches (Ratajczak et al. 2019) and object-
based image analysis (OBIA) (Dimopoulos and Kizos 
2020; Kindermann et al. 2023). The (semi-)automated 
analysis of (historical) aerial imagery enables the pro-
cessing of larger areas, more study sites, and more 
time steps (Ratajczak et al. 2019). The advantages of 
historical aerial imagery over satellite imagery are its 
larger time lapse and its corresponding finer spatial 
resolution (e.g., 1  m). In many European countries, 
historical aerial imagery is available from as early as 
the 1950s, or sometimes even the 1920s, while the 
first satellite imagery dates back to the 1960s (Corona 
spy satellite imagery; Nita et  al. 2018) or to 1972 
(first Landsat generation). The finer spatial resolution 
of the aerial imagery enables the detection of land-
cover classes, but also changes in landscape struc-
tures that are important for landscape-scale analysis 
(Baessler and Klotz 2006; Skokanová et  al. 2020; 
Helfenstein et  al. 2024). This latter capability was 
not possible using standard satellite imagery such as 
Landsat.

While spatial analysis based on aerial imagery for 
specific target years can be a valuable tool for detect-
ing landscape change, the results are often limited 
in thematic detail and can hence easily lead to mis-
interpretations (Breidenbach et  al. 2022). Includ-
ing complementary data, for example derived from 
oral history interviews (OHIs) or other participatory 
methods, can help overcome the limitation of LULCC 
identified solely from remote sensing methods (Bürgi 
et  al. 2017; Dimopoulos et  al. 2023), and there is a 
great diversity in how spatial analysis can be com-
bined with participatory methods. While stakeholder 
perception can be directly compared with landscape-
change maps (Malek et al. 2014; Fox et al. 2017), it 
can also be used to inform land-cover classification 
based on remote sensing data (Isager and Broge 2007; 
Berget et  al. 2021). Stakeholder perspectives can 
further provide insights into potential driving forces 
of landscape change (Malek et  al. 2014; Fox et  al. 
2017; Dimopoulos and Kizos 2020). OHIs make it 

possible to assess long-term landscape changes from 
actors’ perspectives (Bürgi et  al. 2017; Mohr et  al. 
2023a). This method originated in the historical sci-
ences, where it is often used to supplement insights 
from written sources by giving voice to traditionally 
unrecorded groups of actors (Schaffner 2013; Abrams 
2016), and is now used in a variety of disciplines.

Here, our overarching goal is to determine how 
long-term landscape change across different agricul-
tural landscapes in Europe can be better understood 
by combining different methods. We therefore lev-
erage the advantages of mapping landscape change 
based on historical aerial imagery and perceived 
landscape changes from OHIs with local farm-
ers in a mixed-methods approach. Our data covers 
the period from 1931 to today (depending on study 
site) and the following six regions in Europe: Santa 
María del Páramo in Spain, Ille-et-Vilaine in France, 
Reusstal in Switzerland, Flevopolder in the Nether-
lands, Querfurter Platte in Germany, and Turzovka in 
Slovakia. By analyzing multiple study sites, we aim 
to identify diverse landscape change pathways and 
underline the complementarity of the results of the 
two approaches. Specifically, we ask the following 
questions:

• Which landscape changes are detected using 
remote sensing on historical aerial imagery?

• What kind of landscape changes are reported in 
OHIs?

• How do insights from these different approaches 
complement each other?

Methods

To analyze landscape changes in our six study sites 
(see "Study sites"), we applied a mixed-methods 
approach. We mapped long-term historical land-
use change using a time series of aerial images and 
a supervised classification based on machine learn-
ing (see "Remote sensing"). We conducted OHIs in 
all study sites and used the resulting transcripts to 
gain a bottom–up perspective on perceived landscape 
changes by farmers (see "Oral history interviews" 
section). The two methods were chosen as comple-
mentary source types, each informing about different 
aspects of the landscape. After the separate analysis, 
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the results from the two methods were compared in 
a concurrent triangulation approach (Creswell 2003).

Study sites

To go beyond insights from a single case study, 
we opted for a comparative research approach. We 
selected six study sites of ~ 25  km2 (Fig. 1; Table 1) 
from a set of study sites presented in Diogo et  al. 
(2023), with the aim of covering a variety of agri-
cultural landscapes, farming systems, and bio-
physical conditions (Helfenstein et al. 2024; Mohr 

et al. 2023b). The selected study sites have a good 
data availability and share a focus on arable or 
mixed farming systems. In Santa María del Páramo 
(SMP), Flevopolder (FLE), and Querfurter Platte 
(QUP), landscapes are dominated by highly inten-
sive arable agriculture, with some farms in QUP 
also using their crops for large-scale livestock pro-
duction. The landscapes of Ille-et-Vilaine (IEV), 
Reusstal (REU), and Turzovka (TUR) are more 
diverse, with arable land, grassland and forest, and 
farms often focus on livestock production. A recent 
study showed that, while farms in FLE and QUP 

Fig. 1  Location of the six 
study sites. See Table 1 for 
additional information
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have increased in multifunctionality over the last 
20 years, SMP, IEV, and REU are still on a produc-
tivist pathway and TUR is trending toward margin-
alization (Helfenstein et  al. 2024). FLE is located 
on an artificial land reclamation that was built in 
the 1950s, mainly for agricultural purposes. QUP 
and TUR both experienced a period of centrally 
planned economy during socialism, from the end of 
World War II until 1989.

Depending on the availability of data for the 
study sites, LULC mapping started between the 
1930s and the 1980s and covered ~ 20-year inter-
vals until recent years, while the period covered by 
the OHIs interviews goes back to the 1960s when 
the oldest interviewees started to farm (Fig. 2).

Remote sensing

We obtained aerial images from national archives 
(Table  1). The images varied in spatial resolution 
and quality (e.g., different types of image noise and 
color balance), and covered periods from 1931 to 
2020 (Fig. 2).

Segmentation of the aerial imagery

For the segmentation, we pre-processed the images 
to limit the level of grain noise by applying a pre-
trained model based on deep latent space transla-
tion, originally developed to restore old photos 
(Wan et  al. 2020). We used the pretrained model 
with a default set of parameters and visually 
inspected the results before segmentation.

We segmented the aerial images to identify 
homogeneous land-cover patches and landscape 
structures  using a combination of two segmenta-
tion approaches. For the edge detection, we param-
eterized a pre-trained convolutional neural network 
model. We tested different edge detection algo-
rithms and selected a dense extreme inception net-
work, which was found to be more robust compared 
with other state-of-the art edge detection algorithms 
by Soria et  al. 2023. For patch delineation, we 
used a pre-trained robust segmentation model that 
identified unique features within the landscapes, 
such as single fields and forest patches. We applied 
the Segment Anything model (ViT-H SAM), a 
deep learning model, which has been built over 1 

Table 1  Overview over the study sites considered

Study site 
abbrevia-
tion

Region Country Agricultural system Source of aerial  images© Number of oral 
history interviews

SMP Santa María del Páramo Spain Mainly arable cultures 
(+ few livestock farms)

Instituto Geográfico 
Nacional de España

10

FLE Flevoland The Netherlands Mainly arable cultures 
(+ few livestock farms)

Dutch National Spatial 
Data Infrastructure 
(PDOK) (1980; 2020); 
Eurosense (2000)

10

QUP Querfurter Platte Germany Mainly arable cultures 
(+ mixed farms with 
megastables)

GeoBasis-DE/LvermGeo 
ST

11

IEV Ille-et-Vilaine France Mixed farms (dairy/suck-
ler cow; arable cultures 
and pasture)

Institut national 
de l’information 
géographique et for-
estière

9

REU Reusstal Switzerland Mixed farms (dairy/suck-
ler cow; pigs, arable 
cultures & pasture)

Swisstopo 10

TUR Turzovka Slovakia Livestock (+ mainly 
pasture)

Geodesy, Cartography and 
Cadastre Authority of 
the Slovak Republic

7



 Landsc Ecol          (2024) 39:120 

1 3

  120  Page 6 of 23

Vol:. (1234567890)

billion objects delineated on over 11 million images 
(Kirillov et al. 2023).

Applying the edge detection and segmentation 
model over the aerial photos resulted in grayscale 
images highlighting the borders between different 
landscape features. These grayscale images were 
subsequently converted into binary images and vec-
torized to form spatial polygon datasets. Individual 
derived segments were interpreted as unique land-
scape features. When inspecting the resulting poly-
gons visually, we observed that there were polygons 
that collapsed large areas because the border between 
landscape elements was not captured adequately. We 
thus selected—apart from in QUP—all polygons 
larger than 30 ha and used a more sensitive delinea-
tion of the two segmentation models. However, some 
unrealistically large and branched polygons remained, 
which we excluded in the pre-processing steps for the 
classification.

Classification

As the pre-processing of the aerial imagery chosen 
for the segmentation had an impact on the texture 
of the land-cover classes, we decided on a different 
pre-processing step of the aerial imagery for the clas-
sification (see Fig.  1 in Supplementary Information 
(SI) I for an overview of the classification approach). 
To address the variation in the quality of the aer-
ial imagery, resulting from differences in spatial 

resolution (between 0.1  m2 and 1  m2) and spectral 
resolution (black and white [BW] or color [RGB]) 
across the study sites and years, we synchronized 
the datasets by transforming all RGB images to BW 
(Kanan and Cottrell 2012) and resampling all images 
to 1  m2 pixel size. We further slightly smoothed the 
images using a Gaussian blur (sigma = 2, window 
size = 5).

To classify land-cover and compare it across 
time steps, we developed a land-cover nomenclature 
(Table  2) that ensured that all classes were identifi-
able in all time steps. Using the nomenclature, we 
manually labeled polygons from the segmentation 
for each land-cover class, time step, and study site, 
resulting in a total of 1088 polygons to be used as 
training/testing data. To create a robust model, we 
only labeled polygons with one land-cover class for 
the training/testing data.

For all polygons, we defined a set of predictors 
that describe the spectral characteristics and geom-
etry of the land-cover classes, allowing separation 
of specific land-cover classes from others within the 
nomenclature. To optimize the models, we tested 
the variability of the predictors and validated them 
based on their explanatory power, their correlation 
to other predictors, and their partial dependence on 
the different land-cover classes. The final set of pre-
dictors (Table 1 in SI I) included gray intensity, area, 
shape index (iso-perimetric quotient to describe the 
compactness of the polygon; e.g., Hernandez-Suarez 

Fig. 2  Active working 
times (lines) of the farmers 
interviewed in oral history 
interviews (OHIs), used 
as a proxy for the period 
covered by the OHIs, 
and the years for which 
aerial images were available 
(circles). The colors of the 
circles indicate whether 
the aerial image used for 
our remote-sensing-based 
landscape-change analysis 
was recorded in black and 
white (BW) or color (RGB). 
See Table 1 for full names 
of study sites
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et al. 2022), and texture measures (contrast, correla-
tion, entropy) based on the gray level co-occurrence 
matrix (GLCM; Hall-Beyer 2017). As the pixels 
close to the polygon border often depicted a mixture 
of land-cover classes (i.e., edge effect), we shrank 
polygons larger than 10  m2 by 0.5  m [unless this 
yielded an invalid result (NA)] to calculate the gray 
intensity and GLCM metrics for each polygon.

As the classification model, we used a random for-
est classifier (Breiman 2001) available in the scikit-
learn package (version 1.4.0) in Python 3.9, as it has 
shown good performance for LULC mapping (Modica 
et  al. 2021; Adugna et  al. 2022). To train the model, 
we set the number of decision trees to 100 and used 
80% of the labeled data for training and 20% for test-
ing. We excluded polygons with NA values for any of 
the predictor variables. We built two models based on 
groups of similar landscapes: one for arable landscapes 
(MA; for study sites SMP, FLE and QUP) and one for 
mixed landscapes (MM; for study sites IEV, REU and 
TUR). We used the same set of predictor variables for 
both models. We used the labeled data from the arable 
landscapes to train/test MA and the labeled data from 
the mixed landscapes to train/test MM. To assess model 
accuracy, we calculated overall accuracy, out-of-bag 

score, Cohen’s kappa coefficient, and producer/user 
accuracy.

Based on the classification results, we decided to 
compare the size of arable fields across study sites and 
time steps. For this, we calculated the median area of 
all polygons of the cropland type that were larger than 
500  m2 per study site and time step (Fig. 3). We further 
evaluated the land-cover classification for all time steps/
study sites based on visual comparison with the corre-
sponding aerial image. To exclude land-cover changes 
that were clearly due to misclassification, we corrected 
the classification of patches that showed persistence 
for the beginning and end, but not for any time step in 
between (e.g., a sequence built-up—cropland—built-up 
would be corrected using this approach; see Table 2 in 
SI I for a list of corrections). From the results, we then 
summarized the land-cover transitions and persistence, 
which are visualized in Fig. 6.

Oral history interviews

Interview procedure and questionnaire

To obtain a long-term stakeholder perspective on 
agricultural and landscape change, we conducted 

Table 2  Nomenclature used for land-cover classification

Class Description Visual characteristics

Built-up All types of artificial surfaces, including settlements, 
roads and railways, and industrial areas

Polygons of small (single parts of houses) compact areas or 
large incompact (road networks) areas. Often character-
ized by very light and homogeneous gray shades

Cropland Cropland, including rotational grassland Cropland could have different shades of gray, ranging from 
light gray (usual) to dark gray (e.g., corn), depending on 
crop type and the timing of when the aerial image was 
taken. This land-cover class sometimes contained linear 
rows (tractor tracks, planted rows), but in cases of lower 
resolution these appeared as homogeneous areas

Typically, the parcels of arable land had a rectangular shape 
and larger area

Grassland Pastures, meadows, and other sorts of grassland areas, 
such as field and street margin vegetation

Open, vegetated non-forested areas with less geometrical 
shapes than arable land. The texture is coarse, with no 
directional patterns. Mowing tracks often showed circular 
patterns

Forest/trees Forests, lines of trees and single trees Dark gray shades and often rough surfaces caused by the 
tree tops (compared with the other land-cover classes)

Area sizes ranged from very small to very large
Water Water courses and water bodies; not prevalent in most 

study areas
Smooth and homogenous surfaces. Gray shades vary from 

very light to very dark, depending on the water surface 
reflectivity (position from which the image was taken) 
and water turbidity
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between 7 and 11 OHIs per study site (Table 1), with 
experienced farmers who were either retired or near-
ing retirement (Fig. 2). We focused on elderly farm-
ers for two reasons: Given that the landscapes stud-
ied are dominated by agricultural land use, we were 
interested in gaining insight into the perspectives of 
farmers who, in their role as landscape managers, are 
co-responsible for some of the long-term changes 
(Primdahl et al. 2013). They are also directly affected 
by landscape change in their working and living envi-
ronments. Second, focusing on one stakeholder group 
increased the homogeneity of the sample, which 
allowed us to plan for 10 interviews per study site 
(Robinson 2014), which in turn permitted the consid-
eration of multiple study sites.

We used a questionnaire translated into the local 
language of the study sites, with open-ended ques-
tions in the first part, including a question on land-
scape change. The second part consisted of semi-
structured questions on different aspects of on-farm 
changes. Here, we focused solely on the responses 
related to the question on landscape change. Because 
the interview design allowed a relatively open con-
versation, there were additional interactions between 
the interviewee and interviewer beyond the prede-
termined questions. We considered statements from 
other parts of the OHIs as context information if 
clearly linked to the topic. For conducting the OHIs, 
we relied on a network of local academic study part-
ners. To find interviewees, we used a snowball sam-
pling strategy based on pre-existing contacts, door-to-
door interviews, or recommendations by either local 
associations or farmers. We conducted and recorded 
all OHIs in the local language, then transcribed 
the recordings and translated them into English. A 
detailed description of the interview procedure and 
questionnaire is provided by Mohr et  al. (2023b). 
Prior informed consent was obtained from all inter-
viewees, and the experimental design and the ques-
tionnaire received ethical clearance from the Ethical 
Commission of the Swiss Federal Institute of Tech-
nology (ETH-EK 2020-N-146), and, where required, 
from the relevant authorities in the participating 
countries.

Analysis of oral history interviews

Following qualitative content analysis (Erlingsson 
and Brysiewicz 2017), we analyzed the interview 

data for mentioned landscape changes and inductively 
created categories for each identified change type, 
such as ‘increase in field size’ or ‘conversion from 
grassland to cropland’. Based on these categories, 
we defined seven overarching themes of landscape 
change (see Table 1 in SI II for a list of themes and 
categories). We then calculated the frequency with 
which each category was mentioned per study site. 
We counted each category only once per interviewee. 
Because the number of OHIs varied between study 
sites (Table  1), we normalized absolute numbers to 
percentages to allow comparisons between study 
sites. We complemented our analysis with narratives 
for each study site, relating values and drivers to per-
ceived landscape changes (SI II).

Results

Mapping landscape change using aerial imagery

We found that image segmentation delineated most 
landscape features correctly. However, the segmenta-
tion tended to omit elements with low gray intensi-
ties, especially prevalent in aerial images with low 
quality. It also tended to overestimate structures 
within land-cover patches, e.g., for tree tops in a for-
est or driving tracks within a crop field. Alternation 
of land-covers within a smaller area (e.g., transition 
from field border to hedgerow to field margin vegeta-
tion to road) and complex and diversified landscapes 
(in study sites IEV and REU) were especially prone 
to such inaccuracies.

Our land-cover models reached an overall accu-
racy of 0.89 and 0.86 for arable landscapes (MA) 
and mixed landscapes (MM), respectively. MA per-
formed slightly better than MM for Cohen’s kappa 
and out-of-bag score (Table  3). Both models var-
ied slightly in terms of producer’s/user’s accuracy, 
as also shown in the confusion matrix (Fig.  2, SI 
I). While for MA most misclassifications occurred 
between grassland and forest/trees, for MM grass-
land was often misclassified into one of the other 
classes, especially cropland. We also observed mis-
matches between built-up area and cropland.

We observed a general increase in the median 
field size of cropland over time, especially in the 
last decades (Fig.  3). In terms of field size, there 
are considerable differences between the study sites, 
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with QUP having significantly larger field sizes than 
anywhere else, and the arable landscapes (FLE, 
SMP) having larger field sizes than the mixed land-
scapes (IEV, REU). While the trend for SMP, IEV 
and REU is more or less within the range expected 
from visual comparison with the respective aerial 
images, FLE shows a steep decrease between 1981 
and 2000 as a result of subdivisions that were not 
mapped in 1981. A special case is QUP, where the 

median field size increased strongly between 1953 
and 1975 subsequent decrease from 2010 to 2018. 
Based on a visual assessment, uncertainties in field 
sizes are due to improperly derived polygons (col-
lapsing too many units/describing too much detail) 
and to a lesser extent to misclassifications, so abso-
lute values should be used with caution while over-
all trends are mostly reliable. See Table  1 for full 
names of study sites.

Table 3  Overview over the 
metrics calculated to assess 
the performance of the 
trained random forest model 
on the test data

Measure Scores for model trained on arable 
landscapes (MA)

Scores for model trained 
on mixed landscapes 
(MM)

Overall accuracy 0.89 0.86
Cohen’s kappa 0.85 0.81
Out-of-bag score 0.87 0.81
Producer’s accuracy Built-up: 0.93

Cropland: 0.96
Grassland: 0.80
Forest/trees: 0.80
Water: 1

Built-up: 0.89
Cropland: 0.95
Grassland: 0.74
Forest/trees: 0.9
Water: 1

User’s accuracy Built-up: 0.93
Cropland: 0.98
Grassland: 0.52
Forest/trees: 0.95
Water: 0.67

Built-up: 0.93
Cropland: 0.70
Grassland: 0.9
Forest/trees: 0.94
Water: 0.60

Fig. 3  Evolution of median field size for all study sites except 
TUR. Polygons classified as crop smaller than 500  m2 were 
excluded. To improve interpretability, the date of the last aerial 
photograph in SMP and REU was shifted by minus/plus 1 year. 

Because the field size for QUP is significantly larger than that 
for the other study sites, it is plotted separately with a different 
y-axis. As TUR focused mainly on grassland management after 
1949, we excluded it from this analysis
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The following landscape observations were made 
for the study sites based on the classified land-cover 
maps (Figs.  4, 5), the calculated total land-cover 
changes per study site (Fig. 6), and the original aerial 
imagery as a reference.

SMP is dominated by large fields that were partly 
misclassified as grasslands/built-up area/forest. 
Misclassified fields were often geometries that col-
lapsed multiple fields together. Both the field struc-
ture depicted in the image and the average field size 

(Fig.  3) show an increase in parcel size for both 
time steps, but with a larger increase between 2002 
and 2017. Overall, there is a persistence in cropland 
(Fig. 6).

FLE is characterized by structured and regular 
fields, regularly dispersed farms (Fig.  4) and persis-
tence in cropland (Fig.  6). The forested area in the 
center-east of the study site was (partly) misclas-
sified, especially in 1981. Occasionally, cropland 
with a dark gray shade was classified as water. In the 

Fig. 4  Mapped land-cover 
for study sites in arable 
landscapes. See Table 1 for 
full names of study sites
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northeast, the growing city limits of Dronten were 
captured in the year 2020, also visible in Fig. 6. As 
seen in Fig.  3, field sizes increased between 2000 
and 2020; however, the mapped fields were larger in 
1981. Based on visual inspection, we found that  the 
algorithm was sometimes unable to identify and differ 
between multiple crops in the same parcel due to the 
high similarity of gray shades and the overall image 
quality,  resulting in collapsed fields.

While QUP was dominated by arable agriculture 
for all five time steps (Figs. 4, 6), there was a remark-
able increase in field size and structure between 1953 
and 1975, both visible in Figs. 3 and 4. Between 2006 
and 2018 there was a decrease in field size. Some 
fields were misclassified, mostly as forest. Espe-
cially in more recent images, structures in cropland, 
e.g., driving tracks, were segmented but then classi-
fied as forest/built-up. In the aerial images from 2006 

Fig. 5  Mapped land-cover 
for study sites in mixed 
landscapes. See Table 1 for 
full names of study sites



 Landsc Ecol          (2024) 39:120 

1 3

  120  Page 12 of 23

Vol:. (1234567890)

and 2018 there are also visible windmills, classified 
mostly as built-up. While there was no highway vis-
ible in the study area during the socialist period, in 
2006 the first structures were visible in the northeast 
(classified as arable land), and in 2018 the highway 
was built (classified as partly built-up/partly grass-
land). While the crop fields were classified rela-
tively well, there were some problems with the other 

classes, e.g. geometries delineating roads (built-up) 
often also covered field edges and hedgerows, leading 
to varying classification across time steps.

IEV is a highly mosaiced landscape that challenged 
both the segmentation and the classification due to 
its magnitude of details. A comparison of the land-
cover maps reveals a certain –tentative – increase in 
cropland over time (Figs. 5, 6) and, more clearly, an 

Fig. 6  Landcover persis-
tence and transitions in the 
different study sites. The 
numbers correspond to fol-
lowing land-cover classes: 
1 = built-up, 2 = cropland, 
3 = grassland, 4 = forest/
trees, 5 = water, 9 = N/A
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increase in plot size (Fig. 3). However, there is a large 
forest in the eastern part of the study area, which is 
inhomogeneous in structure and gray shade (the latter 
is true especially in the older imagery), resulting in 
not all parts being classified as forest; see IEV 2017 
as a reference for the expected extent of the forest and 
Fig. 6 for irregular variability of the forest cover.

An increase in field structure and size is particu-
larly evident for REU between 1931 and 1980. How-
ever, when specific regions are considered, such as 
the northernmost croplands, there is a further increase 
in size after 1980. Although the exact distribution of 
cropland and grassland is affected by segmentation 
and classification errors (e.g., geometries classified 
as built-up areas instead of cropland in 1980), the 
increasing importance of cropland between 1931 and 
1980 is remarkable (Figs. 5, 6). The dispersed small 
forest/tree geometries, mostly within grassland, that 
were visible in 1931 were not as abundant thereafter. 
In addition, the settlement area of the villages scat-
tered throughout the study area increases throughout 
the time series (Fig. 6, the high 1980 value is related 
to the misclassification mentioned above).

In TUR, small crop strips were visible in 1949, 
mainly in the main valley (upper half of image), but 
this cropland was converted to grasslands until 2003. 
Also, the forest grew toward the main valley from 
1949 to 2003, (Figs.  5, 6) although this change was 
not as visible, due to a large forest geometry that also 
covers a substantial area of grassland. From 2003 to 
2018 there is a massive clear-cut in the south-eastern 
quadrant of the image (partly not classified, but still 
tentatively visible in Fig. 6).

Perceived and remembered landscape change

Farmers described a variety of landscape changes, 
with changes in farm management, landscape struc-
ture, and infrastructure frequently mentioned across 
all study sites, accompanied by changes in fauna and 
flora, land-cover, and level of activity that were per-
ceived in selected study sites (Fig.  7; see SI II for 
details on the categories (Table  1) and study sites 
(Fig.  1). In each study site there were also a couple 
of interviewees who reported that they have not per-
ceived any or only little landscape changes.

Changes in farm management were the most fre-
quently reported landscape change and the only land-
scape change identified across all study sites. The 
most prevalent type of farm management change was 
related to increasing field size, but also to changes 
in farm strategy (e.g., changes in crops/livestock, 
adopting organic labels), landscape interventions 
(e.g., leveling of land, irrigation), and shifts in farm 
composition (e.g., trend toward larger and fewer 
farms, abandonment). Some interviewees reported 
partial greening due to private ecological initiatives 
(e.g., flower meadows, greener field margins). In a 
few interviews, the homogeneous maintenance of 
e.g., roadside ditches and railway embankments was 
criticized. Changes in landscape structure were often 
related to a decrease in field trees (often fruit trees) 
and formed an important part of the narratives in 
SMP, IEV and REU: “When we took over the land, 
while your grandfather was alive, one left the apple 
trees. But ten days after he died, we cut it all down. 
Because before, he didn’t want to, eh, ohlala. One 
shouldn’t have touched it. Because with the tractors 
around the apple trees, it was a mess, it wasn’t pos-
sible” (IEV, F7). Whereas in some sites a decrease 
in linear green elements, such as hedgerows or 
lines of trees was reported, especially for the period 
1960–1980, other interviewees perceived an increase 
in both trees and linear green elements in more recent 
years. Infrastructural change was often related to the 
built environment, such as new highways/roads, train 
lines, and settlement expansions, but also to blue or 
green infrastructure, e.g. a newly founded conserva-
tion area in REU. Interviewees also reported changes 
in fauna and flora, such as decreases in the number of 
hares, frogs and plants, or increases in the number of 
wild boars and beavers. Observations related to land-
cover included references to the persistence of crop-
land and the transformation into cropland, but also a 
change from arable land to forest in TUR. Some inter-
viewees also reported ‘invisible’ changes in the land-
scape, for example the increasing noise pollution of 
wind turbines, not knowing the people of the village 
anymore, or increased activity due to the presence of 
more people and traffic in the landscape.
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To illustrate perceived landscape changes (Fig. 7) 
in the study sites in more depth, we constructed nar-
ratives based on the OHI data (see SI II; Table 4 for 
a short version). These narratives include linkages 
between landscape change types, drivers and values 
attributed to perceived changes.

Comparison of findings from the two methods

In the following, the results of the two methods are 
compared and summarized.

In SMP, there is evidence from both methods of an 
increase in field size as a marker of agricultural inten-
sification, especially from 2002 to 2017. This links 
well to the development and simultaneous land con-
solidation mentioned in the OHIs, as well as the drive 
for further specialization on arable land. What is only 
evident in the OHIs is that there were further conse-
quences of this development on landscape structures 
and flora and fauna.

In FLE, both methods show the expansion of the 
local town Dronten, but few interviewees talked 
about it, which makes the mapping useful to under-
line this development. The OHIs, on the other hand, 

show the relevant connection between the devel-
opment of civil infrastructure and increased activ-
ity in the landscape to perceived landscape change. 
While an increase in field size is difficult to gauge 
here, insights from the OHIs can explain why this 
change was difficult for the algorithms to classify: 
as FLE was constructed for agriculture, a certain 
standard plot size was defined, which was initially 
used for multiple crops but was reduced over time, 
ultimately suiting only one or two crops. While 
the algorithm was successful in differentiating the 
plots, the seemingly smooth transition from one 
crop to another in the 1981 aerial image made it dif-
ficult to identify the different crops in the field. This 
very specific differentiation between plot size and 
the area on which one crop is planted was a topic 
in the OHIs, with interviewees explaining that their 
fields did not increase in size, but rather the amount 
of crops per field decreased. Although not captured 
due to the generalized land-cover categories, wind-
mills were quite impressively segmented in the 
2000 and 2020 images, and they were also a major 
theme in the OHIs.

The mapped increase in field size in QUP between 
1949 and 1975 overlaps with the accounts from the 

Fig. 7  Landscape change 
types across the study sites. 
The landscape change types 
on the x-axis are ranked 
according to the overall 
prevalence with which 
they occurred across all 
study sites (left = high, 
right = low). Frequencies 
were calculated for each 
study site and category 
(Table 1, SI II) and then 
summed for the corre-
sponding landscape change 
type. This means that the 
frequencies shown in the 
figure can exceed 100%. 
See Table 1 for full names 
of study sites
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OHIs of the industrialization phase of the planned 
economy during socialism. The subsequent decrease 
in field size is explained in the OHIs with the reor-
ganization of agriculture after the collapse of social-
ism, but it would have been expected to have already 
started between 1986 and 2006, which may be an 
indication that the mapped field sizes for 2006 have 
some uncertainties. Although not fully identifi-
able, due to the coarse land-cover categories and to 
misclassifications, the appearance of windmills and 
a highway and their timing coincide with the OHI 
statements. While these changes appear to occupy a 
small area compared with the whole study area, the 
OHIs provided the additional personal insight that 
these changes had quite an impact on both the visual 
appearance of the landscape and the instrumental 
value, as this land could no longer be used for agri-
culture. The planting of the windbreak hedgerows 

mentioned in the OHIs was not classified clearly in 
the land-cover maps.

In IEV, both methods show an increase in field 
size, with the mapping results showing a continuous 
increase. The OHIs closely linked the increase in field 
size to the decrease in trees and hedgerows, but this 
could not be distilled in the mapping, due to the very 
general categories used and the poor delineation of 
hedgerows and trees. The increase in arable land is 
in line with the agricultural development mentioned 
in the overall OHIs, with interviewees often focusing 
mainly on grassland at the beginning of their careers 
and increasing crop production since then.

The impact of land consolidation/melioration 
mentioned for REU in the OHIs is also reflected in 
the aerial imagery, as the change from a predomi-
nantly grassland/wetland area and small crop fields 
to a simplified landscape structured by fields and 
increased cropland. Another factor contributing 

Table 4  Overview of typical landscape changes and related remarks in the study sites

1 See Table 1 for full names of study sites

Study 
 site1

Key points from narratives (SI II)

SMP - Intensification accelerated through development of large-scale irrigation systems and linked to land consolidation
- Increased focus on cropland, with a decrease in trees and bushes; recent developments are noted with a tinge of regret
- Decrease in frogs since the change in the irrigation systems, as canals are no longer needed/filled with water

FLE - Change of farm types in the landscape (in terms of both strategy and size)
- Agricultural machinery seen as the reason for a field size increase and a reduction in hedgerows and trees
- Windmills as a conflict point, due to perceived unfair farm allocation
- Growth of a nearby city, including a larger road, a trainline and more traffic

QUP - Socialist industrialization in the 1960s had a huge impact on the landscape by making small strip-like fields huge; per-
ceived as something for which today’s farmers are not responsible

- Decrease in field size after German reunification
- Private efforts to plant hedgerows as wind protection and biodiversity promotion areas in a part of the study area
- Infrastructure projects after reunification (e.g. highway, settlements) changed the landscape; often linked to the resulting 

loss of agricultural land, i.e. a loss of instrumental landscape value
IEV - Cutting down apple trees and hedgerows was a central topic

- Decrease in trees/hedgerows linked to subsidies given to cut them down in the early 1960s, but also to the farmers’ 
desire to modernize the farm

- Development considered positive, with single remarks of regret about fragmentation of the ‘bocage’ (hedgerow system)
REU - Land consolidation and melioration in the 1980s triggered a dynamic period of landscape change, with fields becoming 

larger and wetlands being drained and turned into farmland
- Part of the land consolidation/melioration effort was the addition of hedgerows and the creation of a new nature reserve
- Reception of the nature reserve ranged from annoyance, as it meant land could not be used for agriculture, to praise for 

its value in promoting biodiversity and as a recreational area
- Decrease in single trees within meadows and fields (mostly fruit trees) due to cold winters, tree felling subsidies from 

the state, and to make fields more workable with machinery
TUR - Abandonment of terraces and forest regrowth were central topics; linked to an increase in wild animals

- Melancholy toward development; view that younger people no longer value home-grown food
- Intensive grassland introduced during socialism leading to loss in meadow diversity
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to this simplification is the decrease in trees, both 
mentioned in the OHIs and visible as a decrease in 
small forest/tree geometries within the grassland 
between 1949 and 1980.

The OHIs from TUR indicated a clear trend of 
abandonment and forest regrowth, which is closely 
linked to a sense of grief. Over the study period, 
parts of the forest appear to have grown in the land-
cover maps and aerial images. However, there are 
also massive clear-cuts visible in the spatial data 
between 2003 and 2018, which were not recorded in 
any of the OHIs. According to the OHIs, the change 
toward intensification of grassland and away from 
crop production already started during socialism.

In conclusion, both methods allowed insights 
into characteristic landscape changes for the study 
sites (Table 5). Thanks to the ability to distinguish 
between cropland and further arable land, a change 
in field size could be shown from the aerial imagery. 
Apart from using field size change as a proxy for 
management changes, the landscape mapping was 
limited to the land-cover aspect of landscape. The 
OHIs, on the other hand, pointed to a wide array of 
landscape changes, with physical landscape changes 
often referred to through changes in farm manage-
ment and land use. In many study sites, the increase 
in the size of arable fields was widely discussed in 
the OHIs, which is also reflected in the landscape 
mapping (Fig.  3). The OHIs provided evidence of 
landscape changes that could not be mapped due to 
their size (i.e., spatial resolution not sufficient) or 
thematic detail (e.g., wind turbines, ditches, single 
trees, or linear green elements). Further, some land-
scape changes identified as important in OHIs (e.g., 
the building of new highways and train lines in 
QUP, which reduced agricultural land) only cov-
ered a small part of the area covered by the aerial 
image, which has to be considered in comparisons 
based on the spatial extent of land-cover classes. 
An interesting result was achieved for TUR, where 
mapping revealed that large forest patches were 
clear-cut between 2003 and 2017. However, none 
of the interviewees mentioned this, and they only 
reported forest expansion into sloping and remote 
agricultural land. Further, the OHIs provided ample 
information on drivers behind observed landscape 
changes, leading to a better understanding of the 
processes.
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Discussion

Methodological considerations

In this study we found a strong complementarity 
between two fundamentally different approaches to 
analyzing historical landscape change. Each of the 
individual methods has limitations and inaccura-
cies, but together they lead to better insight into the 
landscape dynamics. Comparison can indicate (dis)
agreement between mapped landscape change based 
on remote sensing and landscape change as remem-
bered by local stakeholders. This provided, for exam-
ple, insights into landscape changes that could not 
be mapped, or land-cover changes that were only 
mapped for small areas but were remembered as hav-
ing a large impact.

While our remote sensing analysis was able 
to facilitate land-cover change mapping at a high 
speed, allowing for image repetition in several 
time steps and multiple study landscapes, we also 
encountered several limitations of the standardized 
workflow. Our model accuracies based on test data 
were comparable to those in other studies using 
BW aerial imagery in which multiple land-cover 
classes were classified (Adugna et al. 2022; Kinder-
mann et al. 2023), but they were lower than in stud-
ies focusing on only one land-cover class (Vogels 
et  al. 2017; Whiteside et  al. 2020). Applying the 
model on the segmented polygons brought together 
the uncertainties of the segmentation and the clas-
sification. Uncertainties were introduced through 
too coarse/fine segmentation,  as well as misclas-
sifications due to similar gray shades for differ-
ent land-cover classes or due to polygons covering 
more than one land-cover type. In the arable land-
scape classified using MA, cropland was classified 
relatively well, while other land-cover classes were 
occasionally also classified as cropland. For the 
mixed landscape classified using MM, grassland—
cropland and grassland—forest confusions were 
often observed. Since historical aerial BW imagery 
has limited discriminative power, as it has only one 
intensity channel to begin with, mixing different 
image qualities (i.e., for different study sites and 
time steps) added another challenge, due to vary-
ing image noise and spatial resolution. In addition, 
depending on the type of landscape, the sensor, the 
phenological season, and the lighting conditions, 

the same land-cover feature can be described by dif-
ferent spectral, textural and geometric properties. 
To balance the reliance on one spectral band, we 
applied texture metrics/geometry, which improved 
the analysis but was limited by the aforementioned 
challenges and by segmented geometries that 
were not always reliable. To address these issues, 
context-aware machine learning may be a way to 
increase the predictive power of land-cover clas-
sification based on BW aerial imagery (Ratajczak 
et  al. 2019, Khan and Bassalamah 2023). Another 
way to improve the reliability of the results would 
be to train models specifically based on land-cover 
categories, variables and training data that suit the 
local conditions (Kindermann et  al. 2023). A fur-
ther option could be a post-processing of the result 
based on logical rules in a geographic information 
system (e.g., no small polygons of the built-up cat-
egory allowed within cropland) or manual correc-
tions. While there are still issues with the automated 
land-cover classification of BW imagery, we see an 
automated approach as a step toward the possibil-
ity of classifying a variety of landscapes over larger 
regions and more time steps than manual mapping 
would allow (Ratajczak et  al. 2019). More time 
steps mean a higher temporal resolution and thus a 
better dating of landscape change processes and an 
improved ability to highlight more or less dynamic 
times, which can be an asset for e.g. landscape con-
nectivity studies (Uroy et al. 2021).

Mapping change in several time steps also makes 
it possible to more accurately date and spatially allo-
cate information from OHIs. Even though possibili-
ties of remote sensing increase with higher spatial 
and temporal resolutions, as well as higher comput-
ing power, what is mappable is limited to what can 
be ‘seen’ from above. This can lead to the misinter-
pretation of change, but also might not capture full 
processes, e.g., excluding parts that take place below 
the canopy (Fox et al. 2017). In addition, when estab-
lishing a land-cover classification, decisions made by 
the scientist about research questions, as well as what 
should be mapped and how, influence the processes 
that are captured (Messerli et al. 2009; del Río-Mena 
et al. 2023).

The OHIs proved to be a valuable tool for gaining 
insight into landscape change over several decades, 
which is consistent with findings from other studies 
(Bürgi et  al. 2017; Nimmo et  al. 2020; Zhou et  al. 
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2022). Often, landscape changes were mentioned in 
‘logical’ packages, such as the interlinkage between 
field size increase and the simultaneous decrease in 
the number of trees. Further, many interviewees men-
tioned drivers associated with some of the changes. 
These  drivers were often connected to an event or 
period, such as the land consolidation in REU, the 
further development of the irrigation system in SMP, 
or the industrialization phase during socialism in 
QUP. Finally, positive and negative connotations were 
attached to the observed landscape changes, typically 
when the landscape change triggered an alignment or 
distortion with instrumental or relational landscape 
values. For farmers in IEV, for example, the expan-
sion of farming was both an opportunity to rationalize 
and mechanize farm work and a sign of progress.

While we only considered changes during the life-
time of the interviewees, which more or less coin-
cided with the aerial imagery, there are some stud-
ies that use participatory approaches to reconstruct 
landscape change further back in time than spatial 
data are available, relying on oral tradition (Brown 
et al. 2018). As we asked about landscape change in 
general during the OHIs, a variety of aspects were 
mentioned, including attributed landscape values 
and drivers of change. Depending on the focus of the 
study, it could be worthwhile to more specifically ask 
about relational and instrumental values attributed to 
landscape changes to gain an even deeper insight in 
the meaning of landscape change for the local pop-
ulation (Stenseke 2018; Riechers et  al. 2022; van 
Noordwijk et  al. 2023) and its impact on their well-
being (Fagerholm et  al. 2016). We considered only 
farmers for the OHIs, which evidently impacted the 
narratives of landscape change; responses could 
vary across stakeholder groups (Ujházy et  al. 2020; 
Frei et al. 2022). Depending on the aim of the study, 
diversifying the demographic and professional back-
grounds of the interviewees would provide a broader 
local perspective on landscape change and interest-
ing insights into diverging views. Moreover, when 
interviewees are asked about landscape change in 
a normal interview setting, it is difficult to place the 
mentioned change in the landscape at a later point. 
For this challenge, participatory mapping approaches 
are an important research avenue (Fagerholm et  al. 
2022). Letting interviewees map the location where 
they perceived landscape changes also could help in 
assessing whether differing narratives of interviewees 

on landscape change—as sometimes encountered in 
our interviews – are based on different subjective per-
spectives or result from interviewees referring to dif-
ferent parts of the landscape. When analyzing causes/
driving forces of landscape change, it is beneficial 
to combine OHIs with complementary source types, 
such as newspaper articles, planning documents or 
local statistical data (Kerselaers 2013, Eiter et  al. 
2016), in order to compensate for the limitations of 
individual sources (Cresswell 2003) and to account 
for different discourses of historical development 
(Bürgi et al. 2013; Abrams 2016).

Challenges and opportunities for mixed-method 
approaches

Mixed-method approaches for identifying and better 
understanding landscape changes face several chal-
lenges and opportunities, both thematic and methodo-
logical. However, the combination of remote sensing 
and qualitative stakeholder information on landscape 
change provides two essential perspectives for a bet-
ter understanding of ecosystem services and human 
well-being in changing landscapes. When compar-
ing these two sources, it should be kept in mind that 
both methods have specific strengths and qualities in 
bringing insights into landscape change and results 
should be interpreted accordingly. For example, if 
interview statements deviate from ground-truthed 
mapped landscape processes, they are only wrong and 
unreliable regarding the mapping aim. However, they 
still provide invaluable information about the under-
standing of landscape change by providing insight 
into stakeholders’ landscape perceptions and how 
they are remembered and reported (Abrams 2016). In 
such a case, following up on the reason for the mis-
match could enrich the analysis greatly through fos-
tering an understanding of different perspectives on 
landscape change (Knierim et  al. 2021). For exam-
ple, the case observed in TUR fits into this pattern. 
While it is very clear from the remote sensing image 
that there are clear-cuts, it is not in the farmers’ nar-
rative of landscape change. An interpretation of this 
discrepancy is that clear-cuts are perceived as a result 
of standard forest management practice/disturbance 
(Senf and Seidl 2021) and therefore not remembered 
as a landscape change.

When bringing qualitative and quantitative data 
together, the order in which the approaches are used 
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is essential. In this study, data for both methods was 
collected and analyzed individually and then trian-
gulated. Addressing stakeholders first has the advan-
tage that observations that were important to the 
interviewees or important information about certain 
management changes can help to inform decisions on 
which landscape changes to map (Isager and Broge 
2007; Berget et al. 2021). Further, it can give insights 
into temporal land uses (Mathur and Bhattacha-
rya 2023) or land uses that are not captured through 
remote sensing data (Fox et  al. 2017). An exchange 
with local stakeholders further makes it possi-
ble for landscape changes seen as important by the 
stakeholder to be  prioritized  by the remote sensing 
approach, such as the change in number of trees and 
hedges in IEV, REU and SMP. Also, local knowledge 
through the stakeholder perspective can point to land-
use practices that are hard to recognize from ‘above’ 
or improve the understanding, and hence the map-
ping, of dynamic systems like small-scale swidden 
agriculture (Isager and Broge 2007; Fox et al. 2017; 
Berget et al. 2021).

Mapping landscape changes before collecting the 
local stakeholders’ perspectives, on the other hand, 
has the advantage that hot spots of LULC can be 
detected inductively, and interviewees can then be 
approached about why changes occurred in certain 
places (Dimopoulos and Kizos 2020). Of course, the 
two approaches could also be combined by, e.g., con-
ducting a first series of interviews to support the map-
ping procedure, followed by a second series in which 
the results of the mapping are discussed with local 
stakeholders. However, such combinations are time 
intensive. In any way, a mixed-methods approach is 
a step toward transdisciplinary research efforts, which 
are important for building momentum for transforma-
tive change based on local solutions.

Conclusions

Mixed-methods approaches that combine information 
on physical land-cover change with local stakehold-
ers’ perspectives make it possible to capture widely 
different dimensions of landscape change. Combin-
ing these approaches must be done based on insights 
into the strengths and limitations of both approaches. 
There are, for example, still caveats in the automatic 

classification of historical aerial imagery and the reli-
able identification of land-change processes. OHIs 
lack the power to quantitatively report on landscape 
change, but they provide invaluable information about 
the local perception and impact of landscape change 
and its drivers. The combination of top–down remote 
sensing information and bottom–up local insights 
not only offers a gain in content, but also can trig-
ger exchange between two different ways to approach 
landscape change. Bringing the local perspective 
closer to scientists and policy makers and a broader 
landscape perspective to the stakeholders could be 
an important cornerstone in efforts to design targeted 
landscape-level solutions for more sustainable land-
scape development.
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