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Unobtrusive measurement of gait 
parameters using seismographs: 
An observational study
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Stephan M. Gerber 1

Analyzing irregularities in walking patterns helps detect human locomotion abnormalities that can 
signal health changes. Traditional observation-based assessments have limitations due to subjective 
biases and capture only a single time point. Ambient and wearable sensor technologies allow 
continuous and objective locomotion monitoring but face challenges due to the need for specialized 
expertise and user compliance. This work proposes a seismograph-based algorithm for quantifying 
human gait, incorporating a step extraction algorithm derived from mathematical morphologies, with 
the goal of achieving the accuracy of clinical reference systems. To evaluate our method, we compared 
the gait parameters of 50 healthy participants, as recorded by seismographs, and those obtained from 
reference systems (a pressure-sensitive walkway and a camera system). Participants performed four 
walking tests, including traversing a walkway and completing the timed up-and-go (TUG) test. In our 
findings, we observed linear relationships with strong positive correlations (R2 > 0.9) and tight 95% 
confidence intervals for all gait parameters (step time, cycle time, ambulation time, and cadence). We 
demonstrated that clinical gait parameters and TUG mobility test timings can be accurately derived 
from seismographic signals, with our method exhibiting no significant differences from established 
clinical reference systems.

Gait analysis, the systematic study of walking, serves as a medical procedure for evaluating and interpreting 
human  locomotion1. Typically, this type of locomotion analysis is performed through assessments based on 
human observation or with the help of advanced sensor technology. Specifically, changes in locomotion patterns 
are examined over time to identify potential signs of abnormalities that may indicate underlying health issues or 
the presence of injuries. Observing such changes has been demonstrated to be valuable in detecting conditions 
associated with aging and neurodegenerative  diseases2–5.

Early detection of symptoms related to these conditions enables prompt treatment of the affected patients, 
which helps to preserve their independence and quality of  life6. In clinical practice, observation-based movement 
assessments are carried out by specialists. However, these assessments are limited by the variability and inconsist-
ency caused by subjective  biases7, which are a matter of concern, given that the assessments directly influence the 
determination of patient-specific interventions and medical  treatments8. Furthermore, such assessments only 
capture a single moment in time, potentially complicating the early diagnosis of emerging diseases or the tracking 
of disease progression. Repeated assessments over time may be necessary to determine changes in an individual’s 
health  status8. However, frequent medical visits or long-term stays at expensive healthcare facilities are currently 
required in standard practice, ultimately contributing to the bottleneck in performing long-term  assessments9.

This limitation can be overcome using advanced sensor technology through the incorporation of health 
monitoring in smart home solutions, enabling older adults to remain in their homes and thereby reducing the 
need for institutional care  10. Typically characterized as being either ambient or wearable, these sensor technolo-
gies are used to quantify and extend the continuity of the locomotion analysis by deriving spatiotemporal gait 
parameters 11,12. In terms of ambient sensors, pressure-sensitive walkways are a conventional clinical reference 
system used to measure forces while walking 13. However, despite their accuracy, these walkways are limited by 
their measurement area (because of their fixed length and width) and high acquisition costs. Motion capture 
systems are a popular ambient sensor technology that can be used to assess human locomotion by tracking 
markers placed on key anatomical features 14,15. These markers are used to track positions and calculate veloc-
ity, acceleration, and joint angles, but they often require expertise in their placement and data interpretation. 
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Moreover, privacy concerns, physical challenges, and possible occlusion limit the practical application in patients’ 
homes 15. In contrast, wearable inertial measurement units, attached to the individual’s body, offer an affordable 
and portable solution for assessing acceleration and rotation (e.g., they can be worn on the feet to measure gait). 
However, they are prone to time-induced drift and need to be calibrated, and the extraction of clinical features 
like gait information requires algorithmic processing 16. Furthermore, their use in uncontrolled settings (e.g., 
long-term measurements at home), particularly by older adults or patients with neurodegenerative conditions, 
can be challenging owing to low acceptance and compliance rates, potentially making them difficult to use for 
longitudinal studies 17,18. Thus, there is a need for a robust, unintrusive, and contactless measurement system 
capable of monitoring human gait over prolonged periods in clinical and residential settings that requires mini-
mal user engagement and is cost-effective.

In light of these requirements, seismographs are a promising ambient sensor technology that can overcome 
these challenges while offering a high degree of user compliance 19. These vibration-based sensors, when com-
bined with supervised classification techniques, have been demonstrated to accurately recognize the footsteps of 
individuals and can even differentiate between individuals 20,21. Wang et al. proposed an unsupervised method 
based on morphological operators to extract footstep events from seismographic signals, but without calculating 
clinical gait parameters or comparing their derived steps to a reference system 22.

Despite the aforementioned limitations, the work of Wang et al. helped us develop a morphological operator 
complemented by spatiotemporal filters to measure clinical gait parameters accurately. The objective of this study 
was to present a seismograph-based methodology to quantify human gait and streamline timed gait assessments, 
specifically focusing on the frequently used timed up-and-go (TUG) test 23. We hypothesized that the accuracy 
of gait parameters of healthy participants measured with seismographs in a home-like environment is not sig-
nificantly different from that of gait parameters measured with the reference system, namely a pressure-sensitive 
walkway. Furthermore, we hypothesized that TUG timings between the seismographs and the camera system 
were not significantly different.

Results
Descriptive analysis of step length and velocity
The distributions of step lengths and velocities showed similar characteristics for all conducted experiments 
(Fig. 1). The mean velocity of the pressure-sensitive walkways was 103.0 cm/s (SD = 16.6 cm/s), ranging between 
48.3 and 167.0 cm/s, and the mean velocity of the seismograph was 102.9 cm/s (SD = 16.5 cm/s) ranging between 
48.4 and 165.5 cm/s. The mean step length of the pressure-sensitive walkway was 60.9 cm (SD = 3.9 cm), ranging 
between 49.8 and 86.2 cm, and the mean step length of the seismograph was 60.7 cm (SD = 4.2 cm), ranging 
between 47.1 and 82.9 cm.

In this study, a total of 200 ambulation experiments were performed and recorded by 50 participants. The 
proposed seismograph method detected the exact number of performed steps (1577 of the 1577 steps). When 
employing a single seismograph-Seismograph 1, Seismograph 2, or Seismograph 3-the proposed method identi-
fied 1565, 1573, and 1567 steps out of 1577 steps, respectively. Among these ambulation experiments, the dis-
tribution of Free Walk 1 (blue crosses in Fig. 1) covered a wider, less-centered range in step length and velocity 
than the distribution of Free Walk 2 (orange circles in Fig. 1). Moreover, certain seismograph step length values 
in Free Walk 1 were either over- or underestimated compared with the pressure-sensitive walkway. The other 
three ambulation experiments (i.e., Free Walk 2, Swift Walk, and Normal Walk) exhibited matching distributions.

Figure 1.  Distributions of step lengths and velocities across the different ambulation experiments. The 
pressure-sensitive walkway distribution is shown on the left (a), and the distribution generated using the 
seismographs is shown on the right (b). The blue crosses and orange circles represent free-walking data, the 
green rectangles represent fast-walking (120 bpm) data, and the red triangles represent normal-walking (90 
bpm) data.
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Comparison of gait parameters between seismographs and walkway
The outcomes of the paired two-sample t-tests revealed no statistically significant difference between the gait 
parameters measured with the pressure-sensitive walkway and those measured with seismographs (Table 1). 
Furthermore, for all evaluated gait parameters, similar mean, and standard deviation values were found with 
small associated effect sizes (d < 0.2). Likewise, upon categorizing the measured individuals based on age (e.g., 
those above 40 years and those 40 years or younger), there was no significant difference in the gait analysis results 
obtained from both the pressure-sensitive walkway and the seismographs. Comparable outcomes were also found 
when different age groups were formed (detailed results are available in our repository)24.

We found a significant, strong positive correlation with small standard errors for all analyzed gait parameters 
between the measurements obtained with seismographs and those obtained with the pressure-sensitive walk-
way (Table 2). The Pearson correlation coefficients were above 0.970, with the exception of step length, which 
exhibited a Pearson correlation coefficient of 0.804. Furthermore, the analysis revealed that for all assessed gait 
parameters, with the exception of step length, both the lower and upper bounds of the 95% confidence intervals 
were high (LL > 0.950 and UL > 0.975). Conversely, the confidence interval for step length ranged from 0.749 to 
0.848, indicating a lower degree of correlation relative to the other parameters.

The F-statistics showed significant linear relationships (p < 0.001) with slopes close to one between gait 
parameters measured using the seismographs and the pressure-sensitive walkway (Fig. 2). In this context, high 
coefficients of determination (i.e., R2 > 0.9 ) were found for the analyzed gait parameters except for step length, 
which exhibited a moderate coefficient of determination ( R2

= 0.626 ), as further detailed in the supplementary 
material (Supplementary Material, Fig. S2).

The Bland-Altman plots revealed an agreement between gait parameters measured by the pressure-sensitive 
walkway and the seismographs (Fig. 3). The analysis identified negligible biases, indicating an absence of pro-
portional bias and a near-zero constant bias. Furthermore, the limits of agreement, which encompass 95% of the 
discrepancies between the two sets of measurements, demonstrated acceptable values with only a few outliers. 
Additionally, the variation in differences across various means was uniformly low and consistent.

TUG test assessments with seismographs
A total of 50 TUG tests were recorded. The TUG test timings for the camera system ranged between 5.338 s 
and 10.811 s, and those for the seismographs ranged between 5.110 s and 10.670 s. There was no significant 
difference in measured TUG times between the camera system ( M = 8.303s, SD = 1.250s ) and the seismo-
graphs ( M = 8.301s , SD = 1.273s ), t(50) = −0.038 , p = 0.970 . We also observed a significant linear relationship 

Table 1.  Paired two-sample t-tests were conducted on the gait parameters, namely step time, cycle time, 
ambulation time, cadence, velocity, and step length. No significant differences were found between the gait 
measurements on the pressure-sensitive walkway and the seismograph at the specified significance level (cf. 
determined p-values, which were always larger). The degree of freedom for all tests was 199. Furthermore, the 
mean and standard deviation values were comparable across both measurement devices. A small size effect was 
observed, as indicated by Cohen’s d statistic.

Gait parameter

Walkway Seismograph

t(200) p dM SD M SD

Step Time (s) 0.604 0.092 0.603 0.092 -1.583 0.115 0.008

Cycle Time (s) 1.206 0.186 1.205 0.185 -0.556 0.579 0.003

Ambulation Time (s) 4.206 0.737 4.199 0.737 -1.528 0.128 0.011

Cadence  (min−1) 101.230 13.780 101.378 13.620 0.893 0.373 0.011

Velocity (cm/s) 103.035 16.603 102.987 16.529 -0.168 0.867 0.003

Step Length (cm) 60.997 3.918 60.737 4.200 -1.436 0.153 0.064

Table 2.  Pearson correlation statistics of simple linear regression models between seismographic and pressure-
sensitive walkway measurements. We observed a strong positive correlation for all gait parameters. Number of 
walks = 200; CI = confidence interval; LL = lower limit; UL = upper limit; SE = standard error; r is the Pearson 
correlation coefficient.

Gait parameter r(200) SE

95% CI

pLL UL

Step Time (s) 0.996 0.006 0.996 0.998 < 0.001

Cycle Time (s) 0.996 0.005 0.996 0.997 < 0.001

Ambulation Time (s) 0.995 0.007 0.994 0.996 < 0.001

Cadence  (min−1) 0.985 0.012 0.981 0.989 < 0.001

Velocity (cm/s) 0.971 0.017 0.962 0.978 < 0.001

Step Length (cm) 0.804 0.039 0.749 0.848 < 0.001
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between timings measured with seismographs and the camera system ( F(1, 98) = 1.045, p < 0.001 ), with a high 
coefficient of determination ( R2

= 0.970 ) predictor. Finally, we found a strong positive correlation between the 
average camera system and seismograph timings ( r(50) = 0.985, p < 0.001).

Discussion
In this observational study, we developed a novel method for deriving clinically relevant gait parameters from 
seismographic measurements. In line with our first hypothesis, the study provided evidence showing that the 
mean values of matching gait parameters derived from seismographic and pressure-sensitive walkway meas-
urements exhibited no significant differences. Furthermore, the findings substantiated our second hypothesis, 
revealing that the TUG mobility test timings determined using the seismographs did not significantly deviate 
from those obtained using the camera system.

Consistent with Li et al.’s findings, our results confirmed the effectiveness of integrating mathematical mor-
phologies with CTF for isolating seismic events of interest (i.e., footsteps) while mitigating low-frequency 
noise in vibration signals. Compared to bandpass filtering, the CTF method exhibits greater resilience against 
the frequency mixing issue, where seismic signals and noise overlap in frequency bands. Additionally, CTF 
demonstrated great potential in diminishing low-frequency noise compared to both white and black top-hat 
 transformations25.

Although damping slightly weakened the strength of measured seismic signals, the effectiveness of our 
step extraction algorithm remained unaffected. This robustness can be attributed to a combination of stra-
tegic approaches within our methodology. Firstly, the identification of footstep events was based exclusively 
on the timestamp of peaks rather than their amplitude. Secondly, peaks produced by applying the attenuation 
stage exhibited distinct characteristics compared to non-peaks. Lastly, we implemented aggregation strategies, 
including the maximum combination of seismic signals measured by the three seismographs, to enhance any 

Figure 2.  Plots of the linear relationships of gait parameters between measurements assessed using the 
pressure-sensitive walkway (WW) and the seismographs (S). In each plot, we provide the slope and inclination 
of the fitted linear model, the determination coefficients, and the F-scores. (a) Step Time, (b) Cycle Time, (c) 
Ambulation Time, and (d) Cadence.

Figure 3.  Bland-Altman plots were used to demonstrate agreement of matching gait parameters between the 
seismograph and the walkway measurements. No proportional bias and a close-to-zero constant bias were 
found. The limits of the agreements, encompassing 95% of all differences between measurements, exhibited 
acceptable values: The step time was between − 15.27 and 13.62 ms, the cycle time was between 30.32 and 29.13 
ms, the ambulation time was between − 150.54 ms and 134.81 ms, the cadence was between − 4.45 and 4.74, the 
velocity was between − 7.90 and 7.81 cm/s, and the step length was between − 5.28 and 4.76 cm.
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diminished amplitudes, effectively counteracting potential negative effects on signal quality (Supplementary 
Material, Section S5). Our findings demonstrated that even with the use of just one seismograph, our algorithm 
was capable of successfully identifying nearly 99% of all performed steps.

The comparison between gait parameters - including step time, cycle time, ambulation time, cadence, speed, 
and step length - measured with seismographs and the pressure-sensitive walkway showed a linear relationship 
with strong positive correlations. These findings align with existing studies regarding the accuracy of temporal 
gait  measurement16,26,27. Additionally, the distributions of velocity and step length obtained through the seis-
mograph closely mirrored those obtained through the pressure-sensitive walkway. Given that such distributions 
have been previously identified as indicators of health changes in older adults, our results imply that seismo-
graphs could effectively function as a reliable digital tool for monitoring these health  variations28. It is worth 
noting that Free Walk 2 was performed immediately after the 90bpm walk, leading to the assumption that the 
metronome beat impacted participants’ walking behavior. Although the Free Walk 2 distribution diverges from 
typical free-walking behavior, the similarity between the Seismograph and Walkway distributions indicates that 
the discrepancy originates from the experiment protocol rather than the measurement techniques.

Gait parameters that were computed based on the temporal detection of two consecutive steps showed a high 
agreement between the two systems, and thus, systematic errors in step detection did not have an impact on 
them and were consistent across consecutive steps. Regarding the measurement errors, the determined ranges 
of velocity, step time, and cadence were confirmed by referring to findings from the  literature29,30. Therefore, the 
results provide evidence that the three seismographs detected steps with high consistency and reliability. These 
findings further demonstrate that seismograph-based gait assessments are a reasonable method to measure gait 
parameters in a clinically acceptable range.

In this study, the calculation of spatial gait parameters, including step and stride lengths, relied on approxi-
mations using the known length of the walkway. However, this reliance on approximation is not an inherent 
limitation of seismographic measurements themselves, as demonstrated by Mirshekari et al.31. The decision to 
use approximations stemmed from the fact that the accuracy of seismographic-based localization is contingent 
upon the sensors’ sampling rate. In our specific instance, the seismographs operate at a sampling rate of 100 Hz. 
This rate was found to be insufficient for achieving the necessary temporal resolution required for accurately 
estimating the location of seismic events of interest.

The statistical analysis conducted between the seismographs and the camera system showed a strong posi-
tive correlation and a high accuracy in assessing the timings of the TUG test. These findings indicate that the 
seismograph-based method could help to automate the evaluation of timed mobility tests, ultimately leading to a 
more objective medical assessment. Notably, an accurate assessment of these timing results was achieved without 
intrusive installation or calibration of the sensing devices. Considering the cost-effectiveness of seismographs, 
the developed method is not only promising as an ambient technology but also as a reliable solution for ongoing 
home monitoring of older  adults32.

Limitations and Outlook
First, although the linear models demonstrated high coefficients of determinations, signifying that more than 
90% percent of their variations could be explained by the model, the calculated spatial gait parameter (e.g., step 
length) performed worse than its temporal counterpart (e.g., step time). This difference in accuracy is a direct 
consequence of the low sampling rate of the chosen off-the-shelf seismograph systems, necessitating a simpli-
fied heuristic approach for calculating spatial gait parameters (i.e., the approximations we used as described 
in Table 4). Inspired by acoustic-based localization techniques, this limitation could, however, be reduced by 
increasing the measuring sampling rate and then correlating the measured temporal events across different 
seismographs with their respective  positions33. Consequently, the accuracy of the resulting step lengths would 
then solely depend on the precision of the event timestamps, but this approach would require custom-built 
sensor hardware.

Second, this study only used gait measurements from healthy participants, which potentially restricts its 
general applicability, especially considering the significant differences in gait patterns found in individuals with 
neurological disorders or in older  adults11. Hence, subsequent studies should include patients who have walking 
impairments or belong to an older adult demographic with a risk for falling.

Third, to minimize external influences that could potentially degrade the quality of the seismic measurements 
obtained, the proposed step extraction algorithm required a controlled environment, ensuring that no individu-
als other than the individual under observation. However, when considering the application of these sensors in 
real-world home environments, the presence of additional individuals in close proximity to the sensors is inevi-
table. The capability to track the steps of multiple individuals using seismic signals was demonstrated through 
the deployment of an array of  seismographs34. Although the original researchers did not delve into identifying 
individuals based on their unique seismic patterns, this area has gained significant interest in recent  years35–37. 
Consequently, for the purpose of enabling seismograph-based gait analysis in residential settings inhabited by 
multiple occupants, future studies could benefit from investigating the integration of an array-like configura-
tion of multiple sensors alongside advanced techniques for seismic-based person identification. This approach 
represents a promising direction for research, aiming to enhance the application of seismograph technology in 
everyday environments.

Conclusion
This study presents a novel seismographic-based method that can be used to measure clinical gait parameters. We 
demonstrated that the gait parameters derived using our method are not significantly worse than those assessed 
with state-of-the-art technology (i.e., video-based motion tracking systems and pressure-sensitive walkways). 
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Additionally, we showed that these cost-effective seismographic sensors work in home-like environments. The 
gait analysis algorithm is based on morphological operators that filter features of interest and simultaneously 
attenuate noise in the seismographic signal. This sensor technology allows researchers to autonomously deter-
mine clinical timings in ambulation assessments like the TUG test commonly used by medical professionals. 
Finally, these unobtrusive ambient sensors represent a promising technology with high accuracy in measuring 
clinical gait parameters outside of the hospital environment that could be used to conduct longitudinal studies 
in home-like settings.

Methods
Participants and setting
A convenience sample of 50 healthy individuals ranging in age from 19 to 71 years (mean, 32.86 years; SD, 11.08 
years) was recruited for this observational, cross-sectional  study38. The sample was gender-balanced, encom-
passing 26 women and 24 men. Participants were eligible for inclusion if they were at least 18 years of age, and 
exhibited no walking impairments that could affect their regular daily activities. The study protocol was explained 
to each participant verbally, and written informed consent was obtained prior to participation. This study was 
conducted over three weeks (from November to December 2021) in a home-like instrumented apartment, the 
NeuroTec Loft, located at the Swiss Institute for Translational and Entrepreneurial Medicine (Inselspital Bern, 
Switzerland)38,39.

This study was approved by the Ethics Committee of the Canton of Bern, Switzerland (KEK no. 2020-02771, 
date of approval: 18.03.2021) and conducted in accordance with the latest version of the Declaration of Helsinki.

Experimental procedure
Each participant undertook four predefined ambulation experiments (i.e., two free walks and two walks with a 
metronome, one to a fast beat and one to a normal beat) by walking over the walkway (Table 3) and performing 
the TUG test according to its protocol (Supplementary Material, Section S4). Prior to initiating a measurement, 
participants were provided detailed instructions on the execution of the forthcoming ambulation. To ensure that 
the participants understood the experiment instructions, they were asked to do a test run before each ambulation 
experiment. The free-walking experiments were recorded twice and conducted at a self-regulated pace, thereby 
allowing participants to choose any pace that felt comfortable and natural to them. The remaining two ambula-
tion experiments were conducted at a prespecified pace using a metronome.

During the measurement, participants were requested to traverse the walkway without wearing their shoes, 
thereby eliminating the dampening effect of footwear as a confounding variable. We did not take into account 
the influence of any further material-related damping effects concerning the seismic amplitudes, as preliminary 
measurements before our study showed distinct amplitudes associated with footstep events in the recorded 
seismic signals. To further reduce external influences that might have significantly affected the quality of the 
measured data, particularly concerning the seismic measurements, no person other than the patient being 
measured was in the vicinity of the sensor devices or walking around. For consistency, the starting position 
of every recorded walk was specified at the leftmost end of the pressure-sensitive walkway. Participants were 
requested not to leave the active area of the walkway at any point during the measurement to ensure the quality 
of the recorded data.

Data collection systems
Three seismographs (RS-4D, Raspberry Shake S.A, Alto Boquete, Panama) and two reference systems, namely 
a pressure-sensitive walkway (GAITRite� , CIR Systems Inc. Clifton, NJ 07012, USA) and a camera system 
(Qualisys QTM, Gothenburg, Sweden), were installed in the living room of the apartment to measure par-
ticipant’s gaits (Fig. 4). The three seismographs were positioned on the floor along the walkway, maintaining a 
distance of 1.5 m between each of them. The first and last sensors were placed on the right side (in the direction 
of walking), while the second was situated on the left side. This sensor arrangement was used to facilitate the 
subsequent triangulation-based algorithmic steps. The camera system was calibrated to ensure an optimal range 
of angles, with each camera directed toward the walkway. The decision to incorporate a camera system alongside 
the pressure-sensitive walkway was motivated by the limitation of the walkway’s measurement software, which 
was only capable of processing complete walks (i.e., participants walking from the starting point of the walkway 
to its end). This was especially crucial for accurately assessing timings in TUG tests, which involved a turning 
point on the walkway, resulting in crashing the measurement.

Table 3.  Three different ambulation experiments were performed by the participants under the provided 
instructions. Free walking was performed twice, and normal and fast walking were performed once. Note 
that the value N/A is used to express the notion of “not specified”, implying that this was chosen by the study 
participants.

Experiment Pace (bpm) Metronome Instruction

Free Walk N/A No Start walking from the starting point at any pace until you reach the end of the walkway

Fast Walk 120 Yes Listen to the metronome and walk to its beat. Start walking from the starting point until 
you reach the end of the walkwayNormal Walk 90 Yes
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The three seismographs were employed to quantify the ground motion. These sensors utilize integrated geo-
phones designed to measure vibrations at a low natural frequency of 4.5 Hz. This makes them ideally suited for 
accurately measuring human gait, considering that the effective natural frequency of human walking is below 
2  Hz40. The seismographs were configured to sample at a frequency of 100 Hz. A basic Python client-server 
application was developed to read the seismic samples from the RS-4D seismographs and transfer them via the 
network to a database using the Sensor Recording Software (SRS)  system41. To measure spatial and temporal gait 
parameters, a pressure-sensitive walkway was used as a reference system. The specific walkway model employed 
had an active measurement length of 4.88 m and a width of 0.61 m. The data gathered from the system were 
sampled at a frequency of 80 Hz and analyzed using the GAITRite� software (version 4.89H9). The following 
gait parameters were obtained from the analysis: average step time, average cycle time, total ambulation time, 
cadence per minute, average velocity, and average step length. In addition to the pressure-sensitive reference 
system, a markerless motion tracking system comprising 13 Miqus video cameras (further referred to as the 
camera system) was used to quantify the number of steps taken by the participants and determine the duration 
of their walking activities. All video recordings were set to a resolution of 1920 × 1080 pixels, sampled at a fre-
quency of 85 Hz. The camera recordings were used to determine the timestamps of events associated with the 
TUG test at a frame-wise precision. The timings of the video frames were extracted by using the software Adobe 
Premiere Pro CC 2020 (version 14.3.1).

Gait parameter computation
The fundamental principle of the developed algorithm originates from the premise that human footsteps can 
be likened to minor earthquakes, creating vibrations that propagate through the ground and can be detected by 
seismographs. Hence, identifying footsteps in seismic signals corresponds to determining timestamps of peaks 
that resemble earthquake seismic events. The particular stages of our seismograph-based step extraction algo-
rithm involved signal aggregation, mathematical morphology, filtering, and step detection (Fig. 5).

Initially, the measurements of the three seismographs were normalized and detrended by subtracting their 
mean values. The normalized signals were then temporally aligned and combined by applying a rolling maxi-
mum across their signals to enhance their overall quality. Such a maximum signal aggregation also has a positive 
influence on damping amplitude as it corrects degraded amplitudes, counteracting potential signal damping 
influences (Supplementary Material, Section S5).

A nonlinear reduction method based on mathematical morphologies was used to mitigate low-frequency 
noise in the seismographic signals. This type of noise attenuation can effectively identify and eliminate outliers, 
as well as extract key features, such as local peaks in time-series  data25,42,43. To attenuate the signal’s noise, the 
average of its opening and closing was derived and then subtracted from the signal, which directly corresponds 
to the definition of the compound top-hat filters (CTF) (Supplementary Material, Equation S5). The choice to 
employ Mathematical morphologies alongside CTF was grounded in their proven effectiveness in reducing 
low-frequency noise in microseismic measurements while still retaining significant seismic events, such as the 
footstep events targeted for extraction in our study, as demonstrated by Li et al.25.

The opening operation was implemented by first executing an erosion on the time series, then proceeding 
with a dilation, which helps remove sharp spikes in the data. Conversely, the closing operation was implemented 
by initially performing a dilation on the time series, followed by erosion, which helps to fill in sharp dips in the 
data. In these computations, a spherical structural element (SE) was used to dilate and erode the signal. The 
radius of our SE was hard-coded to 200 ms because this value corresponds to the duration of an average single 
footstep during human  walking22.

The resulting noise-attenuated signal was processed using two linear filters: a Hamming filter to boost peaks 
while simultaneously smoothing and a rectangular filter to eliminate potential closely adjoining double peaks. 
Both filters were employed using a 100 ms radius. Footsteps were extracted by applying a thresholding-based 
peak detector to the filtered signal. Consequently, footstep events correspond to the timing of initial contacts 
of the foot (i.e., the timestamp of the extracted peak), which were used in the gait parameter calculation. The 
robustness of the peak detector was further increased by imposing the following constraints: requiring a mini-
mum distance of 50 ms between two peaks and anticipating that the height of any potential peak would reside 

Figure 4.  Participants were measured as they walked along the carpet from left to right. The seismographs were 
placed 1.5 m apart (two on the right side and one on the left side, in the direction of walking). The total length 
of the walkway was 5.70 m, and the active measurement length was 4.88 m. Each walk was also recorded using a 
camera system.
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within the upper 95th percentile of the min-max normalized amplitudes. No additional amplitude enhancement 
procedures were performed to identify peaks, as our noise-attenuated signals exhibited distinct characteristics 
(Supplementary Material, Section S5).

In the gait analysis, the times of the extracted footstep events per ambulation were used to compute four tem-
poral parameters (step time, cycle time, ambulation time, and cadence), one spatiotemporal parameter (velocity), 
and one spatial parameter (step length) (Table 4). Concerning the methodology, the temporal parameters were 
calculated by exact computations, whereas the spatial parameters were determined by approximations by exploit-
ing the knowledge of the walkway length. A mathematical model and corresponding derivations are provided in 
the supplementary material (Supplementary Material, Section S3). This model estimates the location of seismic 
events of interest (e.g., steps) by comparing the time differences of event arrivals between time-synchronized 

Figure 5.  Illustration of the stages involved in the seismograph-based step extraction algorithm developed to 
analyze human gait. Initially, the raw seismic signals of the three seismographs were aligned and then aggregated 
using a rolling maximum window. This composite signal underwent a process involving a mathematical 
morphological operator to mitigate noise interference. Next, a peak detection algorithm was applied to the 
filtered signal to identify footstep events. The timestamps of these identified footstep events served as a key input 
for the subsequent gait analysis.

Table 4.  A list of the temporal and spatial gait parameters and how they were computed in the gait analysis of 
the measured walk. The gait parameters were determined by analyzing the timing of footstep events.

Gait Parameter Computation (per Ambulation)

Type Method

Step Time (s) Exact The average time difference of initial contact events between two steps of contralateral legs

Cycle Time (s) Exact The average difference in time between two steps of ipsilateral legs

Ambulation Time (s) Exact The sum of step times

Cadence  (min−1) Exact The ratio of the number of identified steps to the ambulation time

Velocity (cm/s) Approximated The ratio of the walkway length to the ambulation time

Step Length (cm) Approximated Average of the velocity multiplied by the step time differences
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stationary seismographs. To realize such a comparison, the seismographs must be positioned to span an area 
enclosing the seismic events to be measured.

The corresponding approximated correlation results are presented in a separate figure (Supplementary Mate-
rial, Fig. S2) so that they cannot be confused with the exact calculation results. It is also important to note that 
left- or right-footedness was not automatically determined but assigned for the first foot based on the camera 
recording.

To extract the timings of the start and end of the TUG test, a visual observation of the seismic signal com-
bined with the camera recordings was used to confirm that the initial peak of the seismic signal corresponds to 
the start of the TUG test and the last peak to the end of the test. As such, the same algorithm used for the gait 
analysis can be applied to extract the timings of the TUG test.

The source code of our gait computation algorithm is freely available on GitHub, along with detailed docu-
mentation and a gait  dataset24.

Statistical analysis
A comprehensive statistical comparison was conducted between the gait parameters computed using our seis-
mograph-based method and the measurements acquired from the reference system (i.e., the pressure-sensitive 
walkway). More specifically, the two measurement systems were analyzed by comparing the calculated gait 
parameters from four different ambulation experiments per participant (i.e., Free Walk 1, Free Walk 2, Fast Walk, 
and Normal Walk). To establish an adequate comparison, we exclusively confined the statistical analysis to those 
seismographic measurements that occurred within the time frame of the walkway recordings.

Initially, descriptive statistics of all gait parameters were calculated for the seismographs and the walkway. 
Scatter plots of the distributions in step lengths and velocities were qualitatively compared between the two 
measurement methods.

Subsequently, the presence of a significant difference between the seismograph and the walkway measurement 
methods was evaluated by performing paired two-sample t-tests for all matching gait parameters. We hypoth-
esized that the mean values of matching gait parameters between the seismograph and walkway measurements 
were not significantly different (significance level alpha = 0.05).

Next, simple linear regression was applied to the mean values of the gait parameters from all ambulation 
experiments to analyze the relationship between the two measurement systems. The necessity of a linear regres-
sion model was validated by performing an F-test. This test incorporated the residual sum of squares for each 
paired set of measured and computed gait parameters. The coefficient of determination, R2 , was calculated 
for each matching gait parameter to help clarify the error of the linear models. The correlation between the 
seismographic measurements and the walkway measurements of matching gait parameters was quantified by 
computing the Pearson correlation coefficient, r. To qualitatively interpret the correlation results, we applied the 
terminology proposed by Schober et al 44.

Finally, measured matching gait parameters were qualitatively examined using Bland-Altman plots. These 
plots were used to identify the presence of proportional and constant biases in the data within the bounds of the 
confidence intervals, as well as to determine the agreements between the matching gait parameters measured 
by the walkway and those measured by the seismographs.

The same statistical analysis procedures and visualization techniques were applied to report the results of our 
TUG test estimations and the ground-truth timings extracted from the video recordings. Our second hypothesis 
stated that the mean values of the TUG times between the seismograph and camera system were not significantly 
different.

Data availability
The raw data that support the findings of this study are not openly available due to reasons of sensitivity. The 
associated processed raw data is available from the corresponding author, M.S., upon reasonable request.
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