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Abstract: T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns,
PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs)
were shown numerous times to be important in driving B-cell and antibody responses. In this study,
we dissected the individual contributions of these parameters using newly developed “Immune-tag”
technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 enve-
lope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins
were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus
(CMV) capsid protein—nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA
was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional
Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and
repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized
mice demonstrated that each component contributed stepwise to the immunogenicity of both pro-
teins. All components combined in the CuMV VLP platform induced by far the highest antibody
responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only
if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in
optimal antibody responses.

Keywords: virus-like particles; nanostructures; B-cell responses; dengue virus neutralization

1. Introduction

The comprehensive goal for any vaccine candidate is to induce strong and long-lasting
antibody (Ab) responses. This can be achieved by displaying the epitopes of interest in a
maximally immunogenic manner [1–3]. One of the most effective strategies for designing
both protective and safe new-generation vaccines involves mimicking the characteristic
traits of pathogens, including their size, shape, and surface molecular organization, whilst
excluding their infectivity [2,3]. Thus, viral mimetics, such as virus-like particles (VLPs),
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serve as effective and well-established platforms to endow selected antigens with a viral
appearance. VLPs are nanostructures composed of spontaneously assembling proteins
that form spherical, rod-shaped, or filamentous particles [4–6]. Continuously developed
over the past four decades [4,7–10], VLP-based vaccines have evolved from targeting their
source viruses [7,8,11–25] to incorporating epitopes from various pathogens, including
viruses [26–31], bacteria [32,33], and parasites [34–38]. Moreover, they have also been used
to address chronic and non-communicable diseases [39–48].

Due to their universal properties, antigen-fused VLPs have attracted significant interest
as vaccine vectors, offering a broad spectrum of potential applications [49–52]. However,
fusing an antigen to the viral capsid or coat proteins (CPs)—building blocks of VLPs—
may result in undesirable outcomes such as the formation of insoluble inclusion bodies
(IBs) [53], alterations in the shape of folded VLPs [5], or even ablated expression. These
issues may arise due to the molecular weight of the antigen, its charge, or other sequence
peculiarities, including repeats, pseudo-termination sequences, or rare tRNA codons. To
address these, various strategies have been developed, including the expression of mosaic
VLPs [54–59], or the binding of antigens by chemical [39,60–65], enzymatic [57,66–69], or
physical [70–73] methods.

Beyond the whole viral CPs [50,51,74–77], the structural elements of CPs, such as the
β-annulus peptide [78–80], or other genetically encoded proteins capable of self-assembling
into multimeric nanostructures, are also potentially applicable in vaccine development.
These include ferritin [74,81–85], encapsulin [74,84,86–89], lumazine synthase [74,84,90–92],
transferrin [85,93–95], lactoferrin [85,96], casein [85,97–99], non-viral pyruvate dehydroge-
nase E2 protein [100–102], GCN4-based isoleucine zipper [103–105], the T4 bacteriophage
fibritin foldon [104,106,107], WA20-foldon (a complex of WA20 protein and T4 bacterio-
phage fibritin) [108,109], or magnetosomes [85,110–112].

Nanostructures, to be used as vaccine platforms, must be able to induce a significant
immune response against displayed antigens. Their design should ideally generate robust
B- and T-cell responses, including long-lived plasma cells secreting high-affinity Abs [113].
To achieve such favorable immune responses, the dynamics of antigen exposure and innate
stimulation must be optimally designed. This can be obtained by modifying both the exte-
rior and interior surfaces of nanostructures, or VLPs [114]. It involves the incorporation of
pathogen-associated molecular patterns (PAMPs)—the molecular signatures derived from
pathogens and recognized by the immune system—and pathogen-associated structural
patterns (PASPs), referring to the spatial arrangement of antigens characteristic of pathogen
surfaces [1–3]. PASPs are recognized by natural Abs and the complement system, which
enhances the uptake of a nanostructure/VLP by an antigen-presenting cell (APC), thereby
facilitating T-cell priming [115]. A classic study by Vogelstein and colleagues identified an
optimal antigen density on nanoparticles for PASP, which maximizes B-cell activation, to
be within the 5–10 nm range [116].

In contrast to PASPs, toll-like receptor (TLR)-stimulating PAMP elements included in
the interior facets might be as effective as such modifications to the exterior [55,56,59]. The
enhancement of immune response was previously demonstrated through the packaging of
ssRNA, dsRNA, and CpGs [117–120], serving as ligands for TLR 7/8, TLR3, and TLR9, re-
spectively [121–124]. Stimulation of TLR7, for instance, preferentially boosts the production
of IgG2a/c and IgG2b subclasses in mice [87,91,125,126], which are crucial for protection
against viral [92,127], bacterial [90,128], and parasite infections [93,129].

To enhance Th-cell-dependent B-cell responses, incorporating a strong, universal
T-cell epitope can be beneficial [43,59,94]. These can be integrated into the structure of
VLP/nanoparticle [43,130], but they are also used as short linear peptides [131,132], fused
to proteins [133], coupled to carbohydrates [134], or co-assembled with self-assembling
peptide nanofiber systems [135]. Examples of such universal epitopes include a Th-cell
epitope from tetanus toxin (TT) [96,136–138], the transmembrane domain of the West Nile
virus E protein [98,130], the adenovirus Ad5 E1a protein [139], or the synthetic, non-natural
Pan DR Epitope (PADRE) [131,140,141].
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PADRE is an engineered peptide known for its broad reactivity. It is capable of
binding with high or medium affinity to 15 out of the 16 most common human HLA-
DR haplotypes [131,141], as well as cross-reacting with mouse class II alleles [140,142].
Thus, PADRE, as a “universal” helper T-cell epitope, has been recognized for its effec-
tiveness in enhancing CD4+ T-cell responses [131,140,141]. Like other T-cell epitopes, it
has been utilized as a fusion peptide [131,143–151], a carbohydrate carrier [152,153], an
adjuvant [143,154,155], and has been incorporated into liposomal formulations [156] or
self-assembling nanofibers [157–159]. PADRE has been shown to be particularly useful
in development vaccine candidates that induce desired self-responses in the context of
non-communicable diseases [147,149,154–156,158,159], as demonstrated in several pre-
clinical trials across various animal models, such as rat arthritis [147] or colorectal can-
cer [149]. However, its application also extends to the development of distinct protein-
based anti-pathogenic vaccines [143–146,148,150,151,157], including those for Toxoplasma
gondii [148,150], Staphylococcus aureus [157], SARS-CoV-2 [151], or DENV-2 [144]. This
demonstrates the versatility of PADRE and suggests the potential benefits of including it in
one of the vaccine platforms presented here.

Our research on cucumber mosaic virus (CMV)-derived VLPs, termed “CuMV” in
our papers to avoid confusion with cytomegalovirus (which, like cucumber mosaic virus,
is abbreviated CMV according to the ICTV classification), demonstrated the spontaneous
encapsulation of prokaryotic ssRNA within the particles, which positively correlates with
the formation of a high-avidity IgG response [160]. The encapsulation occurs during self-
assembly in the bacterial system [55,56,59], a phenomenon consistent with findings regarding
Qβ-derived VLPs [161]. Immunological optimization of CuMV VLPs was further carried out
by incorporating into their interior facets a universal Th-cell epitope derived from TT (thus
forming CuMVTT particles), leading to the development of multiple vaccine candidates that
induce highly specific, class-switched neutralizing Abs [43,46,54–56,59,60,62,63,65,162–164].
However, the limited capacity for antigen fusion in CuMVTT VLPs has prompted us to seek
alternative vaccine platforms.

Nearly all plant CPs of icosahedral, positive-sense RNA viruses can be categorized
into four distinct structural domains, where the N-terminal “R” domain is involved in the
interaction of the viral capsid with genomic RNA [165]. In CMV, the N-terminal fragments
of R domains from B and C subunits form a unique bundle of six amphipathic helices
oriented down into the virion core case. These helices bind the viral genomic RNA both for
its packaging during particle assembly and for maintaining the stability of the assembled
particle [166]. This characteristic feature allows the CMV CP N-terminal part (termed here
nCMV) to form hexamers post-expression. When fused with a chosen antigen, it may lead
to antigen multimerization. Such “immune-tags” [167] may be used as building blocks
for vaccine candidates. Furthermore, they provide a novel approach to investigating the
individual contributions of Th, PAMPs, and PASPs to the induction of Ab responses.

The use of multimerized N-terminal fragments of CMV CPs containing functional
R domains, nCMVs, instead of the entire CuMVTT VLPs offers the versatility of gener-
ating multivalent antigens, along with the possibility of attaching TLR-ligands such as
RNA. The potential of nCMV as a viable vaccine platform, which we have termed the
“Immune-tag” [167], has been investigated here through a mechanistic approach. To this
end, the importance of additional Th, PAMPs (TLR7/8 stimulation), and PASPs (antigen
multimerization, organization, and repetitiveness) were analyzed both separately and
combined. First, the “Immune-tags” carried an enhanced green fluorescent protein (eGFP),
serving as a model antigen. eGFP, when used as a “free” antigen, has previously been
shown to be poorly immunogenic [168], eliciting only minimal Ab responses, even after
the administration of a booster dose [169]. Hence, eGFP may represent a useful protein to
demonstrate and quantify the effectiveness of various immunogenicity-enhancing stimuli,
including the potential of nCMV-based “Immune-tags”.

To further assess the capability of the “Immune-tag”-based vaccine candidate in a
context reflecting authentic medical need, we developed a construct targeting dengue virus
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1 (DENV-1). This evaluation aimed to determine its ability to elicit DENV-neutralizing
Abs, addressing a significant public health concern in warm-climate regions where Aedes
mosquito vectors are prevalent [170–172]. As an experimental, biologically relevant antigen,
we selected the third domain of DENV-1 envelope protein (DV1 EDIII) [173–175], which
has been identified to contain several serotype-specific neutralizing epitopes [176–180],
indicating that anti-EDIII Abs may have reduced potential to mediate the phenomenon
of Ab-dependent enhancement (ADE) [180–183]. In our previous works, we have demon-
strated for two other flaviviruses (West Nile and Zika) that the EDIII domain, when
expressed alone, folds properly and is capable of inducing neutralizing and protective
Abs [60,184].

Our results indicate that antigen multimerization, PAMPs, and extra Th each individ-
ually contribute to the elicitation of Ab responses, but the combination of these elements
in a non-repetitive antigen carrier does not result in more than an additive increase in
response. In contrast, combining all parameters into a highly repetitive, VLP-based vaccine
qualitatively enhances the Ab responses. Thus, incorporating PASPs along with extra Th
and PAMPs and integrating all stimuli into a single entity was the essential feature for
maximal immunogenicity.

2. Materials and Methods
2.1. Cloning of “Immune-Tag” nCMV-eGFP, nCMV-PADRE-eGFP, nCMV-PADRE-DV1 Variants

To create nCMV-containing constructs, a 171 bp long fragment from the wild-type (WT)
CMV CP gene with an arginine-rich N-terminal domain (1MDKSESTSAGRSRRRRPRRGS-
RSAPSSADANFRVLSQQLSRLNKTLAAGRPTINHPT57), was amplified by PCR using
Pfu polymerase (Thermo Fisher Scientific, Waltham, MA, USA) with the oligonucleotides
CmN-NcoF and CmN-BamR (Table 1), which contained restriction sites for NcoI (Thermo
Fisher Scientific, Waltham, MA, USA) and BamHI (Thermo Fisher Scientific, Waltham,
MA, USA), respectively. The pET-CMVwt plasmid [43] was used as the template. The
PCR product was extracted from a 0.8% native agarose gel (NAG) using the GeneJet
gel extraction kit (Thermo Fisher Scientific, Waltham, MA, USA) following the provided
protocol. Subsequently, the PCR fragment was treated with Taq polymerase (Thermo Fisher
Scientific, Waltham, MA, USA) to create ddA overlaps for cloning into the ddT of the pTZ57
cloning vector (InsTAclon PCR Cloning Kit, Thermo Fisher Scientific, Waltham, MA, USA).
The reaction mixture was prepared according to the protocol, with the addition of 10 mM
dATP (Thermo Fisher Scientific, Waltham, MA, USA) instead of the dNTP mix and 10 µL
of purified PCR product. The reaction was incubated for 30 min at 72 ◦C. A linearized
pTZ57 ddT vector was then used to clone 1 µL of the reaction mixture, resulting in the
creation of the plasmid pTZ-nCMV. The ligates were transformed into XL1-Blue Super
competent cells (Agilent Technologies, Santa Clara, CA, USA). Clones containing the insert
were verified by Sanger sequencing using the M13seq-F oligonucleotide (Table 1) after test
restriction with NcoI and BamHI. The verified pTZ-nCMV clone and a plasmid containing
eGFP (pET-eGFP) were cut with HindIII (Thermo Fisher Scientific, Waltham, MA, USA)
and BamHI restriction enzymes to clone eGFP at the C-terminus of nCMV, resulting in
the development of the pTZ-nCMV-eGFP construct. Subsequently, the nCMV-eGFP and
pET-28a(+) (Novagen, Bad Soden, Germany) plasmids were digested with NcoI (partial
digestion, as eGFP contains an additional site) and HindIII to develop the pET-nCMV-eGFP
expression vector. The constructed vector was selected by digestion with BamHI and
HindIII. For rapid purification by Ni2+ affinity chromatography, a tag of six histidines (His-
tag) was introduced at the C-terminus of eGFP, separated from eGFP by a GGGS flexible
linker [185], and the stop codon was removed (note: adding a His-tag at the N-terminal
end of nCMV-eGFP reduced expression levels, as indicated by unpublished data). To
create this expression vector, two overlapping oligonucleotides, His-tag-C-eGFP-Bsp1407I-
F and His-tag-C-eGFP-SacI-R (Table 1), with Bsp1407I and SacI cloning sites (Thermo
Fisher Scientific, Waltham, MA, USA), were ordered. Single-stranded oligonucleotide ends
were filled by PCR according to the Pfu polymerase protocol, creating a G3S-His-tag PCR
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product. The PCR product was purified using the QIAquick PCR Purification Kit (Qiagen,
Hilden, Germany) according to the provided protocol. Subsequently, pET-nCMV-eGFP
and G3S-His-tag were digested with Bsp1704I and SacI. After fragment purification and
ligation, the plasmid pET-nCMV-eGFP was created (Figures 1 and S1A). Correct clones
were selected by restriction analysis with BamHI and verified by Sanger sequencing using
the pET-rev oligonucleotide (Table 1).

Table 1. Nucleotides used for construct development.

Oligonucleotide Name Sequence

CmN-NcoF 5′ ATACCATGGACAAATCTGAATCAACCAGT 3′

CmN-BamR 5′ TCTGGATCCCCGGTTGGGTGGTTAATAGTTGGACGA 3′

His-tag-C-eGFP-Bsp1407I-F 5′ AGCTGTACAAGGGTGGCGGATCCCATCATCATCAT-
CATCACCATT 3′

His-tag-C-eGFP-SacI-R 5′ AGCGAGCTCTAGGGCCGCTTTAATGGTGATGATGAT-
GATGATGGG 3′

pET-dir 5′ GGGGAATTGTGAGCGGATAACA 3′

pET-rev 5′ TATTGCTCAGCGGTGGCAGC 3’

M13seq-F 5’ GCCAGGGTTTTCCCAGTCACGA 3’

M13seq-R 5’ GAGCGGATAACAATTTCACACAGG 3’

PADRE-eGFP-BamHI-F 5′ ACCACCCAACCGGGGATCCCGCGAAATTTGTGGC-
CGCGTGGACCCTC 3’

PADRE-eGFP-AgeI-R 5′ TCACCATGGTGGCCACCGGTGGCGCGGCCGC-
CTTGAGGGTCCACGCGGCCAC 3’

nCMV-Vect_R 5′ TGCTCGAGAATTCAAGCTTGCTTTACAATAGCGGTG-
GCGCGGCCGCCT 3′
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To create the PADRE epitope (AKFVAAWTLKAAA [131]) containing construct pET-
nCMV-PADRE-eGFP (Figures 1 and S2A), two overlapping oligonucleotides, PADRE-
eGFP-BamHI-F and PADRE-eGFP-AgeI-R (Table 1), were used. The same procedure as
in the G3S-His-tag case was performed to obtain the PADRE PCR product. Subsequently,
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pET-nCMV-eGFP and PADRE were digested with AgeI(BshTI) (Thermo Fisher Scientific,
Waltham, MA, USA) and BamHI (partial digestion). Fragments were purified as previously
described and ligated. Correct clones were selected by restriction analysis with NotI
(Thermo Fisher Scientific, Waltham, MA, USA) and verified by Sanger sequencing using
the pET-rev oligonucleotide (Table 1).

To create an “Immune-tag” variant with the DENV-1-derived antigen (DV1 EDIII)
at the C-terminus of PADRE, replacing eGFP, we developed a universal cloning vector
designed for the insertion of antigens with a NdeI restriction site at their 5′ end. Two
overlapping oligonucleotides, PADRE-eGFP-BamHI-F and nCMV-Vect_R (Table 1), were
utilized in the procedure identical to that used to obtain the PADRE-Nde PCR product.
Subsequently, pET-nCMV and PADRE-Nde were digested with AgeI(BshTI) and XhoI
(Thermo Fisher Scientific, Waltham, MA, USA). The DV1 coding sequence was excised
from the pET-DV1 construct (ordered by gene synthesis, BioCat, Heidelberg, Germany),
using the restriction enzymes NdeI and XhoI, (Thermo Fisher Scientific, Waltham, MA,
USA) to obtain the pET-nCMV-PADRE-DV1 construct (Figures 1 and S3A).

2.2. Protein Production, Purification, and Analysis

The created expression vectors pET-nCMV-eGFP, pET-nCMV-PADRE-eGFP, pET-
nCMV-PADRE-DV1 were transformed into the C2566 Escherichia coli expression strain (New
England Biolabs, Ipswich, MA, USA). Cells were cultivated in kanamycin-supplemented
2TY media (Km; 25 µg/mL) and protein expression was carried out according to the devel-
oped protocol used in previous studies [43,57,186]. The biomass collected by low-speed
centrifugation (8228× g, 5 ◦C, 5 min) was frozen at −70 ◦C. Upon thawing on ice, the
frozen biomass was suspended in 10 mL of 1× LEW buffer (USB, Cleveland, OH, USA)
supplemented with 1 mM phenylmethylsulfonyl fluoride (PMSF; AppliChem, Darmstadt,
Germany) and disrupted with ultrasound (Hielscher 200, power 70%, pulse 50%, 16 min)
on ice. The solution was clarified by centrifugation (15,557× g, 5 ◦C, 10 min), and the
pellet was discarded. The nCMV-eGFP (Figure S1) and nCMV-PADRE-eGFP (Figure S2)
proteins were purified using the PrepEase His-Tagged Protein Purification Midi Kit–High
Yield (USB, Cleveland, OH, USA) (Figures S1C and S2C). Elution fractions containing
nCMV-eGFP and nCMV-PADRE-eGFP were additionally purified by gel-filtration using an
Äkta Pure 25 XK 16/70 column packed with 120 mL Superdex™ 200 (Cytiva, Marlborough,
MA USA) (Figures S1D,E and S2D,E). Purified proteins were eluted with PBS at a flow
rate of 1 mL/min, collecting 2 mL per fraction. Following analysis by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), 1 mM PMSF was added to the
gel-filtrated fractions. The fractions containing nCMV-eGFP and nCMV-PADRE-eGFP
were pooled and concentrated using Amicon® Ultra-15, 10 KDa MWCO filtration units
(Merck-Millipore, Darmstadt, Germany). The samples were then fresh-frozen and stored at
−70 ◦C.

The cells containing nCMV-PADRE-DV1 (Figure S3) were resuspended in 10 mL of
PBS and disrupted as described above. After centrifugation (15,557× g, 5 ◦C, 10 min),
the supernatant was discarded. nCMV-PADRE-DV1 was purified from IB using a single
freeze-thawing cycle method [187]. Briefly, pellets containing IB were resuspended in 10 mL
of wash buffer (50 mM Tris-HCl pH 8.0, 100 mM NaCl, 1 mM EDTA, 1% TX-100, 1 M urea)
by ultrasound (Hielscher 200, power 70%, pulse 50%, 5 min) on ice. IB were collected by
centrifugation (15,557× g, 5 ◦C, 10 min), and the supernatant was discarded. IB washing
was repeated two more times. To remove residues of TX-100, IB were washed with PBS.
Subsequently, IB were resuspended in solubilization/refolding buffer 100 mM CAPS pH
9.5, arginine 0.9 M, 0.3 mM reduced glutathione (GSH), 0.03 mM oxidized glutathione
(GSSG), and 3 M urea and frozen at −20 ◦C for 16 h. The refolding reaction mixture contains
the chaotropic agent, urea, which provides efficient removal of bound impurities from the
proteins [188]. Refolded nCMV-PADRE-DV1 was thawed for 1 h at RT on a rotator set at
10 rpm. The supernatant was clarified by centrifugation (15,557× g, 5 ◦C, 10 min), and
the pellet was discarded. nCMV-PADRE-DV1 was dialyzed against 20 mM Na phosphate
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buffer, pH 9.0, in a 6–8 kDa dialysis membrane (Spectrum Laboratories, Rancho Dominguez,
CA, USA). Additionally, nCMV-PADRE-DV1 was purified by gel-filtration on an Äkta Pure
25 XK 16/70 column packed with 120 mL Superdex™ 200, and purified proteins were
eluted with PBS at a flow rate of 1 mL/min, collecting 2 mL per fraction (Figure S3D,E).
After analysis by SDS-PAGE, nCMV-PADRE-DV1-containing fractions were pooled and
concentrated using Amicon® Ultra-15, 10 KDa MWCO filtration units (Merck-Millipore,
Darmstadt, Germany).

eGFP for chemical conjugation was expressed from pQE-eGFP (kindly provided by
SIA Asla Ltd.), which was transformed into the E. coli C2566 strain. Expression was
performed as described above, with minor modifications in the expression step. Cells were
grown at 37 ◦C until an OD600 of 0.8 was reached, then supplemented with 5 mM MgCl2
and induced with 0.2 mM isopropyl-β-D-thiogalactoside (IPTG; Thermo Fisher Scientific,
Waltham, MA, USA), and cultivated overnight (ON) at 37 ◦C and 200 rpm/min (7 × g).
The pellet was resuspended in 10 mL of 1× LEW buffer and disrupted with ultrasound
(Hielscher 200, power 70%, pulse 50%, 16 min) on ice. The subsequent purification steps
were the same as described for nCMV-eGFP and nCMV-PADRE-eGFP (Figure S4).

DV1 EDIII (MW 13.694 kDa) (Figure S5) was purified from IB by a single freeze-
thawing cycle method [187] (Figure S5C), as described for nCMV-PADRE-DV1. Instead of
the Superdex™ 200 gel-filtration column, Superdex 75™ (Cytiva, Marlborough, MA USA)
was used for purification (Figure S5D,E).

All obtained proteins were soluble post-refolding and purification, which supports
their structural integrity and native conformation, as proteins lacking correct folding tend
to form aggregates [189]. They were subsequently analyzed by 12.5% SDS-PAGE, 0.8%
NAG, mass spectrometry (MS), and dynamic light scattering (DLS). Protein concentration
was determined using the Qubit 2.0 (Thermo Fisher Scientific, Waltham, MA, USA) with
the Qubit™ Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s protocol. All buffers used for the final preparation of protein samples were
prepared under sterile conditions, utilizing autoclaved Milli-Q water, and filtered through
a 0.22 µm filter.

2.3. Expression and Purification of CuMV and CuMVTT VLPs

The expression and purification of WT CuMV VLPs and “immunologically optimized”
CuMVTT VLPs were performed according to the protocols outlined by Zeltins et al. [43],
Storni et al. [46], and Sobczak et al. [59]. In summary, RNA was extracted from CMV-
infected lily leaves and reverse-transcribed to cDNA. The resultant PCR products were
then inserted into the pTZ57R/T vector (Fermentas, Vilnius, Lithuania). Following se-
quencing, the CMV CP gene was transferred into the pET28a(+) vector using NcoI and
HindIII restriction sites. For CuMVTT, a TT epitope was integrated into the CMV CP gene
via a two-step PCR-based mutagenesis approach. For protein expression, E. coli C2566 cells
were transformed with the pET-CuMVwt or pET-CuMVTT plasmid harboring the CuMV
or CuMVTT CP gene. Collected cell biomass was pelleted by centrifugation (2600× g, 4 ◦C,
10 min), resuspended in lysis buffer, and disrupted using a sonicator (Hielscher UP200S,
Amplitude 70%, cycle 0.5) for 16 min. Post-sonication, the lysate was centrifuged (15,000× g,
4 ◦C, 10 min), and self-assembled VLPs were precipitated from the soluble fraction by
adding 3 M ammonium sulfate, followed by ON incubation at 4 ◦C. After subsequent
centrifugation (15,000× g, 4 ◦C, 10 min), the pellet was dissolved in sodium borate buffer
(5 mM borate, 2 mM EDTA; pH 9.0) and subjected to ultracentrifugation through a 20–60%
sucrose gradient (110,000× g, 18 ◦C, 6 h) using a SW32 Ti rotor (Beckman Coulter, Brea, CA,
USA). Fractions containing VLPs were further purified twice by ultracentrifugation through
a 30% sucrose cushion (250,000× g, 4 ◦C, 4 h) using a Type 70 Ti rotor (Beckman Coulter,
Brea, CA, USA) for LPS removal. The pellet obtained after the first ultracentrifugation was
dissolved in sodium borate buffer, and the pellet obtained after the second ultracentrifu-
gation was dissolved in VLP storage buffer (5 mM NaP, 2 mM EDTA; pH 7.5) and stored
at 4 ◦C. Quality control was conducted via SDS-PAGE, NAG, and transmission electron
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microscopy (TEM). The colorimetric Pierce™ BCA Protein Assay (Thermo Fisher Scientific,
Waltham, MA, cat. 23227) was used for the determination of total protein concentration in
a final VLP sample. Purified VLPs were tested for endotoxin content, showing less than
100 EU/mg of protein as measured by the Limulus Amebocyte Lysate (LAL) assay (Pierce
LAL Chromogenic Endotoxin Quantitation Kit, Thermo Fisher Scientific, Waltham, MA,
cat. 88282) [190]. This value is significantly below the endotoxin limits typically set for
pharmaceuticals used in mouse models during preclinical research [191,192]. All buffers
used for the final preparation of CuMV and CuMVTT VLPs were prepared under sterile
conditions, utilizing autoclaved Milli-Q water, and filtered through a 0.22 µm filter.

2.4. Isolation and Quantification of RNA from CuMV Samples

To quantify the RNA content of the VLPs, 250 µL of TRIzol reagent was added to
200 µg of CuMV VLPs and mixed well [193]. The sample was then incubated on ice for
10 min and centrifuged (12,000× g, 4 ◦C, 10 min). The supernatant was transferred to a new
tube, and the pellet was discarded. 50 µL of precooled chloroform was added, followed
by vortexing for 15 s. The mixture was then incubated on ice for additional 10 min and
centrifuged (12,000× g, 4 ◦C, 15 min). The upper aqueous phase was gently transferred
to a new tube, avoiding the lower organic phase. Next, 125 µL of ice-cold isopropanol
was added to precipitate the RNA. Tubes were inverted 10 times (avoiding vortexing) to
mix the contents, followed by a 10 min incubation on ice. The mixture was centrifuged
(12,000× g, 4 ◦C, 10 min), and the supernatant was discarded. The RNA pellet was washed
with 150 µL of 75% ethanol and gently vortexed. Next, brief centrifugation (8000× g, 4 ◦C,
5 min) was performed to re-pellet the RNA. The supernatant was discarded, and the RNA
pellet was dried on a heat block set to 24 ◦C for 10 min and then resuspended in 100 µL of
DEPC-treated water. The pellet was dissolved by gentle pipetting and incubated at 55 ◦C
for 10 min to ensure complete solubilization. The final RNA concentration was determined
using a NanoDrop spectrophotometer, showing a yield of 214.5 ng/µL from the initial
200 µg of CuMV, establishing a ratio of roughly 10:1 protein-to-RNA.

2.5. CMV CP mRNA Transcription

To obtain WT CMV CP mRNA, 10 µg of the WT CMV CP-containing plasmid under
the T7 polymerase promoter created by Zeltins and co-workers [43] was linearized using
the HindIII restriction enzyme for 3 h at 37 ◦C. The linearized plasmid was then purified
with a GeneJet gel extraction kit according to the provided protocol, and its concentration
was measured using a NanoDrop-1000 spectrophotometer. Subsequently, 1 µg of linearized
plasmid was used for WT CMV CP mRNA transcription following the TranscriptAid
T7 High Yield Transcription kit (Thermo Fisher Scientific, Waltham, MA, USA) manual.
Synthesized CP mRNA was purified using a GeneJet RNA purification kit (Thermo Fisher
Scientific, Waltham, MA, USA) as per the manufacturer’s protocol and analyzed on a
1% NAG. The concentration of WT CMV CP mRNA was determined using a NanoDrop-
1000 spectrophotometer.

2.6. nCMV Binding to Nucleic Acid

To test whether the nCMV is able to bind the nucleic acid, 1 µg of purified WT CMV
CP mRNA was incubated with 1 µg of either eGFP, serving as the negative control, or the
nCMV-eGFP vaccine [194] for 10 min on ice in their respective storage buffers. Samples
were treated with Benzonase® (25 units/µL; Novagen, Bad Soden, Germany) to degrade
unbound RNA in the solution. The nucleoprotein complex was analyzed using 0.8% NAG
stained with ethidium bromide (Figure S6). Furthermore, the ability of nCMV-PADRE-
DV1 to bind the WT CMV CP mRNA has been tested with a ratio of 6:1 protein-to-RNA
(Figure S3F,G). The 6:1 protein-to-RNA ratio was established to match the equivalent VLP
protein-to-RNA ratio, accounting for the potential loss of a small fraction of RNA during
isolation from VLPs [195]. This ratio also considers the unknown efficiency of RNA binding
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to nCMV “Immune-tags”, and is based on the fact that six N-terminal R domains of the
CMV CP form a helical bundle upon interacting with RNA.

2.7. Electrophoretic Nucleic Acid Mobility Shift Assay (Gel Shift)

To evaluate the binding capacity of “Immune-tags” to nucleic acids, seven samples of
each of the three vaccine variants—eGFP, nCMV-eGFP, and nCMV-PADRE-eGFP—were
prepared at seven distinct doses: 0 ng, 150 ng, 300 ng, 600 ng, 800 ng, 1200 ng, and 1500 ng.
A uniform concentration of 1 µg per sample of WT CMV CP mRNA was introduced to each
sample to reach a final reaction volume of 20 µL. Following the addition of the nucleic acid,
the samples were chilled on ice for 10 min before being subjected to analysis using a 1%
NAG gel. Furthermore, the nCMV-eGFP vaccine variant was tested for its ability to bind to
other types of nucleic acids: the CMV CP PCR product, the ryegrass mottle virus (RGMoV)
CP mRNA, and the Type A CpG TLR9 agonist, G10.

2.8. Development of CuMV-eGFP and CuMVTT-DV1 Vaccines

Before chemical conjugation, eGFP lysins were modified with the chemical linker
N-succinimidyl S-acetyl thioacetate (SATA; Thermo Fisher Scientific, Waltham, MA, USA)
at a 10-molar excess to eGFP following the provided manufacturer protocol. Unreacted
SATA and deacetylation solutions were removed using Amicon® Ultra-0.5, 10 KDa MWCO
filtration units (Merck Millipore, Darmstadt, Germany). The chemical conjugation of eGFP
to WT CuMV VLPs was achieved using the cross-linker succinimidyl 6-((β-maleimidopro-
pionamido)hexanoate)—SMPH (Thermo Fisher Scientific, Waltham, MA, USA; approved
for usage in clinical trials [196–198]) at 10-molar excess to WT CMV CP for 1 h at RT. The
chemical conjugation reaction was performed by shaking (1400 rpm, RT, 3 h) on a DSG
Titertek shaker (Flow Laboratories, Oldham, UK) with a molar ratio of eGFP/CMV CP (1:1).
Unreacted SMPH and uncoupled eGFP were removed using Amicon® Ultra-0.5, 100 KDa
MWCO filtration units (Merck Millipore, Darmstadt, Germany).

For DV1 chemical conjugation to CuMVTT VLPs, the cross-linker SMPH was used
at five molar excesses to CMV CP for 1 h at RT. The chemical conjugation reaction was
performed as described above. Unreacted SMPH was removed using Amicon® Ultra-
0.5, 100 KDa MWCO (Millipore, Billerica, MA, USA) filtration units. The uncoupled
DV1 was removed by gel-filtration on Superdex™ 200 (Cytiva, Marlborough, MA, USA).
Concentrations of CuMV-eGFP and CuMVTT-DV1 were measured on the ND-1000 and
using the Qubit 2.0 (Thermo Fisher Scientific, Waltham, MA, USA). Coupling efficiency was
calculated by gel densitometry analysis [43], resulting in approximately 23% for CuMV-
eGFP and 17% for CuMVTT-DV1 efficiency. Samples were analyzed by SDS-PAGE, NAG,
TEM, and DLS.

2.9. Dynamic Light Scattering Measurement (DLS)

VLPs and “Immune-tags” at concentrations of 0.5–1 mg/mL were analyzed in a low-
volume glass cuvette (12 µL) using a Zetasizer Nano ZS instrument (Malvern Instruments
Ltd., Malvern, UK). The average hydrodynamic diameter of VLPs, or “Immune-tags”,
was calculated from three consecutive measurements. Results were analyzed by Zetasizer
software (version 8.01, Malvern Instruments Ltd., Malvern, UK).

2.10. Sample Analysis by Mass Spectrometry (MS)

Samples for MS analysis were prepared as follows: 2 µL of purified protein (0.5–1 mg/mL)
was mixed with 2 µL of 2% trifluoroacetic acid and 2 µL 2,5-dihydroxyacetophenone (2,5-
DHAP; Bruker Daltonics, Leipzig, Germany) matrix solution (50 µM 2,5-DHAP dissolved
in 96% ethanol and 10 µM aqueous diammonium hydrogen citrate). This mixture was
subsequently applied in a volume of 1 µL onto an MTP Anchor Chip 400/384TF (Bruker
Daltonics, Leipzig, Germany) and left to crystallize. The sample analysis was performed
using an AutoFlex MALDI-TOF MS (Bruker Daltonics, Leipzig, Germany), with mass
calibration standard I (Bruker Daltonics, Leipzig, Germany) used for mass calibration.
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2.11. Transmission Electron Microscopy (TEM)

5 µL of the sample (1 mg/mL) were adsorbed onto carbon formvar-coated copper
grids for 3 min. The grids were then drained by taping one grid edge to the filter paper and
washed with 1 mM EDTA. Subsequently, the grids were negatively stained with 5 µL of
0.5% uranyl acetate aqueous solution for 1 min. After staining, the excess staining solution
was removed by taping one grid edge to the filter paper and draining in 1 mM EDTA.
The grids were examined using a JEM-1230 TEM (JEOL, Tokyo, Japan) at an accelerating
voltage of 100 kV or 80 kV.

2.12. Mice

nCMV-eGFP, nCMV-PADRE-eGFP, and CuMV-eGFP immunization experiments were
performed using (8–12 weeks old) WT female BALB/c mice purchased from the Laboratory
Animal Center at the University of Tartu (Laboratory Animal Center, Tartu, Estonia). All
animals were treated for experimentation according to protocols approved by the Animal
Protection Ethics Committee of the Latvian Food and Veterinary Service of the Republic of
Latvia, permission No. 89, and were conducted in compliance with Directive 2010/63/EU
as adopted by the national legislation.

nCMV-PADRE-DV1, CuMVTT-DV1, and DV1 EDIII immunization experiments were
performed using (8–12 weeks old) WT female BALB/cOlaHsd mice purchased from Envigo
(Envigo Rms B.V., Horst, The Netherlands). All experiments were conducted according to
protocols approved by the Swiss Cantonal Veterinary Office (license no. BE 70/18).

2.13. Immunization Regimen

The immunogenicity of the created nCMV-eGFP and nCMV-PADRE-eGFP “Immune-
tags”, as well as their components, in comparison to CuMV-eGFP and “free” eGFP, was
tested in mice through subcutaneous (s.c.) injections with a dose of 50 µg diluted in 1× PBS
(without adjuvants) up to a total volume of 200 µL. The injection dose was selected based
on our previous immunization study with non-adjuvanted VLPs [57] and the reported
low immunogenicity of eGFP [168,169]. The mice were divided into six groups (Figure 2),
each consisting of five mice: control group (1) received plain eGFP protein, while the
experimental groups (2–6) received injections with the following constructs: nCMV-eGFP
(2), nCMV-eGFP supplemented with WT CMV CP mRNA in a ratio of 6:1 (3), nCMV-
PADRE-eGFP (4), nCMV-PADRE-eGFP supplemented with WT CMV CP mRNA in a ratio
of 6:1 (5), and CuMV-eGFP (6). Booster injections were administered with the same dose
for each variant on days 14 and 28. The experiment was terminated on day 42.

The immunogenicity of the created nCMV-PADRE-DV1 “Immune-tag” (supplemented
with CMV CP mRNA in a 6:1 protein-to-RNA ratio) in comparison to CuMVTT-DV1 and
“free” DV1 EDIII (Figure 2) was tested in mice by s.c. injections with a dose of either 30
or 10 µg diluted in PBS up to a total volume of 200 µL. These doses were selected based
on our previous dose escalation study with a CuMVTT-based vaccine [59]. The higher
dose (30 µg) aimed to estimate the immunogenicity of developed vaccines, and the lower
dose (10 µg) aimed to explore the efficacy of vaccines in inducing a protective immune
response measured by an in vitro focus reduction neutralization test. Booster injections
were performed with the same dose for each variant on day 14. The experiments were
terminated on day 35.

The doses of all vaccines were calculated based on the protein content of the active
substance. Quantitative analysis of the protein content for each vaccine was performed to
ensure accurate dosing and to evaluate the consistency of vaccine formulations. All immu-
nizations were performed with sterile vaccines that were filtered through a 0.22 µm filter.
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Figure 2. Schematic overview of immunization groups. (1) control group immunized with plain
eGFP; (2) immunized with nCMV-eGFP; (3) immunized with nCMV-eGFP supplemented with CMV
CP mRNA (ssRNA for TLR7 activation) in a protein-to-RNA ratio 6:1; (4) immunized with nCMV-
PADRE-eGFP; (5) immunized with nCMV-PADRE-eGFP supplemented with CMV CP mRNA (ssRNA
for TLR7 activation) in a protein-to-RNA ratio 6:1; (6) immunized with chemically conjugated variant
CuMV-eGFP; (7) control group immunized with plain DV1; (8) immunized with nCMV-PADRE-DV1
supplemented with CMV CP mRNA (ssRNA for TLR7 activation) in a protein-to-RNA ratio 6:1;
(9) immunized with chemically conjugated variant CuMVTT-DV1.

2.14. The Enzyme-Linked Immunosorbent Assay (ELISA)

The total IgG Abs titers in the sera of immunized mice against eGFP and WT CMV
CP were measured in 96-well ELISA plates (Nunc Immuno MaxiSorp, Rochester, NY, USA,
Thermo Fisher Scientific, Waltham, MA, USA) coated either with eGFP or CuMV VLPs
diluted in 50 mM sodium carbonate buffer, pH 9.6, at a concentration of 10 µg/mL (100 µL
per well), and incubated at 4 ◦C ON. Plates were washed three times with a washing
solution (PBS, 0.05% Tween-20) and then rinsed with dH2O. Subsequently, plates were
blocked with 1% BSA in PBS (100 µL per well) at 37 ◦C for 30 min, followed by washing
as previously described. Mouse sera were added to the plates in PBS containing 1% BSA,
starting at a dilution of either 1:50 or 1:400. Specifically, a 1:50 pre-dilution was used for
sera from mice immunized with either eGFP or “Immune-tag” constructs added to plates
coated with either eGFP or CuMV VLPs. A 1:50 pre-dilution was also used for sera from
mice immunized with CuMV-eGFP added to plates coated with CuMV VLPs. A 1:400
pre-dilution was used for sera from mice immunized with CuMV-eGFP added to plates
coated with eGFP. Serial dilutions of pre-diluted sera were performed with a dilution ratio
of 1:2. Plates were incubated at 37 ◦C for 1 h, followed by washing as before. Rabbit
anti-mouse IgG, conjugated with horseradish peroxidase (HRP) (Sigma–Aldrich, St. Louis,
MO, USA, cat. A9044-2ML), was added at a dilution of 1:10,000 (100 µL per well). Plates
were incubated at 37 ◦C for 1 h and washed as previously described. The OPD substrate
tablet (o-phenylenediamine dihydrochloride; Sigma–Aldrich, St. Louis, MO, USA) was
dissolved in 10 mL of 50 mM sodium carbonate buffer, pH 9.6, with the addition of 15 µL
of H2O2. Then, 100 µL of substrate solution was added to each well, and plates were
incubated at 37 ◦C for 20 min. The reaction was terminated by adding 1.2 N H2SO4 in a
volume of 50 µL per well. Optical absorbance was measured at 492 nm (OD492) using a
Labsystems Multiskan MS Type 352 microplate reader (Labsystems Diagnostics Oy, Vantaa,
Finland). The endpoint titers were calculated as the highest serum dilution that resulted in
an absorbance value exceeding three times that of the negative control (serum obtained
from non-immunized mice) [199,200].

Isotype-specific ELISA was performed using the mouse monoclonal Ab isotyping
reagent ISO2 (Sigma–Aldrich, St. Louis, MO, USA, cat. ISO2-1KT) and a secondary anti-
goat/sheep IgG, HRP Abs (Sigma–Aldrich, St. Louis, MO, USA, cat. A9452-1VL). For
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the determination of IgG1 and IgG2a subclass levels in the sera of mice immunized with
constructs containing eGFP, the following Abs were used in ELISA: goat anti-mouse IgG1,
HRP (1:1000) (Thermo Fisher Scientific, Waltham, MA, USA, cat. PA1-74421) and goat anti-
mouse IgG2a, HRP (1:1000) (Thermo Fisher Scientific, Waltham, MA, USA, cat. A-10685).
Endpoint titers were calculated as described previously.

Total IgG Abs titers in sera of immunized mice against DV1 EDIII were measured in 96-
well half-area ELISA plates (Corning Inc., Corning, NY, USA) coated with DV1 EDIII diluted
in 1× PBS with a concentration of 2 µg/mL (50 µL per well), incubated at 4 ◦C ON. On the
following day, plates were washed five times with PBS and blocked with 0.15% casein in
PBS (100 µL per well) at RT for 2 h followed by washing as previously described. Mouse
sera were added to the plates in PBS containing 0.15% Casein, starting at a dilution of either
1:30 or 1:10. Specifically, a 1:30 pre-dilution was used for sera from mice immunized with
30 µg of either DV1 EDIII, nCMV-PADRE-DV1, or CuMVTT-DV1. A 1:10 pre-dilution was
used for sera from mice immunized with 10 µg of either nCMV-PADRE-DV1 or CuMVTT-
DV1. Serial dilutions of the pre-diluted sera were then performed with a dilution ratio of
either 1:5 or 1:3, respectively. Plates were incubated at RT for 1.5 h and washed as previously.
Subsequently, a goat anti-mouse IgG conjugated to HRP (Jackson ImmunoResearch, West
Grove, PA, USA; cat. 115 035 008) was added with a dilution factor of 1:5000 and incubated
at RT for 1 h. Following incubation, plates were washed five times with PBS-Tween 0.01%.
The ELISA was developed with a 50 µL solution of tetramethylbenzidine (TMB), H2O2, and
acetate buffer (pH 4.1). The reaction was terminated after 5 min by the addition of 50 µL of
1 M H2SO4 per well. Optical absorbance was measured at an OD of 450 nm (OD450) on an
ELISA plate reader. Half-maximal Ab titers (OD50) were defined as the reciprocal of the
dilution leading to half of the OD measured at saturation.

The avidity of vaccine-induced DV1 EDIII-specific IgG was tested through the avidity
ELISA assay performed by extending the ELISA protocol with additional washing steps
with a chaotropic agent—urea [55,56,164,201]. Following serum incubation with a pre-
dilution of 1:20 and serial dilution of 1:3, the plates were washed with PBS containing
0.01% Tween. The plates were then incubated three times with 7 M urea in PBS containing
0.01% Tween for 5 min on a shaker at RT, or with PBS containing 0.01% Tween as a control.
Between these incubations, plates were washed again with PBS-Tween 0.01%. The avidity
index (AI) was calculated by the ratio of dilution factors (titers) with and without urea
denaturation [202–204].

2.15. DENV-1 Focus Reduction Virus Neutralization Test (FRNT)

The DENV-1 neutralization capacity of antibodies produced after immunizing mice
was determined using focus reduction virus neutralization test (FRNT). Human convales-
cent serum 001 to Dengue Virus (NR-50226) was used as positive control, while sera from
naïve mice were used as a negative control. Briefly, a day before the experiment 96-well sub-
strate plate was prepared using Vero cells (2 × 104 cells/well) cultured in complete media.
The sera from vaccinated mice were heat-inactivated (HI) at 56 ◦C for 30 min to inactivate
complement and diluted 1:100 in infection media (composition: DMEM supplemented with
0.75% NaHCO3, 10 mM HEPES buffer, 1% Pen-Strep, and 1% HI-FBS). The 500 TCID50 of
DENV-1 (VR1856, Hawaii) was added to each well in an equal volume and the mixture
was incubated at 37 ◦C for 1 h. The mixtures of virus and sera were then added to the
substrate plate and incubated for 1 h at 37 ◦C in 5% CO2. Subsequently, the cell monolayers
were washed once with PBS followed by the addition of the infection media and incubated
at 37 ◦C in 5% CO2 for another 48 h. To determine the number of virus-infected cells an
in-house developed immunostaining method was used. Briefly, the infected cells were
fixed with 2.5% formalin and permeabilized with 0.1% Triton X-100 in 70% ethanol. The
infected cells were stained with Rabbit anti-flavivirus group antigen monoclonal antibody
(Absolute antibody, Oxford, UK) and detected with Goat anti-rabbit IgG (H+L) Highly
Cross-Adsorbed Secondary Antibody, Alexa Fluor Plus 488 (2 mg), (Invitrogen, Waltham,
MA, USA). Following this, wells were incubated with 4′,6-Diamidino-2-Phenylindole, Di-
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hydrochloride (DAPI) (Thermo Fisher Scientific, Waltham, MA, USA) to counterstain the
nucleus. Plates were scanned using Cytation 1 Imaging Reader (BioTek, Winooski, VT, USA)
at a 4× objective and analysed by the Gen5 software (BioTek, Winooski, VT, USA). The
percentage reduction of DENV-1-infected cells was determined by comparing the number
of infected cells to the negative control. Each serum sample was tested in duplicate.

2.16. Data Analysis

Statistical analysis of the collected data was conducted using GraphPad Prism Ver-
sion 8 (Graph Pad Software Inc., San Diego, CA, USA). For comparisons among groups
exhibiting a normal distribution, Student’s t-tests or ANOVA were used, incorporating
Welch’s correction for the assumptions of unequal variances across groups. For groups not
following a normal distribution, the Kruskal-Wallis nonparametric test was used. Differ-
ences between groups with p-values of 0.05 or less were considered statistically significant
(* p ≤ 0.05, ** p ≤0.01, *** p ≤ 0.001, and **** p ≤ 0.0001).

3. Results
3.1. Development of “IMMUNE-TAG” as a Vaccine Platform

To dissect the roles of PAMPs, PASPs, and Th stimulation in driving B cell responses,
we designed the nCMV as a novel vaccine platform, the “Immune-tag” [167]. Our inves-
tigation focused on its ability to oligomerize post-purification and to elicit Ab responses
against model antigens, enhanced by the addition of TLR and T-cell-stimulating epitopes.
The “Immune-tag” design facilitates swift antigen replacement, cost-effective purification,
and the incorporation of immunostimulating components. To begin with, we developed
two “Immune-tag” constructs to examine their feasibility. In the first construct, the C-
terminal part of nCMV was genetically fused to eGFP (nCMV-eGFP; Figures 1, 2 and S1),
while the second incorporated an additional PADRE epitope between nCMV and eGFP
(nCMV-PADRE-eGFP; Figures 1, 2 and S2). Both “Immune-tag” variants were expressed in
E. coli at high concentrations and in soluble form (Figures S1C and S2C). “Immune-tags”
and a “free” eGFP serving as a control were analyzed on SDS-PAGE (Figure 3A) and by MS
(Figure 3B) after purification and concentration. During MS analysis, partial proteolysis
of nCMV-PADRE-eGFP was observed, revealing two peaks: one corresponding to the
full length of nCMV-PADRE-eGFP (36.47 kDa) and the second to the eGFP (29.36 kDa)
(Figure 3B). The addition of protease inhibitors such as PMSF was sufficient to protect
the construct against proteolysis after the gel-filtration step (Figures 3A and S2D), which
allowed for the separation of the intact nCMV-PADRE-eGFP from a processed part. On the
other hand, the MS analysis demonstrated the integrity of the nCMV-eGFP “Immune-tag”
with a corresponding size of 35.03 kDa (Figure 3B).

To assess the capacity of nCMV for nucleic acid binding, gel shift assays were con-
ducted. The assays revealed a migration delay in WT CMV CP mRNA in NAG, indicating
the retained ability of nCMV to bind mRNA encoding WT CMV CP (Figures S1F and S2F).
Considering that the binding of nucleic acids by nCMV relies on electrostatic interactions,
these results suggested that nCMV had the potential to bind nucleic acids from various
sources. To examine this feature of nCMV, we tested the effect of supplementing nCMV-
eGFP with WT CMV CP PCR product, as well as RGMoV CP mRNA [205], and with
Type A CpG TLR9 agonist—G10 [206,207], observing the same migration delay of the
construct as for WT CMV CP mRNA (Figure S7). Further analysis of the nCMV-eGFP and
nCMV-PADRE-eGFP constructs, both with and without RNA, was performed using DLS
and TEM. These techniques verified the oligomer formation (Figures S1G–J and S2G–J),
with the prospective ability to facilitate augmented Ab responses against target antigens.
Both “Immune-tag” variants, enriched with WT CMV CP mRNA, were used in subse-
quent mouse immunization experiments to examine whether nCMV oligomerization and
supplementation with TLR7/8 ligand could serve as self-adjuvants.
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To employ another antigen, in exchange to the model eGFP antigen (Sections 3.3–3.5),
the “Immune-tag” was adapted for DENV-1. In this adaptation, the DV1 EDIII sequence
derived from DENV-1 (Figure S5A) was integrated into the platform by replacing eGFP,
thus creating a new construct, nCMV-PADRE-DV1 (Figure S3B). Both the nCMV-PADRE-
DV1 “Immune-tag” (Figure S3) and “free” DV1 EDIII (Figure S5) following purification
were analyzed on SDS-PAGE and by MS (Figure 3), to confirm the integrity and expected
molecular properties of the nCMV-PADRE-DV1 construct. Before immunization, nCMV-
PADRE-DV1 was supplemented with CMV CP mRNA in a protein-to-RNA ratio of 6:1
(Figure S3F,G).

3.2. Chemically Modified VLP-Based Platform

The comparative analysis aimed to understand the impact of antigen spatial organiza-
tion and repetitiveness (PASP) on the efficiency of Ab induction and was conducted utilizing
a selected model antigen—eGFP. eGFP was either genetically fused with the “Immune-tags”
or chemically coupled to the surface of structurally uniform VLPs (Figure 2). To compare
their immunological potentials without additional confounding variables, eGFP was conju-
gated to VLPs derived from WT CMV (CuMV), lacking integration with TT epitopes. This
design avoids direct comparison between the PADRE and the TT CD4+ epitopes, thereby
allowing a clearer assessment of the influence of antigen organization and repetitiveness
against other B-cell stimulatory features incorporated into the “Immune-tag” constructs.

In the second phase of the project, when focusing principally on identifying a potent
vaccine candidate against DENV-1, DV1 EDIII antigen was conjugated with “immunologi-
cally optimized” VLPs (CuMVTT), which do incorporate a universal T-cell epitope from
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TT. This fusion aims to boost the interaction between Th cells and B cells and has been
shown to significantly enhance Ab responses in mice that were primed with TT before
being immunized with CuMVTT [59,160]. In essence, the incorporation of the TT epitope
is designed to leverage the widespread pre-existing immunity to TT within the human
population, potentially leading to improved vaccine effectiveness, especially in specific
groups such as elderly patients.

The expression levels, purity, and efficiency of the conjugation process of eGFP to
WT CuMV CP and DV1 to CuMVTT CP were evaluated using 4–12% SDS-PAGE and 0.8%
NAGE. The latter revealed successful conjugation of eGFP and DV1 to VLPs, as evidenced
by the altered mobility of VLPs in the gel (Figure 4). Further confirmation of antigen-VLP
conjugation quality was obtained through SDS-PAGE analysis, where a characteristic ladder
could be observed, indicating a successful conjugation reaction (Figure 4). To assess the
structural integrity and uniformity of the antigen-conjugated VLPs, TEM and DLS analyses
were employed. TEM images demonstrated that the VLPs remained intact following the
conjugation procedure. DLS analysis showed the presence of homogeneous peaks with
average hydrodynamic diameters (Dh) of about ~61 nm for CuMV-eGFP and ~46 nm for
CuMVTT-DV1 (Figure 4).

Vaccines 2024, 12, x FOR PEER REVIEW 16 of 36 
 

 

 
Figure 4. Integrity analysis of antigen coupling to VLPs. NAGE—coupling analysis in 0.8% native 
agarose gel electrophoresis, gel stained with ethidium bromide; bands indicate the presence of pro-
karyotic nucleic acid (mRNA) encapsulated inside the VLPs; SDS-PAGE—coupling analysis by 4–
12% BoltPAGE stained with Coomassie G250, as a result of subunit crosslinking, derivatization by 
SMPH leads to the characteristic ladder of VLP monomers, dimers, trimers, tetramers, etc., indicat-
ing successful coupling reaction; TEM—analysis of VLPs after coupling by transmission electron 
microscopy at 80× (upper panel) or 100× (lower panel) magnifications; DLS—analysis of the uni-
formity and hydrodynamic diameter of VLPs after coupling by dynamic light scattering. Lanes in 
NAGE and SDS-PAGE: VLPs—uncoupled particles (negative control); VLPs + 5×SMPH—VLPs 
bound to the crosslinker (negative control); VLPs + eGFP/DV1: 1—VLPs loaded directly after cou-
pling with antigen; 2—coupled VLPs loaded after removal of “free” (uncoupled) antigen; 
eGFP/DV1—“free” protein/peptide; M1—1 kb DNA ladder (GeneRulerTM 1 kb, Thermo Fisher Sci-
entific, Waltham, MA, USA, cat. SM0311); M2—protein molecular weight marker (PageRulerTM Plus, 
Thermo Fisher Scientific, Waltham, MA, USA, cat. 26619). 

3.3. Characterization of the Immunogenic Potential of nCMV–eGFP Using “Immune-Tag” 
Technology 

The efficacy of the immune response to a vaccine is significantly influenced by virus-
like features. PAMPs and structural patterns such as size, geometry, and the presence of 
highly repetitive and ordered surface patterns (PASPs) play a crucial role in mimicking 
the natural attributes of viruses [3]. Some studies argue that simplified versions of VLPs, 
e.g., self-assembled viral nanostructures, may also serve as viral mimetics [208,209]. It can 
be hypothesized that incorporating additional immunostimulatory components into the 
“Immune-tag” nCMV-eGFP could increase Ab titers induced against the eGFP. This ap-
proach would facilitate the identification of the optimal configuration for future vaccine 
candidates utilizing the “Immune-tag”-based platforms.  

The immunogenicity of the developed eGFP-carrying nCMV “Immune-tag” con-
structs (Figures 1 and 2) was evaluated through a vaccination regimen consisting of s.c. 
priming followed by two booster doses administered at 14-day intervals. To assess the 
impact of immunostimulatory elements on the immune response, we incorporated the 
PADRE element with the “Immune-tag” and/or supplemented it with ssRNA. For com-
parison, a “free” eGFP as well as CuMV-eGFP VLPs were used in the study (Figure 2). 
Serum samples from the mice were collected before the administration of the first dose 
and again at the endpoint of the study on Day 42. The total serum IgG levels as well as 
IgG1 and IgG2a subclasses against both eGFP and CuMV VLPs were measured by ELISA 
with the collected sera. 

Figure 4. Integrity analysis of antigen coupling to VLPs. NAGE—coupling analysis in 0.8% native
agarose gel electrophoresis, gel stained with ethidium bromide; bands indicate the presence of
prokaryotic nucleic acid (mRNA) encapsulated inside the VLPs; SDS-PAGE—coupling analysis by
4–12% BoltPAGE stained with Coomassie G250, as a result of subunit crosslinking, derivatization
by SMPH leads to the characteristic ladder of VLP monomers, dimers, trimers, tetramers, etc.,
indicating successful coupling reaction; TEM—analysis of VLPs after coupling by transmission
electron microscopy at 80× (upper panel) or 100× (lower panel) magnifications; DLS—analysis of
the uniformity and hydrodynamic diameter of VLPs after coupling by dynamic light scattering.
Lanes in NAGE and SDS-PAGE: VLPs—uncoupled particles (negative control); VLPs + 5×SMPH—
VLPs bound to the crosslinker (negative control); VLPs + eGFP/DV1: 1—VLPs loaded directly
after coupling with antigen; 2—coupled VLPs loaded after removal of “free” (uncoupled) antigen;
eGFP/DV1—“free” protein/peptide; M1—1 kb DNA ladder (GeneRulerTM 1 kb, Thermo Fisher
Scientific, Waltham, MA, USA, cat. SM0311); M2—protein molecular weight marker (PageRulerTM

Plus, Thermo Fisher Scientific, Waltham, MA, USA, cat. 26619).



Vaccines 2024, 12, 661 16 of 36

3.3. Characterization of the Immunogenic Potential of nCMV–eGFP Using “Immune-Tag” Technology

The efficacy of the immune response to a vaccine is significantly influenced by virus-
like features. PAMPs and structural patterns such as size, geometry, and the presence of
highly repetitive and ordered surface patterns (PASPs) play a crucial role in mimicking
the natural attributes of viruses [3]. Some studies argue that simplified versions of VLPs,
e.g., self-assembled viral nanostructures, may also serve as viral mimetics [208,209]. It
can be hypothesized that incorporating additional immunostimulatory components into
the “Immune-tag” nCMV-eGFP could increase Ab titers induced against the eGFP. This
approach would facilitate the identification of the optimal configuration for future vaccine
candidates utilizing the “Immune-tag”-based platforms.

The immunogenicity of the developed eGFP-carrying nCMV “Immune-tag” constructs
(Figures 1 and 2) was evaluated through a vaccination regimen consisting of s.c. priming
followed by two booster doses administered at 14-day intervals. To assess the impact
of immunostimulatory elements on the immune response, we incorporated the PADRE
element with the “Immune-tag” and/or supplemented it with ssRNA. For comparison,
a “free” eGFP as well as CuMV-eGFP VLPs were used in the study (Figure 2). Serum
samples from the mice were collected before the administration of the first dose and again
at the endpoint of the study on Day 42. The total serum IgG levels as well as IgG1 and
IgG2a subclasses against both eGFP and CuMV VLPs were measured by ELISA with the
collected sera.

3.4. Total Levels of Anti-eGFP IgG

There was a clear hierarchy in the eGFP-specific IgG responses. Groups of mice
immunized with eGFP alone produced the lowest anti-eGFP IgG antibody titers, with
mean reciprocal titers of 1:193 (Figure 5A,B). This result is consistent with the concept that
oligomerization or multimerization of proteins into complexes can enhance immunogenic-
ity by improving antigen recognition [210].

In comparison to eGFP alone, the experimental groups immunized with nCMV-
based vaccines against eGFP exhibited a 4- to 14-fold increase in anti-eGFP IgG Ab titers
(Figure 5A,B). The addition of each immunostimulatory element contributed to this rise
in Ab titers. Interestingly, PADRE and RNA, when added individually, similarly boosted
Ab responses, while the addition of both elements concurrently did not exhibit synergistic
or even additive combined effects and resulted in a similar increase as the addition of
each individual element separately. Importantly, the total eGFP-specific IgG titers in the
group immunized with CuMV-eGFP VLPs were an order of magnitude higher than those
measured in any other group, reaching mean reciprocal titers of 1:56,536 (Figure 5A,B). This
suggests that the most effective immune responses are elicited when all viral components
and features are integrated into a single entity.

CMV CP-specific IgG were detected exclusively in the sera of mice immunized with
CuMV-eGFP (Figure S8). This observation is likely due to the nCMV fragment of CMV CP
being concealed inside the particle.
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3.5. Subclass-Specific Anti-eGFP IgG Antibodies

Literature underlines the importance of isotype class switching, IgG subclass dif-
ferentiation, and the presence of high-affinity Abs as key factors influencing vaccine ef-
ficacy [211,212]. Specifically, IgG1 and IgG2a Ab subclasses serve as indicators of Th2
or Th1 responses, respectively. IgG2a rather than IgG1 engages activating Fc receptors,
typically correlating with enhanced vaccine effectiveness [213,214]. The subclass-specific
Ab response may strongly depend on TLR-stimulating factors such as RNA or DNA [215].
The preferential induction of IgG1 Abs was observed for influenza M2e domain-derived
tetramers used for immunizations in BALB/c mice [216]. Conversely, Wang and co-
workers [217] claimed that oligomers expressed by a DNA-based vaccine derived from the
Yersinia pestis V antigen, which included a signal sequence from a human tissue plasmino-
gen activator, elicited a dominant IgG2a response in the BALB/c murine model [217]. A
similar observation was reported by Dalgediene and co-workers [218], where immunization
of mice of the same strain with a polypeptide, the beta-amyloid (Aβ) oligomer, induced a
predominantly IgG2a response [218]. These results indicate the importance of the origin
of the oligomeric structures (e.g., viral, bacterial, fungal, mammalian, or self-created) in
the stimulation of diverse IgG subclass responses, presumably via stimulation of different
TLRs. To assess whether the developed “Immune-tags” could induce either IgG1 or IgG2a
subclass-specific antibodies, blood sera from day 42 were analyzed.
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Analysis of the Ab responses revealed a predominance of anti-eGFP IgG1 Abs across
all tested groups. The highest response was observed in the group of mice immunized
with chemically coupled CuMV-eGFP VLPs, achieving mean reciprocal titers of 1:15,131
(Figure 6A,B). When comparing nCMV-based “Immune-tags” to eGFP alone, a similar
pattern of a 2- to 9-fold increase in eGFP-specific IgG1 Ab titers was observed, consistent
with the measurements of total anti-eGFP IgG. This indicates that the majority of the
detected total IgG was indeed of the IgG1 subclass. These findings align with a previously
reported study, which identified IgG1 as the most prevalent Ab subclass in response to
soluble protein antigens in mice [219–222].

Vaccines 2024, 12, x FOR PEER REVIEW 18 of 36 
 

 

3.5. Subclass-Specific Anti-eGFP IgG Antibodies 
Literature underlines the importance of isotype class switching, IgG subclass differ-

entiation, and the presence of high-affinity Abs as key factors influencing vaccine efficacy 
[211,212]. Specifically, IgG1 and IgG2a Ab subclasses serve as indicators of Th2 or Th1 
responses, respectively. IgG2a rather than IgG1 engages activating Fc receptors, typically 
correlating with enhanced vaccine effectiveness [213,214]. The subclass-specific Ab re-
sponse may strongly depend on TLR-stimulating factors such as RNA or DNA [215]. The 
preferential induction of IgG1 Abs was observed for influenza M2e domain-derived te-
tramers used for immunizations in BALB/c mice [216]. Conversely, Wang and co-workers 
[217] claimed that oligomers expressed by a DNA-based vaccine derived from the Yersinia 
pestis V antigen, which included a signal sequence from a human tissue plasminogen ac-
tivator, elicited a dominant IgG2a response in the BALB/c murine model [217]. A similar 
observation was reported by Dalgediene and co-workers [218], where immunization of 
mice of the same strain with a polypeptide, the beta-amyloid (Aβ) oligomer, induced a 
predominantly IgG2a response [218]. These results indicate the importance of the origin 
of the oligomeric structures (e.g., viral, bacterial, fungal, mammalian, or self-created) in 
the stimulation of diverse IgG subclass responses, presumably via stimulation of different 
TLRs. To assess whether the developed “Immune-tags” could induce either IgG1 or IgG2a 
subclass-specific antibodies, blood sera from day 42 were analyzed. 

Analysis of the Ab responses revealed a predominance of anti-eGFP IgG1 Abs across 
all tested groups. The highest response was observed in the group of mice immunized 
with chemically coupled CuMV-eGFP VLPs, achieving mean reciprocal titers of 1:15,131 
(Figure 6A,B). When comparing nCMV-based “Immune-tags” to eGFP alone, a similar 
pattern of a 2- to 9-fold increase in eGFP-specific IgG1 Ab titers was observed, consistent 
with the measurements of total anti-eGFP IgG. This indicates that the majority of the de-
tected total IgG was indeed of the IgG1 subclass. These findings align with a previously 
reported study, which identified IgG1 as the most prevalent Ab subclass in response to 
soluble protein antigens in mice [219–222]. 

 

Figure 6. Induction of subclass switching to IgG1 by nCMV-eGFP variants and CuMV-eGFP de-
termined by ELISA analysis. (A)—anti-eGFP-specific IgG1 titers measured on day 42 in mouse
sera at OD 492 nm. (B)—log10 values of eGFP-specific IgG1 titers for the groups vaccinated with
nCMV-eGFP variants and CuMV-eGFP. Statistical analysis (mean ± SEM) using the Kruskal-Wallis
test. Vaccinated groups: n = 5. One representative experiment is shown. A value of p ≤ 0.05 was
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eGFP-specific IgG2a Abs were detected only in the sera of mice vaccinated with
CuMV-eGFP, reaching mean reciprocal titers of 1:2020 (Figure S9). These results suggest
that constructed “Immune-tags” lack components that stimulate IgG2a production, in
contrast to vaccines derived from whole VLPs. This aligns with previous findings that
viruses induce IgG2a response in mice [221,222] and suggests that CP structural elements,
when presented as multimerized “Immune-tags”, may not be recognized by the immune
system in the same manner as the whole particle containing encapsulated nucleic acid.

3.6. nCMV-PADRE “Immune-Tag” as a Dengue Vaccine Candidate

To answer the question of whether the nCMV-PADRE “Immune-tag” may serve as an
alternative platform for vaccine development, the immunogenicity of this construct was
verified as a model anti-viral vaccine. For this purpose, the nCMV-PADRE was genetically
fused with the DV1 EDIII (nCMV-PADRE-DV1; Figures 1 and 2; Section 3.1). The Ig-like
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C-terminal EDIII of the DENV is known to be involved in the association of a virion with a
receptor expressed on the surface of a host cell [223], serving as a crucial structure in viral
entry. Consequently, EDIII contains epitopes that are exposed on the surface of the virion,
constituting natural targets for the generation of neutralizing Abs [223,224].

The immunogenicity of the newly constructed “Immune-tag” nCMV-PADRE-DV1
was evaluated in BALB/c mice. Animals were immunized s.c. with a 30 µg dose on
Day 0, followed by a booster administered on Day 14. As negative and positive controls,
the soluble DV1 EDIII and DV1 EDIII chemically coupled to the previously described
“immunologically optimized” CuMVTT (CuMVTT-DV1) [43] were used, respectively. The
titers of serum total anti-DV1 EDIII IgG were measured at the endpoint of the experiment
on Day 35 to assess the consistency of the IgG response hierarchy. Indeed, the IgG levels
induced by the nCMV-PADRE-DV1 were higher than those in mice immunized with DV1
EDIII alone, confirming the relatively lower immunogenicity of the protein vaccines based
on the recombinant DENV EDIII. Consistent with findings from the use of the eGFP model
antigen, the anti-DV1 EDIII IgG levels were significantly highest in the group immunized
with CuMVTT-DV1 (Figure 7A,B).

To compare the collective binding potency of the polyclonal serum anti-DV1 EDIII IgG
Abs induced by CuMVTT-DV1, nCMV-PADRE-DV1, and DV1 EDIII alone, we performed
an avidity ELISA assay. This assay was designed to include three intermediate 5-min plate
washes with 7 M urea to reveal the differences between groups based on their specific IgG
avidity. The use of this chaotropic agent eliminated low-affinity Abs from the samples
(Figure 7C,D). The calculated AI revealed that nCMV-PADRE-DV1 induced significantly
higher levels of high-affinity DV1 EDIII-specific IgG compared to “free” DV1 EDIII protein,
while CuMVTT-DV1 induced the highest ratio of such IgGs of all vaccine candidates used
(Figure 7E).

Subsequently, BALB/c mice were immunized s.c. with a 10 µg dose of the “Immune-
tag” nCMV-PADRE-DV1 or CuMVTT-DV1 following the same prime/boost regimen as
shown before in Figure 7. Serum samples were collected before the prime on day 0, before
the booster on day 14, as well as after the booster on days 21 and 35. A significantly
higher levels of serum anti-DV1 EDIII IgG were observed on both day 14 and day 35 in the
group of mice immunized with CuMVTT-DV1. Interestingly, after the boost, on day 21, the
difference in levels of serum anti-DV1 EDIII IgG between the two groups was not significant
(Figure 8A,B). This observation indicates that while CuMVTT-DV1 induced a stronger initial
and longer-term IgG response against DV1 EDIII, during the immediate post-boost period
there was no substantial difference in Ab levels between those two vaccine candidates.

Serum samples from mice immunized with 10 µg of oligomeric nCMV-PADRE-DV1
and CuMVTT-DV1 VLPs collected on Days 14, 21, and 35 were analyzed using a DENV-1
FRNT to assess the neutralizing capability of the Abs elicited by both vaccine constructs.
The effectiveness of these Abs in neutralizing DENV-1 was determined by measuring
the reduction in the number of virus-infected Vero cells in vitro, compared to a baseline
established using cells infected by the virus incubated with pre-immune serum (collected
on day 0). The results demonstrated that both vaccines were capable of inducing Abs
that neutralized DENV-1 following the booster dose administered on day 21, as shown in
Figure 9. However, the response induced by the oligomeric nCMV-PADRE-DV1 was found
to be very transient, whereas the response from the VLP-based CuMVTT-DV1 vaccine
was significantly more sustained. By day 35, the neutralizing capability of Abs induced
by CuMVTT-DV1 was significantly greater than that induced by nCMV-PADRE-DV1,
indicating a more durable protective effect with the VLP-based vaccine (Figure 9).
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calculation after vaccination with 30 µg of vaccine variants nCMV-PADRE-DV1, CuMVTT-DV1, and
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OD50 values of DV1 EDIII-specific IgG titers shown in A; (C)—DV1 EDIII-specific IgG titers on day
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of DV1 EDIII-specific IgG titers shown in C; (E)—avidity index of DV1 EDIII-specific serum IgG
titers shown in B and D. Statistical analysis (mean ± SEM) was conducted using Brown-Forsythe and
Welch ANOVA tests. Vaccinated groups, n = 4. One representative experiment is shown. A value of
p ≤ 0.05 was considered statistically significant (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).
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Figure 9. DENV-1 Focus Reduction Virus Neutralization Test (FRNT). FRNT shows the reduction
of cells infected with DENV-1 incubated with sera from mice immunized with nCMV-PADRE-DV1
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considered statistically significant (* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001).

4. Discussion

Several structural elements derived from plant virus CPs were tested and used for
multimeric structure formation as “artificial viral nanostructures”. By way of example, a 12-
mer β-annulus peptide of Sesbania mosaic virus CP with FKFE sequence at the C-terminus
self-assembles into a nanosphere of approximately 30 nm in diameter [79], and a 24-mer
β-annulus peptide derived from the tomato bushy stunt virus CP spontaneously forms
hollow “artificial viral capsids”, which can encapsulate anionic dyes, DNAs, quantum
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dots, and proteins and can be decorated with recombinant HRP or with a C-terminal
His-tag [225]. Beyond plant viruses, peptides from other sources also demonstrated the
capacity to self-assemble into nanostructures, serving as versatile tools for designing
functional, supramolecular materials that are modular, tunable, and responsive to chemical
and physical stimuli [84,209].

The N-terminal fragments of the R domains of CMV CPs form a bundle of six am-
phipathic helices [166]. This multimerization property could be used as an alternative
vaccine platform—the “Immune-tag” [167]. To investigate the utility of those arginine-rich
N-terminal domains (nCMVs), two constructs incorporating a model antigen eGFP, one
including the additionally fused universal T-cell epitope PADRE [131,140], were initially
developed. The use of eGFP was previously tested in the Brucella abortus S19 prototype
vaccine as an associated diagnostic test to distinguish vaccinated animals from naturally
infected with Brucella [226]. The incorporation of a universal T-cell epitope was intended to
augment immune responses by inducing a strong Th-response against this epitope, which
in turn would increase B-cell help [59]. Distinct versions of constructed “Immune-tags”
were additionally supplemented with ssRNA to facilitate the formation of a six-helix bundle
according to the CMV 3D structure [166] and serve as TLR7/8 stimulators.

Mouse immunization experiments showed a clear trend: the inclusion of additional
immunostimulants consistently resulted in higher systemic IgG titers. Notably, the serum
anti-eGFP IgG levels elicited by CuMV-eGFP VLPs were substantially higher than those trig-
gered by the nCMV-PADRE-eGFP “Immune-tag”, regardless of RNA addition. These find-
ings highlight the importance of a multifaceted approach in vaccine design, demonstrating
that optimal immunogenicity relies not only on the inclusion of B-cell [227] and T-cell stimu-
lating epitopes [43,59,151], or TLR ligands such as TLR3 [160,228] and TLR7/8 [160,229,230],
but also on the physical properties of the particle/antigen delivery system. Specifically, the
size of the particle [5,231–233], its multimerization [1,234], and its repetitiveness [114] play
crucial roles in enhancing the immune response.

Building on the results of immunizations with eGFP-carrying “Immune-tags”, a
dengue vaccine candidate, nCMV-PADRE-DV1, was developed. For this vaccine, DV1
EDIII, containing neutralizing epitopes, was selected as the experimental antigen. The
humoral responses in the form of anti-DV1 EDIII IgG were significantly higher in sera
collected from mice immunized with a VLP-based vaccine than in those immunized with
a nCMV-based linear, multimerized construct. In addition, CuMVTT-DV1, following the
boost, induced a prolonged and stable neutralizing response while such a response, induced
by the oligomeric nCMV-PADRE-DV1 was transient only. The induction of high levels of
neutralizing Abs against DENV-1 directly confirms that DV1 EDIII antigen maintains its au-
thentic tertiary and quaternary structures. Given the well-established correlation between
neutralizing Ab titers and protection in both humans and mice [235–237], our experimental
data confirm the functional efficacy of our vaccine designs, even in the absence of direct
DENV challenge data.

The neutralization ratio of DENV-1 can be attributed to several factors that may relate
to both the quantity and quality of the elicited Abs. Our observations from the avidity ELISA
assay indicate a significant increase in the ratio of high-affinity DV1 EDIII-specific IgG
induced by nCMV-PADRE-DV1 compared to “free” DV1 EDIII protein. This underscores
the effectiveness of incorporating the described stimulatory elements in enhancing the
immunogenicity of the antigen. Importantly, we observed the ability of CuMVTT-DV1
to induce the highest ratio of high-affinity DV1 EDIII-specific IgG Abs among all tested
vaccine constructs. Enhanced neutralization of DENV-1 by CuMVTT-DV1-induced serum
post-boost contrasted with low neutralization despite relatively high DV1 EDIII-specific
IgG responses observed pre-boost. This might be attributed to the initial Ab repertoire
being predominantly composed of low-affinity Abs, which are less effective at DENV-1
neutralization [238,239]. This suggests that not only the quantity but also the quality of the
Ab response may be critical for effective neutralization and long-term protection against
DENV [240,241].



Vaccines 2024, 12, 661 23 of 36

VLPs closely mimic the natural structure of viruses and present antigens in a repetitive,
high-density manner that is optimal for B-cell receptor cross-linking and activation [1–3].
VLPs [242,243] and nanoparticle formulations have also been shown to be efficiently endo-
cytosed by dendritic cells, which, in turn, leads to improved T-cell priming [244]. The design
of VLPs/nanoparticles may promote a more balanced Th1/Th2 cell response [242,244],
which leads to balanced Ab subclass responses [55,56,59,164]. In the context of generat-
ing the dengue vaccine candidates, the versatility of the VLP platforms allows for the
exploration of VLPs derived directly from DENV (DENV VLPs) [180,245–247] or the use
of other viral CP-based VLPs from sources such as mammalian viruses [182,248], plant
viruses [50,51,249], or bacteriophages [77,250,251]. Broad comparative studies across differ-
ent platforms could provide insight into their respective strengths and limitations in vaccine
development, anti-dengue efficacy and safety. Meanwhile, our current study evaluates the
impact of immunological cues and nanostructure patterns on the immune response, using
the EDIII of DENV-1 as a biologically relevant model antigen.

Insights concerning targeting TLR4 and TLR3 with adjuvants (such as AS04 or Nex-
aVant™, respectively) have been well documented in the literature [252,253]. This study
introduces a novel perspective by specifically exploring the potential of targeting TLR7/8
within the framework of VLP-based vaccines. However, the mechanisms by which RNA
influences immunogenicity are not yet fully understood. Our recently published study
highlights the significant contribution of prokaryotic RNA encapsulated by the VLPs to
the VLP-based vaccine’s immunogenicity through direct TLR7 and TLR3 engagement
in B cells [160,254,255]. Here, we have not observed such a significant effect after sup-
plementation of the “Immune-tags” with exogenous RNA. Moreover, the IgG responses
induced by nCMV-based constructs (predominantly IgG1) resemble those triggered by
proteins, and anti-viral protein-based vaccines often formulated with aluminum-based
adjuvants [256,257]. Several factors may account for the observed differences in immuno-
genicity between the “Immune-tag”- and VLP-based vaccines: (1) the lack of sufficient
doses/booster injections to potentially compensate for deficiencies in TLR 7 signaling and
adequately increase the overall quantity of produced IgG Abs [160,255]; (2) the absence of
nucleoside modifications characteristic of prokaryotic mRNA [125] within WT CMV CP
mRNA obtained by in vitro transcription and supplemented to nCMV, what could impact
the immune recognition [258–260]; (3) the insufficient amount of ssRNA [160], particularly
lacking in polyU sequences [261,262], which are crucial for effective TLR7 stimulation;
(4) suboptimal antigen distribution on the “Immune-tag” surface [116,160], potentially af-
fecting the efficacy of antigen presentation; (5) the lack of dsRNA sequences that stimulate
TLR3 [160,263]; (6) RNA degradation by RNases [264,265]; (7) reduced stability of the RNA
during storage [266–268], which may be different if packaged within VLPs versus attached
in the “free form” to multimers. Despite these challenges, the stimulation of immune
responses by RNA needs further investigation, as achieving long-lasting immune responses
is crucial for vaccinology. Recent experiences with COVID-19 highlight the complexity of
designing effective vaccines [269].

When antigens are genetically fused to VLPs, the vaccine development process re-
quires only single expression and purification steps. However, not all antigens can be
effectively incorporated into the VLP structure through genetic fusion due to steric and/or
folding issues. On the other hand, chemical conjugation requires a multistep process in-
volving the separate expression and purification of both the VLP and antigen, followed by
their conjugation and the final purification of the conjugated product. This prompts the
search for alternative vaccine platforms and lead us to develop nCMV-based “Immune-tag”
constructs. Such versatile antigen carriers overcome the limitations of direct genetic fusion
methods, offering a potentially more cost-effective approach to vaccine design. The fact
that the “Immune-tags” do not elicit Abs against the CMV CP provides an opportunity for
their application as a booster vaccine after the administration of a first dose of CuMVTT
VLP-based vaccine [60,62,63,162,270–272], possibly with a suitable adjuvant. This feature
suggests that the “Immune-tag”-based vaccines could be used to enhance and extend the
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immune response generated by the initial vaccination without the risk of cross-reactivity
or interference with the primary vaccine’s antigenic targets [273–276]. The strategy of
using “Immune-tag”-based vaccines has the potential to improve vaccination regimens
but may also lead to increased cost efficiency in vaccine production [43,54–56,59]. This
is particularly relevant when the production of a primary vaccine involves the chemical
conjugation of an antigen to a carrier. The “Immune-tag” constructs can be expressed
in E. coli culture in a single procedure with the same approach as VLPs. The capacity
and flexibility of “Immune-tags” allow for the genetic fusion of multiple antigens and
the incorporation of various effective immunostimulants while maintaining a simplified
vaccine manufacturing process. Hence, VLP/”Immune-tag” combinations may be ideal for
use in prime-boost regimens.
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2,5-DHAP 2,5-dihydroxyacetophenone
Ab/Abs antibody/antibodies
AEC addition of 3-amino-9-ethylcarbazole
APCs antigen-presenting cells
AI avidity index
CMV cucumber mosaic virus
CP capsid or coat protein
CuMV cucumber mosaic virus-derived virus-like particles

CuMVTT
immunologically optimized cucumber mosaic virus-derived VLPs with
incorporated universal Th-cell epitope from tetanus toxin
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DENV dengue virus
DLS dynamic light scattering
DV1 EDIII third domain of dengue virus 1 envelope protein
eGFP enhanced green fluorescent protein
ELISA enzyme-linked immunosorbent assay
FRNT focus reduction virus neutralization test
IB inclusion bodies
MS mass spectrometry
NAGE native agarose gel electrophoresis

nCMV
N-terminal fragment of the cucumber mosaic virus capsid protein containing
the functional R domain

ON overnight
PADRE universal synthetic non-natural Pan DR Epitope
PAMPs pathogen-associated molecular patterns
PASPs Pathogen-associated structural patterns
PMSF phenylmethylsulfonyl fluoride
RT room temperature
SATA N-succinimidyl S-acetylthioacetate
s.c. subcutaneous
SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis
SMPH succinimidyl 6-((β-maleimidopropionamido) hexanoate
TEM transmission electron microscopy
Th T-cell help
Th cell T-helper cell
TLR toll-like receptor
TMB tetramethylbenzidine
TT tetanus toxin
VLPs virus-like particles
WT wild type
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Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2
Epitopes Show Differential Neutralization Efficiency. Vaccines 2020, 8, 294. [CrossRef]

32. Kotiw, M.; Johnson, M.; Pandey, M.; Fry, S.; Hazell, S.L.; Netter, H.J.; Good, M.F.; Olive, C. Immunological response to parenteral
vaccination with recombinant hepatitis B virus surface antigen virus-like particles expressing Helicobacter pylori KatA epitopes
in a murine H. pylori challenge model. Clin. Vaccine Immunol. 2012, 19, 268–276. [CrossRef]

33. Rashidijahanabad, Z.; Kelly, M.; Kamruzzaman, M.; Qadri, F.; Bhuiyan, T.R.; McFall-Boegeman, H.; Wu, D.; Piszczek, G.; Xu, P.;
Ryan, E.T.; et al. Virus-like Particle Display of Vibrio cholerae O-Specific Polysaccharide as a Potential Vaccine against Cholera.
ACS Infect. Dis. 2022, 8, 574–583. [CrossRef]

34. Rutgers, T.; Gordon, O.M.; Gathoye, A.M.; Hockmeyer, W.T.; De Wilde, M.; Rosenberg, M. Hepatitis B surface antigen as a carrier
matrix for the repetitive epitope of the circumsporozoite protein of Plasmodium falciparum. Biotechnology 1988, 6, 1065–1070.
[CrossRef]

35. Lee, D.H.; Lee, S.H.; Kim, A.R.; Quan, F.S. Virus-Like Nanoparticle Vaccine Confers Protection against Toxoplasma gondii. PLoS
ONE 2016, 11, e0161231. [CrossRef]

36. Collins, K.A.; Snaith, R.; Cottingham, M.G.; Gilbert, S.C.; Hill, A.V.S. Enhancing protective immunity to malaria with a highly
immunogenic virus-like particle vaccine. Sci. Rep. 2017, 7, 46621. [CrossRef]

https://doi.org/10.1007/s11427-010-4104-3
https://doi.org/10.1038/nm.2105
https://doi.org/10.1016/j.vaccine.2011.07.080
https://doi.org/10.1016/j.vaccine.2013.05.019
https://doi.org/10.1007/s00253-013-5257-3
https://doi.org/10.1016/S0140-6736(14)61185-5
https://doi.org/10.1038/s41541-017-0023-7
https://doi.org/10.1016/j.vaccine.2019.05.026
https://doi.org/10.3390/v12030336
https://doi.org/10.1371/journal.pntd.0009195
https://doi.org/10.1038/s41591-021-01370-1
https://doi.org/10.1006/viro.1994.1059
https://doi.org/10.1016/j.provac.2011.07.004
https://doi.org/10.1016/j.vaccine.2015.10.104
https://doi.org/10.1128/JVI.03025-14
https://doi.org/10.1016/j.antiviral.2016.12.019
https://doi.org/10.3390/vaccines8020294
https://doi.org/10.1128/CVI.05295-11
https://doi.org/10.1021/acsinfecdis.1c00585
https://doi.org/10.1038/nbt0988-1065
https://doi.org/10.1371/journal.pone.0161231
https://doi.org/10.1038/srep46621


Vaccines 2024, 12, 661 27 of 36

37. Cecílio, P.; Pérez-Cabezas, B.; Fernández, L.; Moreno, J.; Carrillo, E.; Requena, J.M.; Fichera, E.; Reed, S.G.; Coler, R.N.; Kamhawi,
S.; et al. Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral leishmaniasis. PLoS Negl. Trop.
Dis. 2017, 11, e0005951. [CrossRef]

38. Moura, A.P.V.; Santos, L.C.B.; Brito, C.R.N.; Valencia, E.; Junqueira, C.; Filho, A.A.P.; Sant’Anna, M.R.V.; Gontijo, N.F.;
Bartholomeu, D.C.; Fujiwara, R.T.; et al. Virus-like Particle Display of the α-Gal Carbohydrate for Vaccination against Leishmania
Infection. ACS Cent. Sci. 2017, 3, 1026–1031. [CrossRef]

39. Chackerian, B.; Lowy, D.R.; Schiller, J.T. Conjugation of a self-antigen to papillomavirus-like particles allows for efficient induction
of protective autoantibodies. J. Clin. Investig. 2001, 108, 415–423. [CrossRef]

40. Di Bonito, P.; Grasso, F.; Mochi, S.; Petrone, L.; Fanales-Belasio, E.; Mei, A.; Cesolini, A.; Laconi, G.; Conrad, H.; Bernhard, H.; et al.
Anti-tumor CD8+ T cell immunity elicited by HIV-1-based virus-like particles incorporating HPV-16 E7 protein. Virology 2009,
395, 45–55. [CrossRef]

41. Cubas, R.; Zhang, S.; Li, M.; Chen, C.; Yao, Q. Chimeric Trop2 virus-like particles: A potential immunotherapeutic approach
against pancreatic cancer. J. Immunother. 2011, 34, 251–263. [CrossRef]

42. Spohn, G.; Arenas-Ramirez, N.; Bouchaud, G.; Boyman, O. Endogenous polyclonal anti-IL-1 antibody responses potentiate IL-1
activity during pathogenic inflammation. J. Allergy Clin. Immunol. 2017, 139, 1957–1965.e3. [CrossRef]

43. Zeltins, A.; West, J.; Zabel, F.; El Turabi, A.; Balke, I.; Haas, S.; Maudrich, M.; Storni, F.; Engeroff, P.; Jennings, G.T.; et al.
Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of
psoriasis, alzheimer’s and cat allergy. NPJ Vaccines 2017, 2, 30. [CrossRef]

44. Palladini, A.; Thrane, S.; Janitzek, C.M.; Pihl, J.; Clemmensen, S.B.; de Jongh, W.A.; Clausen, T.M.; Nicoletti, G.; Landuzzi, L.;
Penichet, M.L.; et al. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology 2018, 7, e1408749.
[CrossRef]

45. Schumacher, J.; Bacic, T.; Staritzbichler, R.; Daneschdar, M.; Klamp, T.; Arnold, P.; Jägle, S.; Türeci, Ö.; Markl, J.; Sahin, U. Enhanced
stability of a chimeric hepatitis B core antigen virus-like-particle (HBcAg-VLP) by a C-terminal linker-hexahistidine-peptide. J.
Nanobiotechnol. 2018, 16, 39. [CrossRef]

46. Storni, F.; Zeltins, A.; Balke, I.; Heath, M.D.; Kramer, M.F.; Skinner, M.A.; Zha, L.; Roesti, E.; Engeroff, P.; Muri, L.; et al. Vaccine
against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. J. Allergy Clin. Immunol.
2020, 145, 1240–1253.e3. [CrossRef]

47. Cheng, K.; Du, T.; Li, Y.; Qi, Y.; Min, H.; Wang, Y.; Zhang, Q.; Wang, C.; Zhou, Y.; Li, L.; et al. Dual-Antigen-Loaded Hepatitis B
Virus Core Antigen Virus-like Particles Stimulate Efficient Immunotherapy against Melanoma. ACS Appl. Mater. Interfaces 2020,
12, 53682–53690. [CrossRef]

48. Rolih, V.; Caldeira, J.; Bolli, E.; Salameh, A.; Conti, L.; Barutello, G.; Riccardo, F.; Magri, J.; Lamolinara, A.; Parra, K.; et al.
Development of a VLP-Based Vaccine Displaying an xCT Extracellular Domain for the Treatment of Metastatic Breast Cancer.
Cancers 2020, 12, 1492. [CrossRef]

49. Klimek, L.; Kundig, T.; Kramer, M.F.; Guethoff, S.; Jensen-Jarolim, E.; Schmidt-Weber, C.B.; Palomares, O.; Mohsen, M.O.; Jakob, T.;
Bachmann, M. Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo J. Int. 2018, 27, 245–255.
[CrossRef]

50. Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019, 145,
119–129. [CrossRef]

51. Balke, I.; Zeltins, A. Recent advances in the use of plant virus-like particles as vaccines. Viruses 2020, 12, 270. [CrossRef]
52. Mohsen, M.O.; Speiser, D.E.; Knuth, A.; Bachmann, M.F. Virus-like particles for vaccination against cancer. Wiley Interdiscip. Rev.

Nanomed. Nanobiotechnol. 2020, 12, e1579. [CrossRef]
53. Liu, X.; Chang, X.; Rothen, D.; Derveni, M.; Krenger, P.; Roongta, S.; Wright, E.; Vogel, M.; Tars, K.; Mohsen, M.O.; et al. AP205

VLPs Based on Dimerized Capsid Proteins Accommodate RBM Domain of SARS-CoV-2 and Serve as an Attractive Vaccine
Candidate. Vaccines 2021, 9, 403. [CrossRef]

54. Chang, X.; Zeltins, A.; Mohsen, M.O.; Gharailoo, Z.; Zha, L.; Liu, X.; Walton, S.; Vogel, M.; Bachmann, M.F. A novel double
mosaic virus-like particle-based vaccine against SARS-CoV-2 incorporates both receptor binding motif (RBM) and fusion domain.
Vaccines 2021, 9, 1287. [CrossRef] [PubMed]

55. Mohsen, M.O.; Rothen, D.; Balke, I.; Martina, B.; Zeltina, V.; Inchakalody, V.; Gharailoo, Z.; Nasrallah, G.; Dermime, S.; Tars, K.
Neutralization of MERS coronavirus through a scalable nanoparticle vaccine. NPJ Vaccines 2021, 6, 107. [CrossRef] [PubMed]

56. Mohsen, M.O.; Balke, I.; Zinkhan, S.; Zeltina, V.; Liu, X.; Chang, X.; Krenger, P.S.; Plattner, K.; Gharailoo, Z.; Vogt, A.C.S.; et al. A
scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2. Allergy 2022, 77, 243–257. [CrossRef]
[PubMed]

57. Ogrina, A.; Skrastina, D.; Balke, I.; Kalnciema, I.; Jansons, J.; Bachmann, M.F.; Zeltins, A. Comparison of bacterial expression
systems based on potato virus Y-like particles for vaccine generation. Vaccines 2022, 10, 485. [CrossRef]

58. Ogrina, A.; Balke, I.; Kalnciema, I.; Skrastina, D.; Jansons, J.; Bachmann, M.F.; Zeltins, A. Bacterial expression systems based on
Tymovirus-like particles for the presentation of vaccine antigens. Front. Microbiol. 2023, 14, 1154990. [CrossRef] [PubMed]

59. Sobczak, J.M.; Krenger, P.S.; Storni, F.; Mohsen, M.O.; Balke, I.; Reseviča, G.; Heath, M.D.; Carreno Velazquez, T.L.; Kramer, M.F.;
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