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Abstract: Clinical cognitive advancement within the Alzheimer’s disease (AD) continuum is inti-
mately connected with sustained accumulation of tau protein pathology. The biological brain age and
its gap show great potential for pathological risk and disease severity. In the present study, we applied
multivariable linear support vector regression to train a normative brain age prediction model using
tau brain images. We further assessed the predicted biological brain age and its gap for patients
within the AD continuum. In the AD continuum, evaluated pathologic tau binding was found
in the inferior temporal, parietal-temporal junction, precuneus/posterior cingulate, dorsal frontal,
occipital, and inferior-medial temporal cortices. The biological brain age gaps of patients within the
AD continuum were notably higher than those of the normal controls (p < 0.0001). Significant positive
correlations were observed between the brain age gap and global tau protein accumulation levels
for mild cognitive impairment (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and AD continuum
(r = 0.797, p < 0.001). The pathologic tau-based age gap was significantly linked to neuropsychological
scores. The proposed pathologic tau-based biological brain age model could track the tau protein
accumulation trajectory of cognitive impairment and further provide a comprehensive quantification
index for the tau accumulation risk.

Keywords: brain age; Alzheimer’s disease; tau protein accumulation; positron emission tomography

1. Introduction

Alzheimer’s disease (AD) is a prevalent neurodegenerative disease characterized by
a typically long preclinical stage lasting 15–20 years [1]. The 2018 National Institute on
Aging and Alzheimer’s Association research framework primarily characterizes AD by the
accumulation of β-amyloid (Aβ) and tau pathologic proteins and subtle neurodegeneration
[AT(N)] [2]. Previous studies have demonstrated that Aβ accumulation may play a causal
upstream role in the AD continuum, potentially leading to the downstream pathologic
changes, such as tauopathy and neurodegeneration, that ultimately result in cognitive
deterioration [3,4]. However, the potential floor or ceiling effects in the amount of Aβ

deposition may have limited contributions to the degree of dementia [5,6]. The ongoing
tau pathologic accumulation, rather than Aβ alone, closely corresponds with the clinical
progression and cognitive changes of AD [7–11]. Thus, characterizing the tau protein
accumulation trajectory is of pivotal clinical importance for determining the severity of AD.

Thanks to advancements in positron emission tomography (PET) imaging and traces,
tau PET imaging enables in vivo visualization and quantification of the AD-related tau
protein accumulation trajectory. Currently, semi-quantitative methods like standardized
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uptake value ratio (SUVR) are primarily utilized in clinical practice to assess tau protein
accumulation. However, the heterogeneity and individual specificity of AD make it chal-
lenging to provide patients with a relatively simple and easy-to-understand quantitative
parameter. Recent studies have proposed a superior canonical image-based quantitative
approach, tauIQ, to quantify tau PET scans. This approach exhibits enhanced efficacy com-
pared to traditional SUVR approaches [12,13]. However, the approach necessitates a large
cross-sectional dataset of subjects across all of the AD continuum to estimate nonspecific
tau load, local tau load, and noise, and these data requirements restrict its application in
clinical practice [12].

Recent studies have adopted approaches based on biological brain aging to assess
disease-specific risk and elucidate the determinants contributing to the discrepancy between
biological brain age and chronological age [14–17]. In particular, the efficacy of predictive
models for estimating brain age using neuroimaging, such as magnetic resonance imaging
(MRI) and fluorodeoxyglucose PET, has been demonstrated in AD, Parkinson’s disease,
epilepsy, and schizophrenia [18–22]. The biological brain age derived from a brain image is
typically related to the reduction of gray matter, decreased glucose metabolism, cerebral
blood flow, or global oxygen utilization [23–25]. The discrepancy between chronological
brain age and biological brain age, termed the brain age gap, can provide insight into
whether a patient within the AD continuum appears older or younger compared to a
same-aged individual with normal cognitive status. Accumulating evidence from AD
studies suggests that tau pathology initially manifests in the locus coeruleus and entorhinal
cortex [26]. Very few studies, however, have examined biological brain age using pathologic
tau accumulation in AD spectrum [27]. Moreover, biological brain age and its gap can
capture individual tau accumulation differences in the interaction of aging and AD patients.

In the current observational study, our objective was to develop a normative brain
age prediction model using AV-1451 tau PET images of normal controls (NCs) and further
assess the predicted brain age and its gap for patients within the AD continuum, including
mild cognitive impairment (MCI) and AD. We also examined the associations between
brain age gap and neuropsychological tests for patients with cognitive impairment.

2. Materials and Methods
2.1. Participants

All of the imaging data utilized in this study were acquired from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (https://adni.loni.usc.edu/, accessed
on 31 March 2005). The ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial MRI, PET, other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of MCI and early AD. All pro-
cedures performed in this study involving human participants were in accordance with
the ethical standards of the institutional and/or national research committee and with the
1964 Declaration of Helsinki and its later amendments or comparable ethical standards.
The data analysis and ethical permissions of this study were approved by the institutional
review board at each of the participating centers. ADNI is listed in the ClinicalTrials.gov
registry (ADNI-1: NCT00106899, date: 31 March 2005; ADNI-GO: NCT01078636, date:
1 March 2010; ADNI-2: NCT0123197, date: 27 October 2010; ADNI-3: NCT02854033, date:
27 July 2016).

A total of 810 subjects (418 NCs, 306 patients with MCI, and 86 patients with AD) were
included in this study. The T1-weighted MRI and AV1451 PET images of all subjects had
to be obtained within the same visit. Mini-Mental State Examination (MMSE), Montreal
Cognitive Assessment (MOCA), Alzheimer’s Disease Assessment Scale Cognitive 11 items
(ADAS11), and Alzheimer’s Disease Assessment Scale Cognitive 13 items (ADAS13) were
used to evaluate the cognitive function in all participants. All of the patients diagnosed
with AD met the diagnostic criteria outlined by the National Institute of Neurological and
Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders
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Association [28]. Detailed diagnostic criteria for all subjects are available at https://adni.
loni.usc.edu/methods/documents/ (accessed on 31 March 2005).

2.2. Image Acquisition and Processing

We obtained the T1-weighted MRI and corresponding AV1451 PET images from the
ADNI database. Details on the acquisition and preprocessing procedures for T1 and PET
images can be accessed (http://adni.loni.usc.edu/methods/documents/, accessed on
31 March 2005). In brief, tau PET images were acquired during a resting state 75–105 min
after an intravenous bolus injection of 18F-radiolabeled AV1451. T1 MRI were obtained
using unified scanning protocols on 3T scanners.

Individual T1 MRI images were segmented using Statistical Parametric Mapping
12 (SPM12) carried out in MATLAB 2021b (MathWorks, Natick, MA, USA). Tau PET
images were realigned, averaged, and spatially coregistered with their corresponding MRI
images. Subsequently, voxel-based partial volume effects correction of tau PET images
was performed using the Müller-Gärtner method with the PETPVE12 toolbox. Then, the
AV1451 PET images were normalized to the Montreal Neurological Institute standard
space via applying the MRI-segmented parameters. Spatially normalized PET images were
subsequently smoothed using a Gaussian kernel with 8 mm full-width at half-maximum.
The SUVR image was generated using the inferior cerebellar gray matter as the reference
region. We extracted 80 cerebral averaged SUVR values from the preprocessed PET images
utilizing the automated anatomical labeling atlas. We also calculated a global merged SUVR
from the typical temporal meta-region harboring elevated pathologic tau accumulation
in the AD continuum (inferior temporal, the middle temporal and fusiform gyri, the
parahippocampal, the entorhinal cortex) [29].

2.3. Brain Age Estimation

We used the resulting 80 cortical tau SUVR values as features to estimate the values
to be used in the normative brain age predictive model. A multivariable linear support
vector regression (SVR) model was initially trained to predict individual chronological age
utilizing these tau SUVR values. Compared to conventional linear regression methods,
the SVR model offers enhanced robustness against outliers and overfitting by learning the
relative importance of each SUVR value in age prediction and fitting a hyperplane to the
brain age. We employed a 10-fold cross-validation iteration approach to train and predict
chronological age utilizing NCs consisting of 9 folds (training dataset, n = 376 [418 × 0.9]).
The fitted regression coefficients in the SVR model were subsequently applied iteratively
to the held-out set of individuals (test dataset, n = 42), which resulted in a prediction of
chronological age for every NC participant. The SVR model employed sequential minimal
optimization for solving for the chronological age, with a set gap tolerance of 0.001.

The brain age gap offers a standardized measurement indicating that an individual’s
brain tau accumulation level appeared older (gap > 0) or younger (gap < 0) compared to
same-aged NCs without cognitive impairment. The brain age gap correlates with chrono-
logical age, leading to an overestimation for younger participants and an underestimation
for older attributed to regression dilution [30–32]. Consequently, we utilized the linear
bias correction method to address age bias correction for the brain age gap, where sex,
education, and APOE4 status were adjusted. The trained SVR model and the corrected
brain age gap model were then applied to patients with MCI and AD to obtain pathologic
tau accumulation-based brain age and its gap estimates for each cohort. The accuracy of
the predictions of the brain age of NCs was evaluated using mean absolute error (MAE)
and Spearman’s correlation coefficient between chronological age and predicted brain age
in the test dataset.

2.4. Statistical Analyses

All continuous data underwent normality testing using the Kolmogorov–Smirnov
test, and the homogeneity of variance was determined using the F test. Group differences
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among NCs, MCI, and AD in clinical characteristics and brain age gap were evaluated using
one-way analysis of variance (ANOVA) with post hoc Bonferroni’s correction and pairwise
comparisons. The effect size was used to measure the pairwise comparisons. Power analysis
for ANOVA was conducted in G-Power to determine a sufficient sample size using an alpha
of 0.05, a power of 0.95, a large effect size (f = 0.4), a number of groups of 3, and two tails.
Based on the aforementioned assumptions, the desired sample size is 102. A chi-squared
test was used to analyze the sex variable. To investigate the associations between brain
age gap and neuropsychological assessments, Spearman’s correlation coefficients were
calculated. Additionally, we repeated the above association assessments using covariate
controlled (sex, education, APOE4 status) linear regression models, to ensure that the
relationship between brain age gap and neuropsychological assessments was not driven
by these covariates. The Spearman’s correlation coefficient was employed to assess the
association of the brain age gap and the merged tau SUVR. All statistical analyses were
conducted with MATLAB 2021b (MathWorks) and Prism v. 10.1.2 (GraphPad Software).
Significance was determined at p < 0.05 (two-tailed).

3. Results
3.1. Subject Characteristics

The clinical and demographic information for this study is shown as Table 1. Com-
pared with AD, NC and patients with MCI had younger age and higher education. There
was no significant sex difference (p = 0.203). Compared with NC, patients with MCI and AD
had higher cognitive severity (ADAS11, ADAS13, MMSE, and MOCA score) and evaluated
pathologic tau accumulation (all p < 0.001). Average chronological age (range) across NC,
MCI, and AD was 72.7 (52.7 to 92.5), 74.6 (55.9 to 92.3), and 76.9 (55.3 to 91.1), respectively.

Table 1. Clinical and demographic information about this study subject.

NC MCI AD p
Post Hoc p

p1 p2 p3

Number 418 306 86 - - - -
Sex (M/F) 259/159 170/136 54/32 0.203 0.083 0.885 0.232

Age (years) 72.7 ± 7.6 74.6 ± 7.3 76.9 ± 7.9 <0.001 0.0014 <0.001 0.341
Education (years) 16.7 ± 2.2 16.4 ± 2.5 15.4 ± 2.5 <0.001 0.231 <0.001 0.003

APOE4 carriers (%) 32.3 53.9 61.6 - - - -
ADAS11 5.2 ± 2.5 9.7 ± 4.4 20.6 ± 8.6 <0.001 <0.001 <0.001 <0.001
ADAS13 8.2 ± 3.9 15.8 ± 6.8 31.5 ± 10.1 <0.001 <0.001 <0.001 <0.001
MMSE 29.2 ± 1.0 27.3 ± 2.3 21.5 ± 4.2 <0.001 <0.001 <0.001 <0.001
MOCA 26.2 ± 2.6 22.9 ± 3.2 16.3 ± 4.4 <0.001 <0.001 <0.001 <0.001

Merged tau SUVR 1.14 ± 0.12 1.42 ± 0.45 1.71 ± 0.63 <0.001 <0.001 <0.001 <0.001

Data are expressed as means ± standard deviations or rate. Post hoc p values were calculated after application of
the Bonferroni’s correction. p1 NC versus patients with MCI. p2 NC versus patients with AD. p3 patients with MCI
versus patients with AD. Abbreviations: NC, normal control; MCI: mild cognitive impairment; AD, Alzheimer’s
disease; ADAS11, Alzheimer’s Disease Assessment Scale Cognitive 11 items; ADAS13, Alzheimer’s Disease
Assessment Scale Cognitive 13 items; MMSE, mini-mental status exam; MOCA, Montreal Cognitive Assessment;
SUVR, standardized uptake value ratio.

3.2. Pathologic Tau Accumulation in AD Continuum

As shown in Figure 1, across the AD continuum, the evaluated pathologic tau binding
was maximal at the inferior temporal, parietal-temporal junction, and precuneus/posterior
cingulate and moderately spread in the dorsal frontal, occipital, and inferior-medial tem-
poral cortices. Group differences of global tau accumulation also show that AD had the
highest tau deposition levels, SUVR = 1.71 ± 0.63 (post hoc p < 0.0001, Cohen’s d = 1.73
between NC and AD; Cohen’s d = 0.72 between MCI and AD, Figure 1d).
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Figure 1. Group-average tau PET SUVR maps. Compared with NC group (a), there are significant and
widespread pathologic tau accumulations in the MCI (b) and AD (c) groups. (d) Group differences of
merged tau SUVR between NC, MCI, and AD. NC: normal control, MCI: mild cognitive impairment,
AD: Alzheimer’s disease, SUVR: standardized uptake value ratio, ****: Post hoc p < 0.0001.

3.3. Brain Age Prediction and Its Gap

The normative brain age prediction model was trained using tau PET images with
10-fold cross-validation. As depicted in Figure 2a, the overall accuracy measured on the test
dataset was MAE = 4.89 ± 0.261, r = 0.722, p < 0.001. Figure 2b,c demonstrate the scatter
plot of chronological age and predicted brain age gap. After linear bias correction, there
was no significant negative correlation between chronological age and predicted gap.
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versus predicted brain age; (b) Uncorrected brain age gap; (c) Brain age gap after bias correction.

We further calculated the biological brain age and its gap in patients with MCI and
AD utilizing the normative trained SVR prediction model and AV1451 PET images. As
anticipated, the brain age gaps of the cognitive impairment groups were significantly higher
than that of the NCs (p < 0.0001, multiple comparisons p < 0.0001, Figure 3). The mean
brain age gap of the MCI/AD was 9.41 ± 13.8 or 25.4 ± 20.7 (Cohen’s d = 1.71 between NC
and AD; Cohen’s d = 0.94 between NC and MCI; Cohen’s d = 0.90 between MCI and AD).
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We also observed that there was significant negative association between chronological
age and brain age gap (MCI: β = −0.45, p < 0.001, R2 = 0.055; AD: β = −1.62, p < 0.001,
R2 = 0.38), which indicated that patients with younger disease onset tended to have higher
brain age gaps derived from pathologic tau accumulation.
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Figure 3. Pathologic tau-based brain age gap estimation for MCI and AD groups. (a) Violin plots of
the corrected brain age gap for each diagnostic group. The corrected brain age gap of disease groups
was compared with cognitively unimpaired individuals using a one-way ANOVA with post hoc
Bonferroni’s correction. Tau-based brain age gap estimation for MCI (b) and AD (c). NC: normal
control, MCI: mild cognitive impairment, AD: Alzheimer’s disease, ****: Post hoc p < 0.0001.

3.4. Associations between Brain Age Gap and Neuropsychological Assessments and the
AD Biomarker

We further investigated the associations between brain age gap estimated by tau PET
images and neuropsychological assessments and the AD biomarker, to evaluate whether a
higher brain age gap was associated with severe cognitive symptoms. As shown in Figure 4,
we found there were notable positive correlations between brain age gap and global tau
accumulation level for MCI (r = 0.726, p < 0.001), AD (r = 0.845, p < 0.001), and the whole
AD continuum (r = 0.797, p < 0.001), which remained after controlling for covariates (MCI:
β = 0.024, p < 0.001, R2 = 0.53; AD: β = 0.026, p < 0.001, R2 = 0.71; whole AD continuum:
β = 0.025, p < 0.001, R2 = 0.63).
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Figure 4. Association of brain age gap with merged tau SUVR in AD continuum. Scatter plots show
the relationship between tau-based brain age gap with merged tau PET SUVR for MCI (a), AD (b),
the whole AD continuum (c), respectively. MCI: mild cognitive impairment, AD: Alzheimer’s disease;
SUVR: standardized uptake value ratio.

As expected, the pathologic tau-based brain age gap was significantly associated
with MMSE score (r = −0.709, p < 0.001), MOCA score (r = −0.531, p < 0.001), ADAS11
score (r = 0.569, p < 0.001), and ADAS13 score (r = 0.609, p < 0.001) in AD continuum
(MCI and AD groups, Figure 5). After adjustments for sex, education, and APOE4 status,
there were similar significant associations between the brain age gap and MMSE score
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(β = −0.104, p < 0.001, R2 = 0.24), MOCA score (β = −0.131, p < 0.001, R2 = 0.25), ADAS11
score (β = 0.253, p < 0.001, R2 = 0.31), and ADAS13 score (β = 0.317, p < 0.001. R2 = 0.29).
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4. Discussion

Given the severe and irreversible nature of AD, it is crucial to precisely explore the
pathology trajectory within the AD continuum. The tau protein pathology, as an essential
biomarker for diagnosis and cognitive progression, exhibits successive spatial expansions
during the course of AD. In light of that, our study presents an optimized brain age gap
prediction model which is based on the tau accumulation trajectory. The brain age gaps
of the cognitive impairment groups were significantly higher than that of the NCs, with a
negative correlation observed between chronological age and brain age gap. In participants
with cognitive impairment, the brain age gap exceeded that of cognitively unimpaired
participants and exhibited a notable correlation with both neuropsychological score and
neuroimaging biomarkers. This study presents an optimal model for predicting brain
age and the brain age gap in individuals within the AD continuum, emphasizing the
significance of the brain age gap marker and its potential as a valuable tool for identifying
individuals at risk. Furthermore, it may serve as a valuable biomarker to detect heightened
risk for tau pathology or indicate disease progression.

In the past, there have been numerous studies regarding brain aging. Most of these
studies have predominantly employed structural MRI and fluorodeoxyglucose PET imag-
ing for estimations of aging [31,33–35]. However, tau PET exhibits greater sensitivity
compared to amyloid-PET and cortical thickness measurements in exploring cognitive
variations during the early stages of AD [36]. Our model accurately estimated the disparity
an individual’s brain age gap using pathologic tau images. One finding that stands out is
that the evaluated pathologic tau binding was maximal at the inferior temporal, parietal-
temporal junction, and precuneus/posterior cingulate and moderately spread in the dorsal
frontal, occipital, and inferior-medial temporal cortices in AD continuum, which is in line
with previous research to some extent [37,38]. Imaging analysis revealed crucial pathologic
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tau regions within the AD continuum and demonstrated significant differences in overall
tau protein accumulation. The studies conducted in vitro have indicated that tau proteins
might experience transneuronal spreading, and estimating normal values for these brain
regions was crucial to our development of the model used in this study [39].

The brain age gap derived from the tau PET data is elevated in cognitively impaired
individuals compared to NCs. This performance is slightly better than previous structural
age prediction models, which show increases between five and ten years [40]. Meanwhile,
this model is clearly sensitive to different groups representing various statuses in the
symptomatic phase. In cognitively impaired participants, the brain age gap estimated
from model was significantly associated with the global tau accumulation level, further
demonstrating the model’s predictive capability for tau pathology deposition. Elevated
tau protein deposits were closely linked to cognitive deficits in AD [41,42]. Therefore, the
brain age gap estimated by our model can systematically assess tau protein deposition
and cognitive impairment in the brain, providing a straightforward and comprehensive
index for clinical use. This could assist in early clinical intervention and help delay further
cognitive decline. Additionally, this brain age gap model has great potential for initiating
physical examinations in aging individuals and providing early cognitive risk predictions.

Interestingly, in MCI and AD, chronological age showed a negative correlation with
the brain age gap, revealing individuals with earlier disease onset typically exhibit a
higher brain age gap resulting from pathological tau accumulation. A larger disparity
between brain age and chronological age signifies a heightened risk during the course of
the disease [43]. Pathologic tau-based brain age gaps demonstrated a significant association
with neuropsychological scores, underscoring the intricate relationship between patterns
of tau accumulation and cognitive function with clinical symptoms [44].

In our current study, various limitations need to be addressed. Firstly, this is a cross-
sectional study, and future follow-up is necessary to further validate the effectiveness of
model. Secondly, in consideration of the potential influence of cross-cultural backgrounds,
this study did not include results from multiple cohorts. Our future plans include ex-
panding multicenter research to obtain more stable models. Thirdly, the training set might
have a smaller sample size compared to previous models. In addition, other types of
biomarkers, such as plasma and cerebrospinal fluid markers [45], need to be incorporated
to complement the ATN framework and achieve a more complete model in the future.
Given the previous research on brain age [46–48], we believe this model could be utilized
as a sensitive biomarker for cognitive function decline during the symptomatic stage.

5. Conclusions

In summary, the current study demonstrates a brain age prediction model which was
developed using the tau accumulation trajectory of normal controls. The model generates
accurate brain age and brain age gap predictions for cognitively impaired individuals in
the AD continuum. In the future, as effective treatments for AD become available, the
model might assist in identifying individuals at various stages. Overall, all of our findings
provide insight into the pathophysiology of AD and the potential predictive ability of our
model to enable personalized recognition.
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