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Abstract

Analysing complex diseases such as chronic inflammatory joint diseases (CIJDs), where

many factors influence the disease evolution over time, is a challenging task. CIJDs are

rheumatic diseases that cause the immune system to attack healthy organs, mainly the

joints. Different environmental, genetic and demographic factors affect disease develop-

ment and progression. The Swiss Clinical Quality Management in Rheumatic Diseases

(SCQM) Foundation maintains a national database of CIJDs documenting the disease man-

agement over time for 19’267 patients. We propose the Disease Activity Score Network

(DAS-Net), an explainable multi-task learning model trained on patients’ data with different

arthritis subtypes, transforming longitudinal patient journeys into comparable representa-

tions and predicting multiple disease activity scores. First, we built a modular model com-

posed of feed-forward neural networks, long short-term memory networks and attention

layers to process the heterogeneous patient histories and predict future disease activity.

Second, we investigated the utility of the model’s computed patient representations (latent

embeddings) to identify patients with similar disease progression. Third, we enhanced the

explainability of our model by analysing the impact of different patient characteristics on dis-

ease progression and contrasted our model outcomes with medical expert knowledge. To

this end, we explored multiple feature attribution methods including SHAP, attention attribu-

tion and feature weighting using case-based similarity. Our model outperforms temporal

and non-temporal neural network, tree-based, and naive static baselines in predicting future

disease activity scores. To identify similar patients, a k-nearest neighbours regression algo-

rithm applied to the model’s computed latent representations outperforms baseline strate-

gies that use raw input features representation.
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Author summary

Chronic inflammatory joint diseases affect about 2000000 patients in Switzerland alone.

These conditions lead to immune system dysfunction resulting in inflammation that tar-

gets the joint tissues. Understanding which aspects of patients’ characteristics and disease

management history are predictive of future disease activity is crucial to improving

patients’ quality of life. A significant obstacle to the widespread adoption of deep learning

(DL) methods in healthcare is the challenge of understanding their “black-box” nature

(i.e. the underlying decision process for outcome generation). Therefore, the development

of “explainable” deep learning methods has become an active area of research. These

approaches aim to provide insights into the inner workings of deep learning models,

enabling physicians to understand and assess the output of DL models more effectively.

We propose DAS-Net: an explainable deep learning model that finds similar patients and

predicts future disease activity based on past patient history. In our analysis, we contrast

different explainability approaches highlighting which aspects of the patient history

impact model predictions the most. Furthermore, we show how computed patient simi-

larities allow us to rank different patient characteristics in terms of influence on disease

progression and discuss how case-based explanations can enhance the transparency of

deep learning solutions.

1 Introduction

Chronic inflammatory joint diseases (CIJDs) cause the immune system to attack healthy

organs, particularly the joints [1]. In addition to causing pain, the inflammation can lead to

synovitis, bone erosions, muscle and ligament damage. To this day, there exists no cure and

the treatments primarily help attenuate the patients’ symptoms and improve their quality of

life. Finding ways to minimise the disease activity is crucial to alleviate the disease burden on

patients’ everyday life.

Digitalising patient healthcare data has led to a massive increase in available electronic

health records (EHRs), opening up the opportunity to mine these records and employ machine

learning (ML) approaches to discover novel evidence about real-world treatment efficacy and

patient outcomes [2]. Due to the complex patient-specific disease progression patterns, CIJDs

patient registries are very heterogeneous in the collected measurements and temporally sparse,

presenting a challenge for ML models to learn from the data. In this work, we use the database

of the Swiss Clinical Quality Management in Rheumatic Diseases (SCQM) Foundation [3]. It

is a national longitudinal database of CIJDs documenting the disease management over time

for 19’267 patients with different forms of arthritis.

We propose the Disease Activity Score Network (DAS-Net), an explainable multi-task neu-

ral network model to transform heterogeneous longitudinal patient journeys from the SCQM

registry into comparable representations and predict future disease activity scores (DAS).

DAS-Net evaluates the importance of the different aspects of individual management history

(events) to predict future disease activity scores (i.e. multi-task forecasting). To this end, we

trained our model on patients who had available DAS28-BSR (hereafter DAS28) [4] or

ASDAS-CRP (hereafter ASDAS) [5] scores, without limiting our analysis to a specific arthritis

subtype, but rather including all the patients for which either of these scores was available. The

model is composed of multilayer perceptrons, long short-term memory networks [6], and aug-

mented with attention mechanism [7] to process heterogeneous patient histories. The
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attention mechanism highlights parts of the patients’ histories that are most likely contributing

to the outcome prediction, providing further insights into the model’s decision-making

process.

Compared to physicians who use their experience to assess possible similarities among

patients [8], we use our model to retrieve patients with similar disease progression by mapping

the patients’ raw entangled data into a latent space with higher separability [9]. We empirically

assessed DAS-Net’s ability to cluster patients with similar disease progressions.

Lastly, we explored multiple explainability approaches in our analysis, in particular through

the (a) SHAP (SHapley Additive exPlanations) [10] value computation on the baseline models’

input features to gain post-hoc insights into the contribution of each feature (b) two-layered

attention mechanism in the model architecture assigning weights to the different events of the

patient histories and highlighting their significance for the model’s predictions, and (c) case-

based importance weighting of the features for patient similarity assessment. We offer visual

insights to illustrate how the model evaluates the similarity between some example patients

and highlight the most influential features. To expand on these case-based explanations, we

developed aggregate metrics to rank the input features’ importance for similarity assessment.

By contrasting the results of these various approaches, we believe that we make a significant

step towards enhancing the transparency of the model’s output.

1.1 Related work

Temporal deep learning models such as recurrent neural networks and transformers are com-

monly used in deep learning to analyse longitudinal patient data [11]. However, there is lim-

ited research on employing these temporal modeling approaches to predict disease

progression in CIJDs. Most existing DL studies using CIJD databases focus on classifying the

diagnoses rather than predicting how the disease progresses [2]. In studies that do predict dis-

ease progression, the continuous DAS values are usually simplified and thresholded into a

binary classification task such as remission/no remission or response/no response, rather than

predicted through regression [12]. For instance, Norgeot et al. [13] implemented RNNs to pre-

dict disease activity (remission/no remission) at the next rheumatology visit for rheumatoid

arthritis patients. Their model significantly outperformed a static baseline, indicating the effec-

tiveness of employing temporal models for modeling disease activity in CIJDs.

Furthermore, the majority of the existing studies are limited to patients with rheumatoid

arthritis. However, in [14], both rheumatoid arthritis (RA) and axial spondyloarthritis (axSpa)

patients were included and various non-temporal ML models (such as random forest, logistic

regression and vanilla neural networks) were used to predict response/no response to different

treatments. Their feature importance analysis revealed that different patient-reported outcome

measures were the most significant predictors. This result supports our findings that past mea-

sures of disease activity are highly predictive of disease progression.

Our model architecture builds on the work proposed in [15] and further extends it (a) to

support patients with different CIJD subtypes (not only RA) and (b) adding attention layers to

measure the importance of different patient characteristics and management strategies for the

model predictions. To the best of our knowledge, this is the only study emphasising patient

similarity and explainability in modeling temporal disease progression in CIJDs.

2 Materials and methods

2.1 Dataset

2.1.1 Description. The SCQM Foundation maintains a national database of inflammatory

rheumatic diseases since 1997. The database documents the disease management over time for
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190267 patients through clinical measurements during the visits, demographics, prescribed

medications and patient-reported outcome measures (database snapshot from 01.04.2022).

Patients are diagnosed either with rheumatoid arthritis (RA), axial spondyloarthritis (axSpA),

psoriatic arthritis (PsA) or undifferentiated arthritis (UA). Appendix S1 Fig shows the distri-

bution of the number of medical visits per patient in the database.

2.1.2 Ethics. Pseudonymised data, without access to the code key, was provided by the

Swiss Clinical Quality Management in Rheumatic Diseases registry to the researchers. There-

fore, the ethics commission of the Canton of Zurich (KEK-ZH) waived the need for a full eth-

ics authorization (Declaration of non-responsibility from the KEK-ZH). The SCQM

Foundation operates a national register for inflammatory rheumatic diseases in close coopera-

tion with the Swiss Society for Rheumatology SGR. The SCQM Foundation is obliged that all

data are subject to federal and/or cantonal data protection regulations. Prior enrolment at

SCQM, signed informed consent was provided by the patients, in accordance with the Decla-

ration of Helsinki. Additionally, withdrawal of participation is possible at any time.

2.1.3 Preprocessing. The SCQM database documents the management and disease evolu-

tion of the patients spanning several types of records and sources. We kept four distinct

sources of information:

1. Demographics (Dem): Non-temporal patient features such as date of birth or gender.

2. Clinical measures (CM): Clinical measurements collected during a visit, such as DAS or

weight.

3. Medications (Med.): Features related to a prescribed medication and its duration (i.e. start

or stop).

4. Patient-reported outcome measure (PROM): Patient self-reported disease activity scores

(such as RADAI score [16]).

While the demographics are static and only collected once, the clinical measures, medica-

tions and PROM are low-frequency time series. We refer to these as “time-related events”.

As preprocessing steps, we discarded patients with less than three CMs with distinct mea-

surements of ASDAS or DAS28, or no medication information. We also discarded records

with missing dates in the time-related data, and the clinical measures without either DAS28 or

ASDAS. We selected the features used in [15], and additional ones based on availability and

clinical relevance. We included the 90% most prescribed medications. After preprocessing,

100589 patients (with a total of 790872 clinical measures) and 31 features remained. The list of

features is shown in appendix S1 Table and Fig 1 shows the distribution of the two DAS we

used as predictive targets (i.e. outcomes). Summary statistics of the features are available in the

tables of appendices S2, S3, S4, S5, S6, S7, S8 and S9 Tables. Moreover S2 and S3 Figs show the

distribution of the different input features and targets, stratified on the number of medical

visits.

2.2 Model

2.2.1 Motivation. Our dataset, like many EHR datasets, is irregular in both the temporal

aspect (patients do not have the same number of medical visits), and in the number of

recorded features (patients have varying numbers of recorded measurements and missing

attributes).

Using non-temporal machine learning approaches (i.e. models that ignore patients’ full his-

tory) would limit the modeling of the data by restricting the input features to the subset shared

by most data points or by discarding and imputing features to homogenise the data. This
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approach usually implies discarding most temporal information and using only the dataset’s

main features, leading to significant information loss, poor generalisability and bias.

With this in mind, our goal is to develop a deep learning model that can process the full

patients’ history, overcoming the challenges of temporal and feature irregularity. Moreover, it

should be modular and support multiple outcome predictions allowing us to learn from all

patients in the dataset with different DAS scores and arthritis subtypes. Lastly, it should pro-

duce meaningful latent representations, allowing us to compare patients with heterogeneous

histories. An overview of the project pipeline, from data collection to implementation and

evaluation of the different models is provided in Fig 2.

2.2.2 Architecture. Our model combines two main components. First, the model uses

multilayer perceptrons (MLPs), long short-term memory networks (LSTMs) [6] and is aug-

mented with attention layers [17] to build explainable vectorised patient representations. The

different sources of information in the patient histories are handled separately until aggrega-

tion in the representation block. Then, we trained multilayer perceptrons to predict future

DAS from these representations.

We adapted the architecture proposed in [15] to our setting by training multiple LSTMs,

prediction networks, and by augmenting the model with several layers of attention layers.

Fig 3 shows the model architecture with a brief description for each component of the model.

Model input. The input features are the patient medications, PROM and CMs up to a cho-

sen time point, the demographics and the time to the prediction. Demographics, medications,

PROM and CM are treated separately since their measurements are not aligned in time and

contain different features. Merging them would result in a very sparse matrix and necessitate

significant feature imputation.

Model output. The model predicts the next available DAS28 or ASDAS score by feeding

the computed latent representation in the penultimate layers (i.e. representation layers) to two

separate blocks of prediction layers. The latent representation is used posthoc to compute

patient similarities.

Encoders. First, the MLP encoders process the normalised event-specific features. We

defined separate encoders for each type of information (CM, Dem, PROM and Med). The

Fig 1. Disease activity scores distribution. Stacked histograms showing the DAS28 and ASDAS distribution in the preprocessed dataset.

The different colour bars show the different arthritis types. (A) DAS28 distribution. The DAS28 score is usually recorded for patients with

RA. (B) ASDAS distribution. The ASDAS score is usually recorded for patients with axSpA.

https://doi.org/10.1371/journal.pdig.0000422.g001
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Fig 2. Project pipeline from data collection to implementation and evaluation of the different models.

https://doi.org/10.1371/journal.pdig.0000422.g002
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encoders output lower dimensional embeddings for the time-related events and higher dimen-

sional embeddings for the demographics to have matching history sizes in the later aggregation

step. The order of the initial events is maintained in the computed embeddings.

We describe how the model is applied to a patient p. Let ev 2 {CM, Med, PROM} be a time-

related event, sev the number of features for ev, qev the embedding size, Eev : Rsev ! Rqev be the

corresponding encoder and ½Xt1ðevÞ
; . . . ;XtnðevÞ

�
T
2 Rsev�nðevÞ

the ordered events measured at

times t1(ev) < . . .< tn(ev). To ease the notation, we omitted the dependencies to p. We store the

time-ordered embeddings ½et1ðevÞ
; . . . ; etnðevÞ

�
T
2 Rqev�nðevÞ

with etiðevÞ
¼ EevðXtiðevÞ

Þ.

For the demographics event, we simply have edem = Edem(Xdem), where Xdem 2 R
sdem�1 are

the demographic features.

Temporal block. For a given sequence of events, the temporal block aggregates the embed-

dings into a one-dimensional vector. It contains one LSTM and one attention mechanism per

category of time-related events. The LSTMs process the ordered embeddings computed by the

event encoders. The attention mechanism is a trainable vector that weighs the contribution of

each output of the LSTMs to the aggregated event history. For a given event, the aggregated

history vector is the weighted sum of the outputs of the LSTM.

Thus, let Lev be the LSTM for event ev, ev 2 {CM, Med, PROM}. Lev takes as input the

sequence of embeddings ½et1ðevÞ
; . . . ; etnðevÞ

�
T

and outputs a processed sequence

½Levðet1ðevÞ
Þ; . . . ; LevðetnðevÞ

Þ�
T
. Given the computed local attention weights aloc

tiðevÞ
, i = 1, . . ., n, the

aggregated event history is

HðevÞ ¼
Xn

i¼1

aloc
tiðevÞ
� LevðetiðevÞ

Þ;

where using the softmax operator we have that
Pn

i¼1
aloc

tiðevÞ
¼ 1.

Representation block. The representation block combines the event-specific outputs H(ev)

of the temporal block, the demographics embedding edem and the time to prediction t into a

unique vector. It is augmented by an attention mechanism, weighing the contribution of each

type of event to the representation. The representation of a patient is the weighted sum of the

Fig 3. Model architecture. The encoders and prediction networks are MLPs. The model uses LSTMs to aggregate

input sequences of different lengths and attention mechanism to weigh the different components of the input. “CM”

stands for “Clinical measures”, “Med.” for “Medications”, “PROM” for “Patient-reported outcome measure” and

“Dem.” for “Demographics”.

https://doi.org/10.1371/journal.pdig.0000422.g003
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demographics embedding and the aggregated event-specific histories, concatenated with the

prediction time t.
Thus, R = [P, t] where

P ¼
X

ev2fCM;Med;PROMg

aglobðevÞ � HðevÞ þ aglobðdemÞ � edem

and
X

ev2fCM;Med;PROM;Demg

aglobðevÞ ¼ 1:

R = [P, t] is the combined latent representation of the patient history. It is used as input to pre-

dict future disease states and to compute similarities between patients.

Prediction networks. We defined two multilayer perceptron prediction networks, PDAS28 :

Rr�1 ! R and PASDAS : Rr�1 ! R. The networks take as input the patient representation R and

output the predicted DAS value at the medical visit at time t.
2.2.3 Features and target selection. As described in subsection 2.1.3, we only included

patients with at least three measurements of either DAS28 or ASDAS. These two DAS are part

of the clinical measures, i.e. they are recorded during the medical visits of the patients. We use

as targets the DAS collected from the second CM onwards, to ensure sufficient history length.

The DAS from past CMs are part of the input features; a DAS is thus the target and then a fea-

ture once it becomes part of the patient’s history.

For each possible target, we used as input features the demographics and all the time-related

events observed at least 15 days before the target CM.

2.2.4 Optimisation. We stratified the patients on the number of CMs and randomly sam-

pled 20% of the stratified patients as testing set that was not used for model training and tun-

ing. We standardised the features and imputed missing values. We performed a five-fold CV

on the training data to find the optimal parameters via random search. We selected the hyper-

parameters with the lowest average loss across the folds on their respective validation sets.

Following the empirical risk minimisation principle, our training objective is the sum of the

mean squared error (MSE) for the DAS28 and ASDAS predictions. We used the AdamW [18]

algorithm with mini-batch processing to optimise the objective.

At each step, we randomly sampled two batches of patients, one containing the patients

with available DAS28 and the other with available ASDAS to ensure consistent joint optimisa-

tion of both objectives for these patients. We predicted all the available targets for each selected

patient. The loss optimised at each optimiser step is defined in Eq 1

LðyÞ ¼
X

B2fBDAS28;BASDASg

1

NB

X

p2B

Xnp

v¼1

ðmodelyðf
v
p ; tvÞ � yv

pÞ
2

where BDAS28 and BASDAS are the sampled batches patients with available DAS28 and ASDAS

respectively, NB is the total number of targets in batch B, np is the number of targets for patient

p, f v
p are the input features for patient p to predict target v, tv is the time to target v and yv

p is the

true value of the target. θ denotes the model parameters to be optimised. We used batch sizes

proportional to the total number of available targets per score to ensure consistent joint opti-

misation of both prediction networks.

2.3 Patient similarity: k−NN regression model

We evaluated the utility of DAS-Net’s computed latent representations (i.e. computed vector

representation R as described in subsubsection 2.2.2) to retrieve similar patients. Given a

patient representation at a prediction time-point, we computed the L1 distance to all other
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representations and selected the k closest patient embeddings. We set k to 50 as it achieved

optimal performance on the validation data (appendix S5 Fig).

We matched the computed patient representations from the test set to their closest repre-

sentations in the train set, such that for each patient representation ep;t ≔ e 2 Rtest (i.e. the

computed representation embedding for patient p at time t), we found the subset of nearest

neighbour representations N e 2 Rtrain. We omitted the dependencies to p and t to ease the

notation. This experiment simulates comparing incoming data to an extensive established

database, possibly across hospitals. It could help find optimal management strategies faster by

assessing which strategy worked best for similar patients.

Analogous to k−NN regression, we compared the representation’s future DAS with the

average DAS of their closest matched set. We refer to this model as the k−NN regression

model.

2.3.1 Feature importance for similarity assessment. We developed aggregate metrics to

assess the average importance given to each feature for the similarity computation between an

index patient and their subset of nearest neighbours.

For continuous features, we computed the average absolute distance (AAD) between the

feature value of the patients in the test set and the average value in their matched set (in the

training data), and the standardised AAD by dividing the AAD by the standard deviation of

the feature:

AAD ¼
1

j Rtest j

X

e2Rtest

j xc
e �

1

j N e j

X

e02N e

xc
e0 j;

where xc
e is the value of the continuous feature c for patient embedding e. For all computations,

we restricted the subsets to the embeddings with available feature c. This metric reflects how

much the values of the features of the subset of nearest neighbours deviate from the values of

the index patient.

For a categorical feature fj with possible categories Sj we computed the prior empirical prob-

ability of each category k 2 Sj. Furthermore, for each k 2 Sj, we computed the adjusted proba-

bilities for the embeddings in the neighbourhood N e of an index patient embedding e with

feature value k, i.e. the probability Pðx j
e0 ¼ k j x j

e ¼ k; e0 2 N eÞ. We compared the two quanti-

ties to evaluate the importance of each categorical feature for the similarity computation. For

an embedding e0 2 Rtrain, the prior empirical probability Pðxj
e0 ¼ iÞ of category i 2 Sj is

Pðxj
e0 ¼ iÞ ¼

P
e2Rtrain

1fxj
e ¼ ig

P
e2Rtrain

P
k2Sj

1fxj
e ¼ kg

;

and the adjusted probability is

Pðxj
e0 ¼ k j xj

e ¼ k; e0 2 N eÞÞ ¼

P
e2Rtest

1fxj
e ¼ kg

P
e02N e

1fxj
e0 ¼ kg

P
e2Rtest

1fxj
e ¼ kg

P
e02N e

P
i2Sj
1fxj

e0 ¼ ig
:

Again, we restricted the computations to the subsets of patients with available feature j. The

increase in adjusted probabilities versus prior probabilities reflects how likely the feature is to

have the same value as the index patient within its subset of nearest neighbours.

3 Results and discussion

We compared the performance of DAS-Net and of the k−NN regression model for future dis-

ease activity prediction to different baseline models and further explored the three
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explainability approaches to better understand the relationship between input features and

model output at different stages of the modeling process.

3.1 Performance

3.1.1 DAS-Net prediction. We compared the performance of our model to two non-tem-

poral machine learning models: vanilla neural network (MLP) and tree-based gradient boost-

ing model (XGBoost), and one temporal LSTM model. Furthermore, we also included a static

naive baseline. The static naive baseline uses the last available DAS28 (resp. ASDAS) score for

the given patient as its prediction. This strategy implies using the last disease state of a patient

as a predictor of their future disease state. The MLP and XGBoost baselines take as input the

same features as our model but only their last available values. Restricting the number of values

per feature is necessary since these models cannot handle varying input sizes. We trained one

MLP and XGBoost model per prediction task. Like our model, the LSTM baseline also uses the

complete patient history as input. Besides the attention mechanism, the main difference

between the LSTM and DAS-Net models lies in the disposition of the long short-term memory

layers. DAS-Net employs separate long short-term memory layers for each type of event (CM,

Med, PROM), while the LSTM model uses a unique long short-term memory layer to process

the concatenated events.

In Table 1 we report the models’ average performance and standard deviation on the test set.

Our model achieves the lowest mean squared error (MSE) on both prediction tasks (MSEs of

0.510 ± 0.009 for ASDAS and 0.965 ± 0.014 for DAS28). In second place comes the LSTM model

for ASDAS prediction (MSE of 0.521 ± 0.007) and the XGBoost model for DAS28 prediction

(MSE of 0.992 ± 0.002 for DAS28). Using a naive model that uses the most recent DAS score as

prediction achieves the worst performance (MSEs of 0.842 for ASDAS and 1.475 for DAS28).

Furthermore, we evaluated the models’ ability to correctly predict active RA (i.e. DAS28

values above 2.6) and moderate axSpA (i.e. ASDAS values above 2.0). To perform the classifi-

cation, we trained a logistic regression model on DAS Net’s latent embeddings from the train-

ing set and evaluated the performance on the test set. We compared the performance of this

approach to the LSTM, XGBoost and MLP predictions, where we thresholded the predicted

values of DAS28/ASDAS. Our approach achieves overall a higher accuracy than the baseline

ML models (accuracies of 0.761 ± 0.001 for ASDAS and 0.757 ± 0.000 for DAS28 for our

approach) (Table 2). Furthermore, the sensitivity and specificity of our approach are more bal-

anced than for the baseline models. The baseline models achieve a higher sensitivity but suffer

from a low specificity (Table 2).

To understand the effect of the length of patient history on the prediction performance, we

computed the model’s performance as a function of varying lengths of patient histories. Fig 4

shows the MSE decreases as more prior medical visits become available to the model.

Table 1. Model performance (regression). DAS-Net outperforms the four baselines for both prediction tasks. The

naive baseline simply reuses the last available DAS. The MLP and XGBoost baselines use the last available values of

each feature as input and our model the whole patient history. The LSTM baseline sequentially processes the patients’

histories.

Model MSE ASDAS MSE DAS28

DAS-Net 0.510 ± 0.009 0.965 ± 0.014

LSTM 0.521 ± 0.007 1.011 ± 0.018

XGBoost 0.534 ± 0.003 0.992 ± 0.002

MLP 0.562 ± 0.005 1.029 ± 0.007

Naive 0.842 1.475

https://doi.org/10.1371/journal.pdig.0000422.t001
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Additionally, in Fig 5, we plot the predicted versus ground truth DAS28 and ASDAS scores

for two example patients, showcasing how DAS Net could be used by clinicians to monitor

and predict disease activity.

Lastly, in Appendix S1 Text we show that the model predictions are robust across sub-

groups of patients with different characteristics. We also present the results of additional

experiments aiming to evaluate the impact of feature imputation on model predictions and to

demonstrate the model’s robustness to spurious correlations.

3.1.2 Patient similarity: k−NN regression model. We evaluated the ability of our model

to cluster patients with similar disease progressions, by comparing the future DAS values of

the embeddings in the test set with the average values of their most similar embeddings, as

computed by our k−NN regression approach on DAS-Net’s latent embeddings. We compared

the performance of our approach to the performance of a k−NN algorithm applied to the raw

data, and a naive approach selecting a random subset of patients (Table 3). Both baseline strat-

egies thus do not utilise DAS-Net’s computed latent representations. The k-NN model on the

latent representations achieves the lowest MSE (MSEs of 0.506 and 0.966 for ASDSAS and

DAS28 prediction).

Interestingly, our k−NN approach has a similar predictive performance to the DAS-Net

model for prediction (Table 1), and also outperforms the LSTM, MLP and XGBoost baselines,

suggesting that the DAS-Net latent representations successfully capture the important predic-

tive components from the patient history.

3.2 Explainability approaches

In this section, we compare and contrast the results obtained from the different feature attribu-

tion techniques we applied or developed. These methods offer multiple insights on the

Table 2. 3.1.2 Model performance (classification). We evaluated the performance of the different approaches at predicting active disease (i.e. DAS28 values above 2.6 or

ASDAS values above 2.0). While our approach has a slightly lower sensitivity than the baselines, it has a better balance between sensitivity and specificity and has an overall

higher accuracy.

Model Sensitivity

ASDAS

Specificity

ASDAS

Accuracy

ASDAS

Sensitivity

DAS28

Specificity

DAS28

Accuracy

DAS28

DAS-Net 0.771±0.002 0.749 ± 0.003 0.761 ± 0.001 0.759±0.001 0.754 ± 0.001 0.757 ± 0.000

LSTM 0.800 ± 0.022 0.715 ± 0.025 0.759 ± 0.004 0.828 ± 0.027 0.639 ± 0.048 0.736 ± 0.010

XGBoost 0.859 ± 0.009 0.619 ± 0.014 0.750 ± 0.003 0.845 ± 0.001 0.620 ± 0.002 0.736 ± 0.001

MLP 0.818 ± 0.008 0.657 ± 0.010 0.745 ± 0.001 0.835 ± 0.009 0.631 ± 0.011 0.736 ± 0.002

https://doi.org/10.1371/journal.pdig.0000422.t002

Fig 4. MSE versus number of prior medical visits. The MSE between model predictions and target DAS values

decreases as the number of prior medical visits increases. The availability of at least three prior medical visits induces a

steep decrease in MSE. Panel (A) shows the MSE for the DAS28 prediction and panel (B) for the ASDAS prediction.

https://doi.org/10.1371/journal.pdig.0000422.g004
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relationship between input features and model output at different stages of the modeling

processes.

3.2.1 SHAP values on vanilla neural network. For the baseline neural network model

(MLP), we computed the SHAP [10] values for the input features. SHAP values are derived

from the game-theoretic-based Shapley values [19] and compute the contribution of each fea-

ture to the model predictions.

The plots in Fig 6 show the top-10 SHAP values for ASDAS and DAS28 predictions. Each

dot represents a feature value from the test set and is overlaid with a colour reflecting the value

of the feature. The x-axis shows the SHAP value. In our setting, a positive SHAP value indi-

cates that the feature drives the model predictions upwards, and thus leads to higher predicted

DAS. The features are ordered by the average magnitude of their SHAP values (from top to

bottom, and we included only the top ten features). Overall, the SHAP values are consistent

with the clinical knowledge.

For ASDAS prediction, the past ASDAS values, age and number of enthesitides are positively

correlated with their SHAP values, indicating that a higher value leads to a higher predicted

disease activity score. For the medications, currently taking a bDMARD leads to lower future

predicted DAS and the opposite for csDMARDs. For DAS28 prediction, the past DAS28 values,

BSR, HAQ and RADAI pain level are positively correlated with higher predicted disease activity

Fig 5. Predictions of individual patient trajectories. We compare the model predictions with the ground truth values of DAS28

(panel (A)) and ASDAS (panel (B)) for two example patients. The bar charts show the prescribed medications present in the database.

https://doi.org/10.1371/journal.pdig.0000422.g005

Table 3. Similarity matching. The k-NN (k = 50) method based on the model latent embeddings outperforms the k
−NN algorithm directly applied to the raw data and the completely random subset for the retrieval of similar patients.

Model MSE ASDAS MSE DAS28

k-NN model on DAS-Net latent representations 0.506 0.966

k-NN on raw data 0.681 1.218

Random subset 0.915 1.863

https://doi.org/10.1371/journal.pdig.0000422.t003
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scores. The absence or short duration of morning stiffness leads to lower predicted DAS. Being

male is also a better prognostic factor.

Furthermore, we computed the absolute SHAP values of the features for each model trained

on one of the 5 folds in our data (during 5-fold cross-validation). The plots in Fig 7 show the

average and standard deviation of the absolute SHAP values for the 10 features with the largest

overall absolute SHAP values (ordered from top to bottom). The importance ranking of the

features is consistent across the different models.

Clinical relevance of findings. In predicting future DAS in RA patients, the model was

strongly influenced by the presence and duration of morning stiffness, with no or shorter

morning stiffness resulting in lower predicted DAS. Morning stiffness for more than one hour

strongly correlates with DAS28 scores [20]. Thus, in the model, the level of morning stiffness

might have reinforced the strong dependency of the future DAS from current and past DAS

measurements.

Notably, the feature importance in predicting ASDAS in patients with axSpA differed with

respect to the influence of current and past treatment. In RA, current use of bDMARDs pre-

dicted low DAS levels. Similarly, in axSpA, the current use of bDMARDs was linked to predict-

ing low future disease activity. This suggests that bDMARDs are effective in managing disease

progression in this context. However, in the axSpA cohort, the situation is more complex.

Both past use of bDMARDs and current use of csDMARDs (conventional synthetic disease-

Fig 6. SHAP feature importance. The x-axis shows the SHAP value, and each dot is overlaid with a color representing

the feature value. Thus, a pink dot with a positive SHAP indicates that the feature has a high value and leads to a higher

predicted DAS. We show the top-10 features with the highest absolute SHAP values (ordered from top to bottom) for

ASDAS prediction (panel (A)) and DAS28 prediction (panel B).

https://doi.org/10.1371/journal.pdig.0000422.g006

Fig 7. Mean and standard deviation of the absolute SHAP values across folds. We trained one MLP model per DAS

on each cross-validation fold and computed their average absolute SHAP values on the test set for ASDAS prediction

(panel (A)) and DAS28 prediction (panel B). The top-10 most important features are consistent across folds.

https://doi.org/10.1371/journal.pdig.0000422.g007
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modifying antirheumatic drugs) are connected to high future disease activity. This suggests

that patients who have experienced previous failure with bDMARDs or require additional

csDMARD therapy belong to a difficult-to-treat group with a low likelihood of responding

favourably to future treatments.

3.2.2 Attention weights. DAS-Net employs a two-layered attention mechanism for

model-based explainability. The attention mechanism assign weights to the different events of

the patient histories highlighting their significance for the model’s predictions. The local

attention is specific to each type of time-related event showing the weight given to each event

when building the aggregated event history (H(ev), ev 2 {CM, Med, PROM} in subsection

2.2.2). For example, they show which specific clinical measure contributed the most to the pre-

diction. The global attention gives weight to the aggregated event histories and demographics

when building the patient’s full history representation (P in subsection 2.2.2). It shows which

type of event is used the most by the model to make the prediction.

Global attention. Fig 8A shows the attribution of the global attention weights to the differ-

ent event features (i.e. CM, PROM, etc.) in the patients’ history as the history length increases

(denoted by the number of predicted targets). At the first target prediction, while most of the

attention weight is already attributed to past CM, one-third is still attributed to other sources

of information. Thus, when limited information is available, the model considers all the

sources of information (i.e. clinical measures, medications, demographics and PROM). As the

volume of available information increases (i.e. increasing length of history), the model increas-

ingly assigns higher weights to the past clinical measures (CM) compared to the other sources

of information. This weight distribution is reasonable because the previous CM contain the

previous DAS that is predictive of future DAS.

Interestingly, for patients with a significant improvement in DAS (at least 20% improve-

ment since the last CM), DAS-Net attributes less attention to the CM and redistributes it

towards the other types of events (Fig 9).

Local attention. We further inspected the attribution of the local attention weights for the

clinical measures in patients’ history when predicting the target outcome Fig 8B. Most atten-

tion is directed at the last available clinical measure in the history before the prediction. Fur-

thermore, the attribution to past clinical measures is inversely proportional to their distance

from the target. Our model thus assigns the highest attention scores to the recent clinical mea-

sures (i.e. latest measures), particularly the ones preceding the prediction.

3.2.3 Patient similarity. Case-based visualisations. We visualised the patient representa-

tions by computing and plotting their two-dimensional t-SNE embeddings [21]. We plotted

Fig 8. Global and local attention weights for increasing number of medical visits (i.e. increasing patient histories)

aggregated over the patients in the test set. (A) Global attention weights for the different event features in the

history. The global attention shows that the model uses clinical measures the most for the predictions. Furthermore,

this pattern grows stronger as the number of available clinical measures increases. (B) Local attention weights for

clinical measures. The local attention shows that within the clinical measures, most of the weight is attributed to the

recent clinical measures.

https://doi.org/10.1371/journal.pdig.0000422.g008
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the embeddings for the entire cohort, i.e. the t-SNE embeddings of all the higher dimensional

representations in R ¼ Rtest [Rtrain. In Fig 10, we overlaid the embeddings in each subplot

with colourmaps reflecting the values of the features. We reported the last available value for

the given feature at the time of computation of an embedding (we restricted the plots to the

embeddings with an available value for the feature). The subspace is separated according to dif-

ferent values of the features. In Fig 10A, we overlaid the embeddings with the CIJD subtype of

the patients, even though this attribute is not explicitly used as an input feature in our model,

to get an overview of the distribution of the different CIJD subtypes in the latent space.

The plots provide general visual insight into the latent representation space. For instance

Fig 10D shows the repartition of the smoker statuses, and a cluster of smoker patients in the

top left of the figure stands out. Embeddings in this subspace correspond to patients with a

smoking status that seems determinant for their disease activity prediction. Non-smoking

patients and former smokers for more than a year are generally mapped to the same subspace,

showing that the algorithm treats them the same. Some smokers, with possibly other more

determinant factors, are also mapped in the same subspaces as non-smokers. By inspecting the

gender plot (Fig 10C), we notice that males are generally mapped towards the edges of the sub-

clusters. The same regions generally correspond to lower DAS28 activity regions (Fig 10B).

Furthermore, in Fig 10 we highlighted a randomly selected patient embedding ep,t from the

test set (larger dot) and its nearest neighbours (triangles) N e as computed by our k−NN regres-

sion model. For each continuous feature (here the DAS28 score) we also computed the average

value in the entire representation set R and within N e. For categorical features (here gender,
duration of morning stiffness, rheumatoid factor and smoker status), we computed the incidence

of each category in R and N e. By comparing the overall distribution of the feature value with

its distribution within N e, we get insight into the importance given to the different features for

the similarity assessment.

The example patient in Fig 10 is diagnosed with rheumatoid arthritis, and most of her near-

est neighbours also belong to the same CIJD subtype (Fig 10A). She has a higher DAS28 value
than average (4.4 versus mean cohort value of 3.1) and there is a distribution shift within her

subset of nearest neighbours towards higher DAS28 values (average of 4.2 within her subset of

nearest neighbours) (Fig 10B). Her smoker status (Fig 10D) and gender (Fig 10C) seem deter-

minant for the similarity assessment, since all of her nearest neighbours are also smoking

Fig 9. Global attention weights. Comparison in global attention weight attribution between patients with or without

improvement in disease activity for DAS28 (panel (A)) and ASDAS (panel (B)). The attention is redistributed for patients

with at least 20% improvement at the next visit.

https://doi.org/10.1371/journal.pdig.0000422.g009
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Fig 10. t-SNE visualisation of patient representations. Each point shows the t-SNE embedding of a representation of

a patient at a given time. The subplots show the decomposition overlaid with the feature values (restricted to the

embeddings with an available value for the feature). Furthermore, we highlighted a patient from the test set (larger

filled dot) and her nearest neighbours (triangles) as computed by our algorithm. For each continuous feature we

compute the average value in the entire cohort and within the subset of nearest neighbours. For categorical features, we

computed the proportion of each category. We overlaid the plots with values representing different patient
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females. Conversely, the rheumatoid factor (positive, Fig 10E) and duration of the morning stiff-
ness (all day, Fig 10F) seem to be considered less important for this patient. However, there is

still an overall redistribution towards positive rheumatoid factor and longer durations of

morning stiffness in the nearest neighbour subset compared to the distribution in the entire

representation cohort. A similar analysis for different patients is provided in S6 and S7 Figs.

Ranking of features. Plots in Fig 10, S6 and S7 Figs provide insights into the nearest neigh-

bour attribution mechanism on an individual patient level. Using the method described in

subsection 2.3.1, we ranked the features by global importance in the cohort. We found that

overall both DAS scores and the number of swollen joints are the most important for the simi-

larity assessment for continuous features (Table 4). Similarly, high duration of morning stiff-

ness and gender are the top-2 categorical features for the similarity assessment (Table 5).

Clinical relevance of findings. Our analysis of patient similarity suggested that the impact

of smoking on disease parameters varies among patients. Genetic association studies showed

that smoking is only associated with an increased risk of developing RA in people carrying the

shared epitope genes in the HLA-DR locus, but not in current smokers without these RA risk

genes [22]. While it is known that smoking negatively affects treatment response and disease

severity in both RA and axSpA [23–26], it would be interesting to know if this is the same in all

patients or if genetic background plays a similarly important role in the impact of smoking on

disease.

3.2.4 Use case. In the previous sections, we demonstrated the different explainability lay-

ers that our analysis offers and highlighted the key cohort insights derived from them. Here,

we present a final use case, showcasing the practical application of these different explanations

for clinical decision-making. We revisit the prediction curve for the patient from Fig 5A,

characteristics; (A) Diagnosis, (B) DAS28 Value, (C) Gender, (D) Smoker status, (E) Rheumatoid factor, (F) Morning

stiffness duration.

https://doi.org/10.1371/journal.pdig.0000422.g010

Table 4. Similarity metric: Contribution of continuous features. Average absolute distance (AAD) and standardised AAD between the feature value of a test embedding

ep,t and the mean feature value within its nearest neighbours N e. The features are ordered by standardised AAD. We see that the two DAS and the number of painful joints

are taken into account the most during the similarity assessment.

Feature AAD Standardised AAD

asdas_score 0.25 0.24

das283bsr_score 0.35 0.25

n_painfull_joints_28 2.05 0.41

n_painfull_joints 2.40 0.43

crp 5.35 0.46

n_swollen_joints 2.14 0.50

bsr 8.03 0.50

mda_score 0.73 0.56

n_enthesides 1.42 0.58

joints_type 8.05 0.61

haq_score 0.46 0.65

pain_level_today_RADAI 1.91 0.71

activity_of_rheumatic_disease_today_RADAI 1.89 0.71

hb 0.97 0.72

height_cm 6.73 0.73

weight_kg 12.05 0.76

https://doi.org/10.1371/journal.pdig.0000422.t004
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hereafter referred to as “index patient”, in Figs 11 and 12, while additionally showing the mean

and standard deviation predicted by the k− nearest neighbours. The feature importance

derived from the patient similarity provides insights on model predictions at different time

points. We analyse two specific prediction time points, highlighted by red rectangles in the tra-

jectory plots in Figs 11A and 12A (representing the 7−th and 16−th predictions respectively),

and examine the feature values within the subset of most similar patients at these times.

First, we visualise the latent trajectories of the patient and their nearest neighbors at two dis-

tinct prediction time points, as depicted in Figs 11B and 12B. Moreover, the heatmaps in Figs

11C, 11D, 12C and 12D compare the index patient’s feature values to those of the nearest

neighbours. For continuous features, we computed the average values within the set of nearest

neighbours and for categorical features we computed the proportion of patients sharing the

same category as the index patient. Rows of similar colors in the heatmaps indicate consistency

in feature values between the index patient and their nearest neighbours. Thus, from Fig 11 we

can deduce that the prediction at this time point was mainly driven by the patients’ gender,

MDA/DAS28 scores, and the affected joints. Similarly, the 16−th prediction illustrated in

Fig 12 was mainly influenced by the RADAI duration of morning stiffness and the MDA

score. Together, these different analyses and visualisations collectively enhance our under-

standing of the data driving the model predictions.

Conclusion

In this work, we propose DAS-Net, a multitask neural network-based model for transforming

heterogeneous rheumatic disease registry data into comparable patient representations and

predicting future disease activity. When predicting future DAS, DAS-Net outperformed all

non-temporal baseline models that discarded or simplified most of the patient history. Fur-

thermore, it also outperformed a temporal LSTM model suggesting that DAS-Net is better

suited to handle heterogeneous temporal patient records.

Table 5. Similarity metric: Contribution of categorical features. Empirical probability of a category c versus adjusted probability, given that the data point is in the subset

of nearest neighbours N e of a datapoint xe with the same category c. The increase in the adjusted probability reflects the importance of a given category in the similarity

assessment. Longer durations of morning stiffness and gender have the strongest impact on the similarity assessment.

Category c Base P(c) Adjusted P(cjxe = c) Increase (percentage)

morning_stiffness_duration_RADAI: 2_to_4_hours 0.04 0.08 100.0

morning_stiffness_duration_RADAI: more_than_4_h. . . 0.02 0.04 100.0

gender: male 0.29 0.46 59.0

morning_stiffness_duration_RADAI: 1_to_2_hours 0.08 0.11 38.0

morning_stiffness_duration_RADAI: all_day 0.03 0.04 33.0

smoker: i_am_currently_smoking 0.23 0.27 17.0

ra_crit_rheumatoid_factor: negative 0.37 0.43 16.0

morning_stiffness_duration_RADAI: 30_minutes_to. . . 0.16 0.18 12.0

gender: female 0.71 0.78 10.0

morning_stiffness_duration_RADAI: no_morning_st. . . 0.47 0.51 9.0

ra_crit_rheumatoid_factor: positive 0.63 0.68 8.0

smoker: i_am_a_former_smoker_for_more_than_a_year 0.31 0.33 6.0

anti_ccp: negative 0.38 0.40 5.0

anti_ccp: positive 0.62 0.63 2.0

smoker: i_have_never_smoked 0.46 0.47 2.0

morning_stiffness_duration_RADAI: less_than_30_. . . 0.21 0.21 0.0

https://doi.org/10.1371/journal.pdig.0000422.t005
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Our model design included attention layers that aided in explaining the importance of the

different visits and parts of the patient’s history in outcome prediction. It showed that our

model uses recent information but still attributes significant weight to older events and that

the model attributes the majority of the weight to the clinical measures. This pattern gets stron-

ger as the amount of available history increases and the model performance improves for lon-

ger medical histories.

Moreover, the predictive power of the nearest neighbour approach on the model’s latent

representations showed that our model is well suited to transform heterogeneous electronic

health records into comparable representations. One possible extension for our model would

be to explicitly incorporate a clustering loss in the training objective [27] to further improve

the patient similarity framework.

Lastly, the results of the three different analyses of feature importance (feature attribution

via SHAP, attention weights and case-based similarity) are in concordance with clinical expert

knowledge ([28–30]). Past disease activity scores were consistently the strongest predictors in

all three analyses and gender and rheumatoid factor stood out as important features for the

similarity assessment. Consistent with these findings, low disease activity, including low CRP/

BSR levels, and low HAQ levels have also been associated with good future outcomes in

patients with RA in previous studies [31, 32]. Similarly, autoantibody status and gender have

been described before as predictors of outcomes in RA patients [32–34]. Importantly, this

analysis could be expanded to evaluate the influence of additional features not currently in the

database, which might be linked to disease activity, such as ethnicity, and their effects on

model predictions [35].

Overall, our study demonstrates promising results towards developing an explainable clini-

cal decision support system for retrieving similar patients and predicting their disease

Fig 11. Use case: Prediction at 7-th time point. (A) DAS28 predictions of DAS-Net and k−NN models. (B) t-SNE

overlaid with gender. (C) Categorical features: proportion of similar patients with same category value. (D)

Continuous features: average values for similar patients.

https://doi.org/10.1371/journal.pdig.0000422.g011
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progression while considering the different disease management strategies that worked best

for similar patients. Such a CDSS would be especially useful for managing complex chronic

diseases. It could help find optimal management strategies faster by assessing which strategy

worked best for similar patients.
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