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Abstract
Motivation: Acute kidney injury (AKI) is a syndrome that affects a large fraction of all critically ill patients, and early diagnosis to receive ade
quate treatment is as imperative as it is challenging to make early. Consequently, machine learning approaches have been developed to predict 
AKI ahead of time. However, the prevalence of AKI is often underestimated in state-of-the-art approaches, as they rely on an AKI event annota
tion solely based on creatinine, ignoring urine output.
We construct and evaluate early warning systems for AKI in a multi-disciplinary ICU setting, using the complete KDIGO definition of AKI. 
We propose several variants of gradient-boosted decision tree (GBDT)-based models, including a novel time-stacking based approach. A 
state-of-the-art LSTM-based model previously proposed for AKI prediction is used as a comparison, which was not specifically evaluated in 
ICU settings yet.
Results: We find that optimal performance is achieved by using GBDT with the time-based stacking technique (AUPRC¼65.7%, compared 
with the LSTM-based model’s AUPRC¼62.6%), which is motivated by the high relevance of time since ICU admission for this task. Both 
models show mildly reduced performance in the limited training data setting, perform fairly across different subcohorts, and exhibit no issues in 
gender transfer.
Following the official KDIGO definition substantially increases the number of annotated AKI events. In our study GBDTs outperform LSTM models 
for AKI prediction. Generally, we find that both model types are robust in a variety of challenging settings arising for ICU data.
Availability and implementation: The code to reproduce the findings of our manuscript can be found at: https://github.com/ratschlab/AKI-EWS

1 Introduction
According to Kellum et al. (2021), Acute kidney injury (AKI) 
affects �30% of patients in the intensive care unit (ICU), and 
exhibits mortality rates of up to 50%. AKI is defined as a 
sudden loss of kidney function defined by a reduced urinary 
output or a rise in serum creatinine and is decomposed into 
four stages. Stage 1 (initiation) of AKI, where patients do not 
exhibit clinical signs. Stage 2 (oligo-anuria) describes the 
phase when urine output is diminished, which occurs in 70% 
of AKI events, which leads to the dysfunction of various 
organs due to uremia. Stage 3 (polyuria) is the delicate phase 
when recovery is ongoing, however loss of water together 

with electrolytes such as potassium and sodium can lead to 
clinical complications. Finally, stage 4 refers to the restitution 
of kidney function (Kellum et al. 2012). Early detection of 
kidney injury (in the preclinical stage 1 phase) is crucial for 
providing adequate treatment and preventing further kidney 
damage by carefully balancing fluids through either loop diu
retics or fluid administration as well as withholding contrast 
material administration, hyperglycemia and other kidney 
stress-inducing drugs (Kellum et al. 2021). Current standards 
of care are insufficient for treatment because increases in 
serum creatinine lag substantially behind renal injury 
(Mårtensson et al. 2012, Hermansen et al. 2021). 
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Consequently, rule-based systems for AKI based on creati
nine or other lagging molecular biomarkers have not been 
shown to improve clinical outcomes (Lachance et al. 2017).

Therefore, there is a need for accurate and personalized 
predictors able to anticipate AKI early in its development 
process. For similar prediction tasks, machine learning 
approaches have been shown to thrive in a data-rich environ
ment such as the ICU. Examples include early circulatory 
(Hyland et al. 2020) and respiratory failure prediction (H€user 
et al. 2024). A number of challenges need to be overcome for 
such a predictor to effectively support the workflow of ICU 
clinicians. Firstly, it needs to deliver timely, actionable and 
relevant alerts to doctors of possible AKI events to avoid 
alarm fatigue. Secondly, each patient should receive alerts 
based on their individual clinical profile. Thirdly, such an 
early warning system needs to generalize well to various pa
tient demographics and healthcare systems, which has been 
proven to be particularly difficult in AKI occurring in the 
ICU specifically (Toma�sev et al. 2019, Cao et al. 2022). 
Fourth, an early warning system deployed in a clinical con
text should motivate the predominant factors behind any 
given alarm, to aid decision making and increase adoption us
ing, for instance, SHAP values (Lundberg and Lee 2017) or 
other model inspection methods.

Several prediction models for AKI have been proposed in the 
literature, however they each come with important caveats. 
First, the performance of models solely based on serum creati
nine or urine output do not make them clinically applicable due 
to the lack of timely sensitivity of those biomarkers (Alge and 
Arthur 2015). A previous attempt at predicting AKI from elec
tronic health records using ML failed to demonstrate adequate 
clinical performance (Mohamadlou et al. 2018). While a recent 
LSTM-based method (Toma�sev et al. 2019) showed good per
formance, adequate population generalizability was lacking, 
and has since been explored to some extent by Cao et al. 
(2022). Another limitation of previous ML approaches, includ
ing Toma�sev et al. (2019) and subsequent follow-up work by 
Cao et al. (2022), is that AKI events are only labeled using se
rum creatinine. This label definition does not fully conform to 
the definition of AKI as given by the KGIDO foundation, which 
requires both serum creatinine and urine output. Finally, the 
data used to train ML models, particularly the dataset of the 
United States Veterans Affairs used in the models of Toma�sev 
et al. (2019) and revisited by Cao et al. (2022), are not publicly 
available. This conflicts with FAIR (Findable, Accessible, 
Interoperable, and Reusable) guidelines for scientific data shar
ing (Wilkinson et al. 2016) and limits the reproducibility of the 
previously reported work. In this work, we use open datasets 
for our analyses (HiRID-II and MIMIC-IV that will be or are 
available on PhysioNet.org) and make our code (https://github. 
com/ratschlab/AKI-EWS) open-source, to ensure the end-to-end 
reproducibility of our results and applications of our models on 
real world data.

Here, we present a detailed benchmark of gradient-boosted 
decision tree (GBDT) models, which have been specifically 
adapted to AKI prediction from multi-variate ICU time- 
series, and the LSTM-based model proposed by Tomasev 
et al., which to our knowledge has not been specifically eval
uated in ICU datasets. Our evaluation employs the complete 
KDIGO definition of AKI, incorporating both serum creati
nine levels and urine output criteria. We evaluate model per
formance across a wide array of challenging machine 
learning situations arising when deploying models in a 

clinical setting. First, we examine the performance in two dis
tinct health systems by assessing the performance of models 
in the HiRID-II (Switzerland) as well as the MIMIC-IV 
(United States) datasets. Second, we evaluate the fairness of 
both models in sub-cohorts stratified by age, gender, and di
agnostic group category. Third, motivated by Toma�sev et al. 
(2019), whose model was trained in a male-dominated US 
veteran cohort, we investigate gender transferrability by 
training each model on both genders separately, and then 
evaluating it on the other. Fourth, we investigate the perfor
mance of the two models in an artificially reduced dataset
ting, which simulates low-resource health settings with a 
scarcity of available labeled data. Fifth, we investigate the 
clinical plausibility of the most important parameters identi
fied by each of the methods, by comparing its agreement with 
relevance rating provides by experienced ICU clinicians. We 
conclude with a case-study on the impact of fluid and furose
mide administration on model performance by estimating the 
treatment effect, inspecting SHAP values and quantifying the 
effect on false alarm rates.

In summary, our study makes significant advancements in 
the field of AKI prediction in ICU settings, with the following 
key contributions:

� Utilization of the complete KDIGO definition of AKI, in
corporating both serum creatinine levels and urine out
put, to address existing gaps in predictive modeling. 

� Development of a novel time-based stacking technique to 
improve GBDT AKI prediction performance. 

� Training and evaluation of a previously proposed LSTM- 
based approach on an open ICU dataset. 

� Comprehensive assessment of model performance across 
different health systems and patient demographics, focus
ing on generalizability and fairness. 

� Investigation of gender transferrability and model robust
ness in settings with limited data, highlighting the versatil
ity of the proposed models. 

� An explorative study of the effect of AKI treatments on 
model performance, with an investigation of its possible 
mechanism using propensity-matched treatment effect 
analysis and model introspection using SHAP values. 

� Supporting reproducibility, demonstrated by the use of 
open datasets and the open-sourcing of our codebase. 

2 Materials and methods
Figure 1 presents an overview of the data processing, model
ing and evaluation pipeline. Below, we describe each element 
of the pipeline in detail.

2.1 Study data sets
The HiRID-II dataset (H€user et al. 2024) was used to test per
formance in the Swiss health system. The dataset was previ
ously k-anonymized with respect to observable attributes 
including age, gender, weight and height and absolute date 
information was removed (H€user et al. 2024). The MIMIC- 
IV dataset (Goldberger et al. 2000, Johnson et al. 2023) was 
used to assess performance in the US health system. From 
both datasets patients were excluded from the study if their 
AKI status cannot be reliably annotated at any point of their 
ICU stay. The same processing pipeline including partial im
putation, AKI annotation, and feature engineering was used 
for both datasets. Exploration of the prediction task and 
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variable selection was guided by HiRID-II. The HiRID-II 
study dataset contained 52 356 ICU admissions (363.92 pa
tient years), while the MIMIC-IV study dataset contained 
45 221 ICU admissions (502.43 patient years).

2.2 AKI annotation using the KDIGO definition
Acute Kidney Injury (AKI) is characterized by a decreased 
glomerular filtration rate (GFR), indicative of renal injury 
and impaired function (Kellum et al. 2012). In clinical prac
tice, serum creatinine levels are often used as a proxy for 
GFR. This condition is classified into three stages, each indi
cating a progressively severe level of kidney dysfunction. In 
our study, we specifically examined the progression from a 
stable condition to any of the more severe stages (AKI 1–3), 
to include early, pre-clinical signs of deterioration. The crite
ria we used to identify the transition to stage 1 (AKI-1) or a 
higher stage are as follows:

� Increase in creatinine by ≥0:3 mg/dl (≥26:6 mmol/l) 
within 48 h. 

� Increase in creatinine to ≥1:5 times baseline within 
7 days. 

� Urine volume < 0.5 ml/kg/h for 6 h. 
� Initiation of renal replacement therapy. 

For each patient, we determined the baseline creatinine 
level based on the lowest value observed during the entire 
ICU stay, including the period prior to ICU admission. The 
AKI status was continuously monitored and classified as sta
ble or in an AKI stage ≥ 1, on an hourly basis throughout the 
ICU stay, using the criteria mentioned above.

Using prior knowledge by ICU clinicians, we incorporated 
two post-processing steps in our analysis. Gaps of up to 24 h 
between two AKI events were bridged, treating the patient as 
in an AKI state during these intervals. The purpose of adopt
ing this approach was to maintain consistency in situations 

where sporadic data may indicate a temporary return of sta
bility. In addition, AKI events lasting <4 h were excluded 
from our analysis, considering these brief fluctuations as 
likely nonsignificant or spurious transitions.

2.3 Partial imputation and feature engineering
Data was partially imputed on a time grid with step size 
5 min between the first and last heart rate observation. 
Variable-specific “active periods” were defined using clinical 
knowledge. Data was forward filled up to these active peri
ods, in which the last measurement can be assumed to be a re
liable estimate. Beyond this horizon or if the patient had no 
measurements for the variables, data was left as missing on 
the time grid. Features were then computed, which consisted 
of the following classes:

� Current (partially imputed) value of all variables, includ
ing time-since-admission. 

� Multi-scale history, i.e. summary statistics over four hori
zons in the past (last 10, 26, 53, 156 h). Over the horizons 
median, standard deviation, and trend summary functions 
were computed. 

� Measurement history, which captures how often previ
ously and when a measurement was last observed. 

Full details are given in Supplementary Appendices SB.1 
and SB.2.

2.4 Variable selection
To compare model performance between different models in an 
unbiased way, each model selected important variables indepen
dently. For the GBDT models, the SHAP method was used to 
pre-filter the variables. For each of the 5 data splits, the top 30 
variables according to SHAP mean absolute values in the valida
tion set were found. The intersection of these 5 sets yielded 23 
variables. Then greedy forward selection on this set guided by 

AKI Annotation

Serum Creatinine 
0.3 mg/dL in 48h

Serum Creatinine 
1.5x baseline in 7 days

Urine 
≤ 0.5 ml/kg/h

AKI Prediction

Event-based
evaluation

            LSTM

      GBDT

       Time series

 Feature
Engineering

          Data projection
onto grid

           HiRID-2

      

Full AKI Definition

Fully Reproducible Pipeline

Or

Variable Selection
(on HiRID-2)

Union

           MIMIC-IV

Alarm Load
Assessment

Figure 1. Overview of the machine learning and evaluation pipeline for AKI prediction in the ICU using the complete KDIGO definition. As our models are 
designed for ICU settings, and not the general ward, as often done in previous literature, where such measurements are not available, we can use the 
full KDIGO AKI definition, i.e. 1.5× increase in creatinine compared to a baseline measured in the last 7 days, a 0.3 mg/dl creatinine increase within 48 h or 
a reduced urine output below 0.5 ml/kg/h. With this definition, we built a reproducible machine learning pipeline aiming for the early identification of AKI. 
Two model types are used, one is the LSTM-based model proposed by Toma�sev et al. (2019) which uses the time series directly, while the other uses 
GBDTs (Ke et al. 2017). Both models are built on a set of variables that are most important for inferring kidney failure determined using SHapeley Additive 
exPlanations (Lundberg and Lee 2017) and greedy forward selection to maximize model portability in practice by reducing the number of required  
variables.
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AUPRC on the validation set was performed in the 5 splits, and 
the first k variables were included such that the model’s was 
within 1% of the optimal performance, as done in related 
works (Hyland et al. 2020, H€user et al. 2024). The variable sets 
found in the 5 splits were then intersected, yielding 15 variables. 
The LSTM model selected variables by assessing AUPRC per
formance loss in the validation set when randomly permuting 
feature vectors of individual variables, described as Permutation 
Variable Importance Measure (PVIM) by Wei et al. (2015). 
The union of the important variables found for GBDT/LSTM 
was used for all further experiments, which yielded 28 
variables overall.

2.5 Model setup
2.5.1 Gradient-boosted decision trees
Since GBDT models are not inherently made to deal with 
time series data, we investigated several alternatives to enable 
GBDTs to use multivariate time series available in the ICU.

� GBDT-snapshot: As a baseline a model was used which 
only views the current patient state at time t. 

� GBDT-history: This model uses manually constructed fea
tures which summarize the historical state of the patient, 
by computing aggregation functions over the past time se
ries, as well as other features which capture measurement 
intensity. In addition, the model views the current patient 
state at time t. 

� GBDT-time-stacked: Motivated by our initial observation 
of the high relevance of the time since admission feature 
for the prediction task, we designed a model stacking 
schema, whereby each model is specialized to be used at a 
particular period of the ICU stay, e.g. one model is used 
only in the first hour of the ICU stay. In this way the pre
diction task is conditioned on properties of different 
phases of the ICU stay. As a final step, all models 
post-hoc calibrated using isotonic regression, using the 
validation set, to encourage smooth prediction score 
trajectories. This model setup is illustrated in Fig. 2. 

All GBDT models were implemented with LightGBM 
(Ke et al. 2017), using early stopping based on AUPRC 
performance in the validation set.

2.5.2 LSTM model
The same architecture as introduced by Toma�sev et al. 
(2019) was kept. However, we reimplemented the model in 
Pytorch and changed some implementation details to 

accomodate the datasets and resolutions available in HiRID- 
II and MIMIC-IV. We provide more information on our im
plementation in Supplementary Appendix SB.3.

2.6 Data splitting setup
For HiRID-II, we used the provided split into development 
and test set (H€user et al. 2024). The latter comprised the 
latest admissions of the HiRID-II dataset from June 2018 to 
June 2019, to evaluate whether models generalize well into 
the future. The development data was split into a training set 
and a validation set at an 80%:20% ratio by complete ICU 
admissions, 5 times at random. The test set contained 
3753 patients.

For MIMIC-IV, since admission time is not provided, we 
cannot use the same strategy. First one fixed test set contain
ing a random 10% of ICU admissions was drawn. Then the 
remaining data was partitioned 5 times at random into a 
training set and validation set using an 80%:20% ratio. The 
test set contained 4522 patients.

2.7 AKI event-based evaluation
Given the predicted AKI risk every 5 min, we generate an 
alarm if the predicted risk score is above a threshold. We si
lence alarms for 8 h after an alarm and do not produce alarms 
for 12 h after an event. We used the same event-based evalua
tion scheme used by Hyland et al. (2020) that measures the 
fraction of identified AKI events, i.e. there was an alarm in 
the 24 h before the event (event recall) and the fraction of 
true alarms, i.e. there was an event in the 24 h after the alarm 
(alarm precision). This is done for multiple thresholds sum
marized in an alarm precision/event–recall curve.

2.8 Assessment of alarm load for ICU clinicians
To have a complete assessment of alarm load resulting from 
the early warning systems, we investigate each calendar day 
in all test set patient stays. We group the days by whether at 
least one AKI event will occur within the next 48 h, i.e. the 
next 2 days. All alarms raised in a patient calendar day with
out any AKI event in the next 2 days are false alarms. Alarms 
raised in a calendar day with at least one AKI event in the 
next 2 days are true alarms with very few exceptions. We as
sess models by the average number of alarms in both calendar 
day types. This measures how many alarms clinicians would 
expect from a patient who is likely to have AKI and how 
many false alarms they will expect from a patient who does 
not exhibit AKI. This evaluation is much more relevant to the 
clinical applicability of early warning systems than most pre
vious works in the literature, who focus solely on ROC- 
based, and rarely on PR-based metrics.

3 Results
3.1 Creatinine-only AKI definition is restrictive in 
ICU setting
In previous works on AKI prediction using ML methods, the 
full international consensus KDIGO definition of AKI was 
not applied. In particular, in the work of Tomasev et al., AKI 
was not specifically analyzed for ICU settings, and because of 
lack of continuous urine measurements, the full KDIGO defi
nition could not be used. Our analysis in Table 1 shows sub
stantial differences in the detection and characterization of 
AKI events between the official KDIGO definition versus the 
proxy definition of Toma�sev et al. (2019) and Cao et al. 

Time since ICU admission

...

t=0 t=1h t=2h t=48h

GBDT #2 GBDT #49GBDT #1
...

Figure 2. Stacked model setup. For each time period after admission, the 
AKI risk is estimated using a GBDT model trained on a window of time 
series that contain information only for that time period. The last model is 
used to estimate AKI risk on time-points beyond 48 h after ICU admission. 
As postprocessing, all models are jointly calibrated using isotonic  
regression.

i250                                                                                                                                                                                                               Lyu, Fan, H€user et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/Supplem

ent_1/i247/7700890 by U
niversitaetsbibliothek Bern user on 28 June 2024

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btae212#supplementary-data


(2022). We observe that the full KDIGO definition results in 
a much higher prevalence of AKI events, with a 52% preva
lence rate compared to 17% under the creatinine-only defini
tion (3.06-fold increase). Furthermore, the number of 
detected AKI events using the KDIGO definition is 46 260, a 
3.31-fold increase compared to the 13 974 events identified 
using the creatinine-only definition in the HiRID-II dataset. 
This result casts doubts on whether a creatinine-only defini
tion is sufficient for ICU settings, or does not miss most of 
the relevant AKI events.

The KDIGO definition identified �1.96 times more than 
the total AKI hours calculated under the creatinine-only defi
nition (594 778 h). However, the average duration of each 
AKI event was markedly shorter with the KDIGO definition 
(25.2 versus 42.6 h) under the creatinine-only definition. This 
indicates that the KDIGO definition not only identifies more 
AKI events but also characterizes them with a finer granular
ity, resulting in a more refined and detailed understanding of 
the AKI event timeline.

Taken together, these findings underscore the importance 
of considering urine output in the definition of AKI, as it 
leads to a more comprehensive and nuanced detection of AKI 
events, enhancing the precision of clinical and epidemiologi
cal studies in this domain. Our following benchmark on AKI 
prediction in the ICU setting is to our knowledge the first one 
to take into account the full KDIGO definition.

3.2 GBDT variants for AKI prediction
Since the LSTM model introduced by Toma�sev et al. (2019)
is inherently time-dependent, we investigated how we could 
incorporate this time dependence in classical ML methods 
like GBDT. Two modifications were investigated here.  

Table 2 compares the performance of “time-stacked” GBDT 
models for each hour after ICU admission compared to one 
model for all timepoints, as well as showing the performance 
of the GBDT model trained using multi-scale history features 
versus GBDT models trained using snapshot features, i.e. the 
current patient state only. We observe that the time-stacked 
models trained on data from each hour performs better than 
a single joint GBDT model trained on data from all time
points. At 80% event recall, we observe that the time-stacked 
GBDT model with snapshot features performs slightly better 
than the time-stacked GBDT model trained on the multi-scale 
history features. In terms of AUPRC, the highest performing 
setup was the time-stacked GBDT model trained on each 
hour using the snapshot features. Therefore, we proceeded to 
use this setup for the remainder of the analyses unless other
wise stated.

3.3 Performance of time-stacked GBDT versus 
LSTM in different health systems (Switzerland 
and USA)
A good AKI predictor should have robust performance across 
different health systems. Here, we compare the performance 
of the best performing GBDT variant and LSTM on data col
lected from two health systems from different countries, 
namely HiRID-II from Switzerland and MIMIC-IV from 
the USA.

Table 2 and Fig. 3 compare the performance of the LSTM 
model originally proposed by Toma�sev et al. (2019) and our 
best performing GBDT-based variant on the HiRID-II data
set. We observe in Fig. 3a that the LSTM-based method 
achieves the same precision at 80% recall but on average 
lower AUPRC compared to the GBDT model. Figure 3b 
shows that the false alarm load of the GBDT model is slightly 
lower than that of the LSTM model.

Figure 4 compares the LSTM and the GBDT relative per
formance on the MIMIC-IV dataset, and we can see that 
both the AUPRC and the precision at 80% recall is higher for 
the GBDT model, similar to what we observed in the HiRID- 
II dataset. The alarm load of the GBDT model is again 
slightly lower than that of the LSTM model when both mod
els retrieve 80% the upcoming AKI events.

3.4 Performance in the limited training data regime
Data scarcity often hampers the development and deploy
ment of clinical machine learning models in practical settings 
(D’Hondt et al. 2022). As a result, we investigated the effect 
of reducing training set size on model performance for differ
ent modeling strategies, namely the GBDT-history and 
GBDT-snapshot models as well as the LSTM model (Time- 

Table 1. Comparison between the full KDIGO event definition and the 
serum creatinine-only definition used in Toma�sev et al. (2019).a

Creatinine only  
definition

KDIGO definition

Patients with at least one  
AKI event

8526 (prevalence:  
16%)

25 933 (prevalence:  
50%)

Number of labeled  
AKI events

11 306 38 591

Total AKI hours 472 677 884 148
Average AKI event  

duration (in hours)
41.8 22.9

a The full definition shown in Fig. 1 allows us to capture many more 
events, increasing the prevalence of AKI events in the HiRID-II dataset from 
17% to 52%. The average duration of each event is shorter when using the 
full definition, indicating that considering urine leads to a more fine-grained 
AKI definition.

Table 2. Comparison of GBDT models modeling all time points in the ICU stay using one model versus one model for each of the 48 h after ICU 
admission and one model for the remaining timepoints.a

Model type LSTM Joint GBDT Time-stacked GBDT

Feature type Time-series Snapshot History Snapshot History

Event-based AUPRC 0.626 ± 0.003 0.641 ± 0.002 0.637 ± 0.001 0.657 ± 0.004 0.647 ± 0.005
Alarm precision (%) @ Event recall¼ 80% 49.3  ± 0.9 47.3 ± 0.3 48.5 ± 0.4 49.2  ± 0.6 49.0  ± 0.5
False alarm frequency (/patient/day) 0.876 ± 0.279 0.973 ± 0.322 0.798 ± 0.017 0.742  ± 0.018 0.770 ± 0.015

a Overall, 49 models were used, and then re-calibrated as explained in the stacking framework diagram. The LSTM-based model is used as a comparison. 
The performance results were obtained on the HiRID-II test set.
Bold values correspond to the highest performing model(s).
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Figure 3. Comparative performance (in terms of predictive performance (a) and patient alarm rate (b)) of our proposed time-stacked GBDT model versus 
the LSTM-based model proposed by Toma�sev et al. (2019) on the HiRID-II test set.
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Figure 4. Comparative performance (in terms of predictive performance (a) and patient alarm rate (b)) of time-stacked GBDT versus the LSTM-based 
model on the MIMIC-IV test set. Both models used 22 out of the 28 variables that were identified by the main variable selection procedure on HiRID-II. 
The remaining six variables could not be extracted from the MIMIC-IV dataset.
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Figure 5. Performance of GBDT-snapshot, GBDT-history, and LSTM models when progressively increasing fractions of the original training set are used 
to train each model. The smallest training set contained only �40 patients. This analysis was performed on the HiRID-II test set.
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stacked GBDT, our best-performing model as seen in  
Table 2, is not feasible in this setting, due to the lack of train
ing samples to train 49 models, for very small training sets.). 
The latter is a deep learning model, a class of models known 
to be data-intensive (Thorsen-Meyer et al. 2022). As we can 
see in Fig. 5, the following trend holds down to about 5% of 
the training data: GBDT-snapshot outperforms GBDT- 
history, which outperforms the LSTM model. Under this 
threshold, error bars overlap significantly, and all models ex
hibit high variance across temporal splits and are hard to dis
tinguish in terms of performance on the same test set. This 
study confirms that under data constraints, the GBDT- 
snapshot model is more robust compared to GBDT-history 
and LSTM until the training dataset is reduced to <5%, be
yond which point all models show similar levels of high vari
ability. It is also noteworthy that AUPRC performance loss is 
relatively minor, even at extremely small training set sizes, 
corresponding to only 40 patients at 0.1% training set size.

3.5 Fairness of AKI predictors analyzed through 
sub-cohort analyses and domain transfer
As highlighted by Cao et al. (2022), the previous state-of-the- 
art model proposed by Toma�sev et al. (2019) was initially an
alyzed on a male-dominated (94%) patient cohort of the 
United States Veteran’s Affairs clinical dataset, substantially 
hampering the ability to determine the performance of the 
model on females. While Cao et al. (2022) have addressed 
this, we also wanted to assess both GBDT- and LSTM-based 
models performances on sub-cohorts divided by gender, age, 
and diagnostic category. We evaluate this in two ways: first, 
we analyze the performance of each model on each sub- 
cohort in the test set. In addition, we evaluate the ability of 
the model to transfer from one gender to the other (e.g. from 
male to female and vice-versa). We observe that the GBDT- 
based model performs better in all investigated sub-cohorts 
(Fig. 6). Both models show fair performance mostly, with the 
exception of patients in the age group 16–30, which exhibit 
reduced performance. As a side observation, due to the AKI 

prevalence differences across different sub-cohorts, the origi
nal event-based AUPRC values cannot fully reflect whether a 
model performs fairly for each sub-cohort. Therefore we cor
rected the prevalence of all sub-cohorts to be similar to that 
of the entire population using the false alarm scaling factor 
proposed by Hyland et al. (2020). After correcting for the dif
ferent AKI prevalences, neither of the models exhibit issues 
with model transfer between genders. The LSTM-based 
model exhibits slightly larger variance in the different 
splits (Fig. 7).

3.6 Clinical plausibility and feature importance
We aimed to identify the key clinical parameters driving 
model performance as well as investigate the agreement of 
those features with clinician assessments. Figure 8a shows the 
importance of each variable by measuring the difference in 
performance in terms of AUPRC of the model trained nor
mally and a model with individual variables corrupted. The 
GBDT-based model shows the strongest dependency on 
“time since admission;” enteral feeding and weight come as 
equally important features in second place. This strong reli
ance on “time since admission” could partially explain the 
success of the time-stacking strategy. For the LSTM model, 
the model shows the strongest reliance on dialysis, which in
tuitively make sense, as dialysis is commonly associated with 
various stages of AKI (Kellum et al. 2021). Enteral feeding 
and urine output as well as C-reactive protein, EtCO2 and 
creatinine were also considered important. The concordance 
of important variables with those annotated as relevant by 
clinicians is shown in Fig. 8b. For small model sizes, the vari
ables selected by the LSTM are more clinically plausible, 
however this effect diminishes for medium-sized models, i.e. 
d¼ 15. Then the GBDT-based model shows moderate clinical 
plausibility with a mean agreement score just below 2, sur
passing the LSTM-based model.
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Figure 6. Performance in sub-cohorts of the HiRID-II test set. The first row of plots (a,b,c) shows uncalibrated results, the second row (d,e,f) shows 
prevalence-corrected results, to eliminate the effect of different AKI prevalences in the sub-groups on the performance comparison.
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3.7 Effect of fluid/furosemide treatment on model 
performance
A property of our model is that it is trained on a dataset of 
patients that received intensive medical care—hence there are 
no untreated controls, and patients may even have received 
treatments that affect the onset or occurrence of the event we 
would like to predict. AKI is a treatable condition, and fluid 
or furosemide (a loop diuretic) treatment can be used to 
manage the condition (Kellum et al. 2021). To explore their 
effect on our predictions, we investigated the interplay of 
treatments and predictive performance of the GBDT model. 
We observe that the prevalence of AKI among patients with 
any of the two treatments is elevated (Table 3). Patients with 

any of the two treatments show a 2.1% increase in false 
alarm rate, suggesting a slight loss in prediction precision. In  
Fig. 9a, a treatment-effect analysis of fluid/furosemide on oc
currence of AKI in the next 60 h is shown. Time points where 
fluid/furosemide were given were propensity-matched with 
control time-points with equal AKI risk according to a 
GBDT-based predictor (but without using Fluid and 
Furosemide as input, respectively). We observe that both 
treatments slightly reduce future AKI risk. SHAP value in
spection (Fig. 9b and c), however, showed that the GBDT 
model associated fluid/furosemide administration with higher 
predicted risk of AKI. We hypothesize that the model could 
not correctly model the causal effect on AKI outcome, result
ing in higher false alarm rates.

4 Discussion
Our study on AKI prediction in ICU settings across two dif
ferent health systems has addressed critical shortcomings in 
predictive modeling of AKI by using the complete KDIGO 
definition, incorporating both creatinine levels and urine out
put, in contrast to previous studies. We show that an incom
plete definition would severely underestimate the prevalence 
of AKI events in an ICU context, and misses a significant por
tion of AKI events.
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Figure 7. Gender transfer performance for a GBDT-based model and LSTM on the HiRID-II test set (F and M refer to Female and Male, respectively.). 
The left panels (a,b) show uncalibrated performance results, and the right panels (c,d) show results where the precision was corrected for AKI prevalence 
differences in the two genders.
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Figure 8. Variable importance inspection of the LSTM and GBDT-based model and comparison with ICU clinician provided relevance ratings. The HiRID-II 
validation set was used to retrieve the variable rankings. (a) Feature importance of individual variables for each model. The importance was measured by 
shuffling the feature column at random, and measuring the resulting AUPRC performance loss on the validation set. The variables are ordered on the 
y-axis by the mean importance across the two models. (b) Agreement between variable importance in both models and clinical relevance of the k most 
important variables, as measured by mean relevance assigned by two ICU physicians. A random ranking was used as a comparison, which was 
re-sampled 100 times, over which the mean is reported.

Table 3. Effect of medical treatments, namely furosemide and fluid input, 
on the false alarm rate of the GBDT-snapshot model.a

Sub-cohort AKI event  
prevalence (%)

False alarm rate (%)

Patients w/o fluid or furosemide  
treatment

22.56 51.2 ± 0.95

Patients with fluid or furosemide  
treatment

33.06 53.3 ± 0.65 (2.1%")

P-value 0.008

a Performance is shown on the HiRID-II test set which was divided into 
two sub-cohorts.
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In addition, we have developed a novel time-stacked 
GBDT model that uses only 28 features and a time-since- 
admission stacking approach. This strategy represents a de
parture from the extensive manual feature engineering that 
was commonly employed in prior research for AKI predic
tion. For example, Toma�sev et al. (2019) use a total of 3599 
features for their baseline gradient-boosted trees model. This 
simplifies the process of feature extraction and reduces imple
mentation complexity. Our approach was motivated by the 
high relevance of “Time-since-admission” for AKI prediction 
in GBDT-based models. Future research should investigate 
the reasons behind the relevance of this feature and why the 
stacking approach actually helps.

In our comprehensive evaluation, the LSTM model pro
posed by Toma�sev et al. (2019) was assessed in parallel with 
the GBDT model across two different health systems and pa
tient demographics. This extensive analysis has confirmed the 
generalizability and fairness of both predictive models. 
Moreover, our evaluation of gender transferability and the 
robustness of the models in limited datasettings have revealed 
their adaptability to a wide spectrum of clinical contexts, 
with robust performance down to a training set size of only 
around 40 patients. Observed performance differences be
tween LSTM-based and the GBDT-based models were minor 
across settings, with GBDT, however, consistently outper
forming the LSTM-based model. Both models show a high 
degree of fairness across sub-cohorts, and gender transfer did 
not pose an issue to both models in our experiments. This 
stands in contrast with the previous work by Toma�sev et al. 
(2019), who observed issues in using models trained on male- 
only cohorts in female cohorts, however, for non ICU- 
specific settings (Cao et al. 2022).

Our study corroborates previous research findings which 
suggest that GBDT exhibit superior performance on EHR- 
derived tabular data compared to deep learning (DL) meth
ods (Yeche et al. 2021, Grinsztajn et al. 2022). The superior 
performance of GBDT in our study, especially in the context 
of AKI prediction, underlines the potential efficacy of 
this method on complex, multidimensional medical 
data. This is further amplified when adopting modeling 
approaches tailored to the prediction problem, such as time- 
based stacking.

Lastly, our commitment to reproducibility is evidenced by 
use of open datasets such as HiRID-II and MIMIC-IV. This, 
we hope, promotes further exploration and application of 
our work within the broader scientific community.

5 Conclusion
This empirical study represents a substantial step forward to
ward precise early prediction of AKI in ICU settings, by 
employing the full KDIGO-based definition of AKI events. 
One of our most important observations was the impact of 
neglecting this complete definition, which ignored most of 
the relevant AKI events in our dataset. Furthermore, we con
ducted an extensive benchmark of two machine learning 
methods using (i) GBDTs as well as (ii) an existing LSTM 
model from the literature. We observed that GBDT-based 
methods based on a time-based stacking scheme outper
formed the LSTM model. Both models performed robustly 
across a wide range of settings relevant in the ICU, including 
sub-cohort fairness, performance in the limited training data 
regime, and gender transfer. Future work will aim to repro
duce and further the findings of our work, e.g. through a pro
spective validation of the early warning system or through 
coupling our predictions with early warning systems for other 
medical complications.
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