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A B S T R A C T   

Objectives: To develop and validate an open-source deep learning model for automatically quantifying scapular 
and glenoid morphology using CT images of normal subjects and patients with glenohumeral osteoarthritis. 
Materials and Methods: First, we used deep learning to segment the scapula from CT images and then to identify 
the location of 13 landmarks on the scapula, 9 of them to establish a coordinate system unaffected by 
osteoarthritis-related changes, and the remaining 4 landmarks on the glenoid cavity to determine the glenoid size 
and orientation in this scapular coordinate system. The glenoid version, glenoid inclination, critical shoulder 
angle, glenopolar angle, glenoid height, and glenoid width were subsequently measured in this coordinate 
system. A 5-fold cross-validation was performed to evaluate the performance of this approach on 60 normal/non- 
osteoarthritic and 56 pathological/osteoarthritic scapulae. 
Results: The Dice similarity coefficient between manual and automatic scapular segmentations exceeded 0.97 in 
both normal and pathological cases. The average error in automatic scapular and glenoid landmark positioning 
ranged between 1 and 2.5 mm and was comparable between the automatic method and human raters. The 
automatic method provided acceptable estimates of glenoid version (R2 = 0.95), glenoid inclination (R2 = 0.93), 
critical shoulder angle (R2 = 0.95), glenopolar angle (R2 = 0.90), glenoid height (R2 = 0.88) and width (R2 =

0.94). However, a significant difference was found for glenoid inclination between manual and automatic 
measurements (p < 0.001). 
Conclusions: This open-source deep learning model enables the automatic quantification of scapular and glenoid 
morphology from CT scans of patients with glenohumeral osteoarthritis, with sufficient accuracy for clinical use.   

1. Introduction 

Quantifying bone morphology by image analysis is an important but 
time-consuming part of daily clinical practice in musculoskeletal im-
aging, as it provides valuable information for the diagnosis and man-
agement of numerous bone and joint disorders, including in the 
shoulder. Glenoid morphometric parameters such as glenoid version and 
inclination have been shown to play a critical role in the surgical 
planning of total shoulder arthroplasty (TSA), especially in the treat-
ment of glenohumeral osteoarthritis, in which the disease significantly 
alters bone morphology [1–3]. Other morphological parameters of the 
glenohumeral joint, such as the critical shoulder angle, have been 

associated with rotator cuff pathologies [4,5], whereas the glenopolar 
angle has been used as an outcome predictor in the management of 
scapular fractures [6]. 

Shoulder imaging plays a pivotal clinical role not only in the diag-
nosis and surgical planning of glenohumeral osteoarthritis, but also in 
evaluating the outcome of TSA [7,8]. Therefore, scapular and glenoid 
bone morphometry has become of interest. Glenoid version and incli-
nation were originally measured on 2D CT images [9,10]. However, the 
reliability of 2D methods is questionable as they may depend on the 
orientation of the CT slice [11] or ignore the 3D characteristics of gle-
noid geometry [12]. Hence, 3D measurements have been developed. 
Moineau et al. proposed semi-automatic segmentation of the scapula 
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and calculated glenoid version based on manually identified glenoid 
surface [13]. Terrier et al. subsequently proposed using curvature in-
formation to manually define specific landmarks, and the glenoid sur-
face to determine a coordinate system for measuring glenoid version and 
inclination [14]. The main limitations of these approaches are the time- 
consuming and repetitive nature of manual segmentation and landmark 
positioning, and the dependence on the experience of the human 
assessor. Commercially available software (e.g., Blueprint (Stryker, 
Bloomington, MN, USA)) have been developed to assist orthopedic 
surgeons in surgical planning by automatically measuring clinically 
relevant anatomical parameters such as glenoid version and inclination 
[15]. However, no precise information on the automatic measurement 
algorithm is provided. 

This study aimed to investigate the feasibility and reliability of deep 
learning for automatically quantifying clinically relevant anatomical 
parameters in the shoulder. Here, we present and validate each step in 
developing a fully automated pipeline to quantify scapular and glenoid 
morphology from clinical CT scans. Our approach involves scapula 
segmentation and landmark localization to define a coordinate system 
and measure several morphological parameters of the glenoid cavity and 
acromion. 

2. Materials and methods 

2.1. Dataset 

We retrospectively reviewed 278 patients with glenohumeral oste-
oarthritis, including cuff tear arthropathy, and 140 trauma patients with 
normal scapulae between February 2008 and September 2015. Only 
patients older than 18 years with a CT scan that completely covered (in 
the transverse and longitudinal planes) one of the two scapulae were 
included. Patients in whom at least one scapula was not completely 
included in the reconstructed field-of-view or without a CT image series 
reconstructed using a smooth kernel were excluded. Our final study 

dataset consisted of 56 preoperative pathological/osteoarthritic shoul-
der CT scans from 56 patients with glenohumeral osteoarthritis 
including cuff tear arthropathy and 60 normal/non-osteoarthritic 
scapulae from 60 trauma patients. The patient characteristics and 
types of shoulder pathology included in the study are listed in Table 1. 
This retrospective study was approved by the institutional ethics com-
mittee (CER-VD protocol 2020-01895), and all CT scans were de- 
identified before image analysis. 

CT scans were performed with several generations of multidetector 
CT systems (8- to 256-detector rows, Lightspeed Ultra, Lightspeed VCT, 
Discovery CT750 HD, and Revolution CT, all from GE Healthcare). The 
settings for data acquisition were: tube potential 120 kVp, tube current 
between 100 mA and 450 mA, gantry revolution time between 0.6 s and 
1 s, pitch between 0.875 and 1.375, beam collimation from 8 × 1.25 mm 
to 256 × 0.625 mm. The relevant image reconstruction parameters 
were: field-of-view between 18 × 18 cm and 29 × 29 cm, slice thickness 
between 0.625 mm and 1.25 mm, and smooth reconstruction kernel. 

2.2. Scapula segmentation 

A musculoskeletal radiologist (12 years of experience) manually 
segmented all scapulae for training and validation of the deep learning 
model. We used the nnUNet [16] framework, which follows a U-Net 
architecture for segmentation and uses 3D patches extracted from the CT 
scans for training. Parameters relevant to training the segmentation 
network are listed in Table 2. The accuracy was evaluated with a 5-fold 
cross-validation comparing the Dice similarity coefficient and Hausdorff 
distance between automatic and manual segmentations. To estimate the 
inter-rater variability, two additional human raters manually segmented 
the scapula on a small subset of our dataset (5 normal and 5 pathological 
CT scans), and Dice overlap coefficients between the different raters 
were measured. 

Table 1 
Patient characteristics in the CT dataset by shoulder pathology.   

Overall (n = 116) Normal (n = 60) Pathological (n = 56) 

Sex 60 male, 56 female 40 male, 20 female 20 male, 36 female 
Average age (years) 65.3 59.7 71.4 
Age range (years) 18–88 18–84 36–88 
Average body mass index (kg/m2) 27.1 25.5 28.9 
Body mass index range (kg/m2) 16.9–47.1 17.9–47.1 16.9–41.6 
Left/right shoulders 37/79 14/46 23/33 
Diagnoses    • 34 primary glenohumeral osteoarthritis (4 with secondary cuff tear)  

• 17 cuff tear arthropathy  
• 3 secondary glenohumeral osteoarthritis  
• 1 fracture (acute and sequelae)  
• 1 septic arthritis  

Table 2 
Summary of the main characteristics of the automatic segmentation and landmarking networks.   

Segmentation Landmarking 

Training 3D volume patches Full 3D volume 
Network U-Net [16] Modified U-Net [18] 
Optimizer Stochastic gradient descent Stochastic gradient descent 
Learning rate 0.01 0.001 
Dropout None None 
Number of epochs 400 50 
Patch size (pixel) 160 x 160 x 96 128 x 128 x 128 
Voxel size (mm) 0.39 x 0.39 x 0.7 1.36 x 1.36 x 1.8 
Data augmentation Random 3D rotation ([-30◦,30◦]) 

Random scaling ([0.8–1.2]) 
Random 3D rotation 
([-40◦,40◦] in mediolateral axis, [-10◦ , 10◦] in other axes) 

Loss function Dice loss + Cross-entropy loss (Equally weighted) Wing loss [19]  
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2.3. Localization of scapular and glenoid landmarks 

Nine scapular landmarks were manually placed in 3D Slicer [17] on 
multiplanar CT reformats, with access to segmented scapular surface 
meshes to assist human raters in positioning bone landmarks more 

quickly during manual annotations. These landmarks were used to 
establish the reference coordinate system of the scapula. Four additional 
landmarks were placed at the edges of the glenoid cavity to define its 
height and width (GL1-GL4). Each of these 13 landmarks (Fig. 1) was 
positioned by 3 human experts (two radiologists and one orthopedic 

Fig. 1. Location of the 13 landmarks in the lateral (a) and superior (b) view of the scapula. These landmarks were defined at the angulus inferior (AI), the trigonum 
spinae (TS), the coracoid process (PC), the acromion (AC), the angulus acromialis (AA), the spinoglenoid notch (SGN), three landmarks forming a line at the bottom 
of the supraspinatus fossa (SF1-SF3), and four landmarks at the edges of the glenoid cavity (GL1-GL4). 

Fig. 2. The modified U-Net [18] architecture used for scapula and glenoid landmark localization.  
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surgeon). 
The reference position of each landmark was determined using a 

weighted average of these landmarks, with the annotations that differed 
more from the others receiving less weight. The landmark reference 
positions were used to train a slightly modified 3D U-Net [18] that 

predicted landmark positions from binary images of the segmented 
scapula (Fig. 2). For each landmark, the network generated a 3D scalar 
field where the value associated with each voxel corresponded to the 
probability that it is the position of the landmark. The position of each 
landmark was then determined by the weighted sum of the voxel 

Fig. 3. A) the scapular coordinate system with the glenoid version (GVA), b) the glenoid inclination (GIA), c) the critical shoulder angle (CSA), and d) the glenopolar 
angle (GPA). the points denoted by an apostrophe indicate the projection of the given point onto the corresponding plane. 

Fig. 4. Dice similarity coefficients (a) and Hausdorff distances (b) between the automatic scapula segmentation and ground truth segmented by the expert 
human rater. 
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Fig. 5. Comparison between automatic quantification error and inter-rater error for the defined scapular and glenoid landmarks (a), and for the lines formed by 
landmarks at the supraspinatus fossa (b). The angle error is defined by the angle between the line formed by reference landmarks in the supraspinatus fossa to each 
human rater and automatic quantification. 
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coordinates with probabilities from the scalar field. The training loss 
function was the sum of the Wing losses [19] calculated from the dis-
tance between the predicted and reference positions of all landmarks. 

The evaluation of the automatic landmark detection included a 5- 
fold cross-validation in which the distance between the predicted 
landmarks and the reference landmarks was evaluated. However, since 
multiple landmarks were used to determine the orientation of the 
supraspinatus fossa, the detection quality of these landmarks was eval-
uated based on the angle of the best-fit line and not on the point-wise 
error. 5 % of the total dataset was used to determine the best- 
performing network parameters and a 10-fold data augmentation was 
performed by applying a random 3D rotation (Table 2). 

2.4. Calculation of clinically relevant scapular and glenoid anatomical 
parameters 

A scapular reference coordinate system was created for each patient 
using landmarks [14]. The scapular plane was defined as the plane 
formed by AI, TS, and SF1, the most lateral landmark in the supra-
spinatus fossa. Then, SF2 and SF3 were projected onto this plane, and 
the line that best fits these projections and SF1 defined the scapular axis 
(Z-axis). The X-axis is orthogonal to the scapular plane, and the Y-axis is 
orthogonal to the X- and Z-axes (Fig. 3). 

A triangular surface mesh was generated from the segmentation 
using the flying edges algorithm [20], from which the glenoid surface 
was automatically identified from this mesh using glenoid landmarks. A 
sphere was fitted to the identified glenoid cavity, and the glenoid 
centerline was defined as the line connecting the center of gravity of the 
glenoid surface to the center of the sphere. Clinically relevant anatom-
ical parameters of the scapula and glenoid such as the glenoid version, 
glenoid inclination, critical shoulder angle and glenopolar angle were 
automatically calculated, as well as the glenoid height and width 
(Fig. 3). In this study, the glenoid version and inclination followed the 
definition of Terrier et al. [14]. The critical shoulder angle was defined 
as the angle between the infero-superior line of the glenoid (GL1-GL2) 
and the line from GL2 to the outermost lateral point of the acromion 
(AL) after these points were projected onto the scapular plane (Fig. 3). 
AL was determined by projecting the points of the scapula located within 
3 mm of the acromion (AC) onto the scapular plane. Of these projections, 
the most lateral point was selected as AL. The glenopolar angle was 
defined as the angle between the infero-superior line of the glenoid and 
the line from AI to GL1 after GL1 and GL2 were projected onto the 
scapular plane (Fig. 3). In addition to these parameters, we calculated 
the height and width of the glenoid as the Euclidean distance between 

GL1-GL2 and GL3-GL4, respectively. The glenoid surfaces were also 
manually extracted by the same experienced musculoskeletal radiologist 
for manual measurements. 

The automatic measurements were compared with the manual 
measurements using a five-fold cross-validation of the entire dataset. 
Statistical comparisons between automatic and manual quantifications 
were performed using a two-tailed t-test, with the significance level set 
at p-value < 0.05. For the anatomical parameters, the 95 % confidence 
interval (CI) of the difference between the two methods was also 
calculated using paired-samples t-tests. 

The source code for the methods described in this work is open- 
source, making it accessible for further development and use by the 
broader medical and research community. The code is freely available 
and can be downloaded from the following repository: https://gitlab. 
epfl.ch/publication/automatic-scapular-morphology. 

3. Results 

3.1. Scapula segmentation 

The 5-fold cross-validation over the entire dataset revealed an 
excellent average Dice similarity coefficient of 0.97 ± 0.01 between the 
automatic and manual scapula segmentations for both normal and 
pathological cases (Fig. 4). The average Hausdorff distances were 2.3  
mm and 5.1 mm for normal and pathological shoulders, respectively, 
demonstrating that the maximum segmentation error was higher for 
osteoarthritic cases. The regions of higher error were the glenoid rim, 
the outer aspects of the acromion and coracoid, and the supraspinatus 
fossa. The Dice coefficients between the different raters varied between 
0.94 and 0.99, indicating high inter-rater agreement. 

3.2. Localization of scapular and glenoid landmarks 

The automatic identification revealed an average deviation between 
1.0 mm and 2.5 mm from the reference for all landmarks (Fig. 5). In 
normal subjects, no statistical differences were found between human 
raters and the automatic identification of scapular landmarks, except for 
TS (p = 0.042) and SGN (p = 0.047). For pathological cases, the dif-
ference between human raters and the automatic identification was 
significant (p = 0.036) only for PC. For these three landmarks, the inter- 
rater error was greater than the automatic error. However, the inter- 
rater error was significantly smaller than the automatic error for the 
glenoid landmarks for both normal and pathological cases (p < 0.001). 
Except for the glenoid landmarks, our automatic method demonstrated 

Table 3 
Summary of the p-values from the comparison between the automatic quantification error and inter-rater error for scapular and glenoid landmark positioning, along 
with the mean absolute error ± standard deviations from reference landmarks.   

p-values Difference (mm) 

Normal Pathological Normal Pathological   

Prediction Inter-rater Prediction Inter-rater 

AI  0.120  0.507 1.34 ± 1.14 1.66 ± 1.50 1.48 ± 1.03 1.38 ± 1.03 
TS  0.042  0.239 2.04 ± 1.43 2.66 ± 2.22 2.16 ± 1.69 2.53 ± 2.19 
PC  0.307  0.036 1.32 ± 0.65 1.46 ± 1.04 1.49 ± 0.82 1.81 ± 1.07 
AC  0.087  0.078 1.96 ± 1.31 2.43 ± 2.00 3.08 ± 3.64 4.44 ± 5.41 
AA  0.602  0.465 2.31 ± 2.61 2.59 ± 3.80 2.47 ± 2.83 2.11 ± 3.40 
SGN  0.046  0.051 1.39 ± 0.66 1.66 ± 0.99 1.86 ± 1.12 2.30 ± 1.58 
GL1  <0.001  0.203 1.22 ± 0.63 0.90 ± 0.52 1.64 ± 0.95 1.43 ± 1.14 
GL2  <0.001  <0.001 1.20 ± 0.63 0.72 ± 0.47 1.78 ± 1.12 1.08 ± 0.81 
GL3  <0.001  0.282 0.91 ± 0.57 0.66 ± 0.38 1.39 ± 0.94 1.19 ± 1.23 
GL4  <0.001  <0.001 1.23 ± 0.67 0.74 ± 0.45 1.91 ± 1.06 1.03 ± 0.84     

Difference (◦) 

SF  0.984  0.486 2.3 ± 1.6 2.3 ± 1.6 2.1 ± 1.3 2.0 ± 1.5  
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similar or less error compared to the error between human raters 
(Table 3). 

The average inter-rater error of the supraspinatus fossa line angle 
was 2.13◦±1.58◦, while the average automatic quantification error was 
2.20◦±1.46◦ (Table 3). No statistical differences were found between the 
inter-rater and automatic identification error for both normal and 
pathological cases (p = 0.984 and p = 0.486, respectively). 

3.3. Calculation of clinically relevant scapular and glenoid anatomical 
parameters 

Regression between manually and automatically determined pa-
rameters showed good to excellent agreement (Fig. 6). The best-fit 
slopes were between 0.91 and 0.95, and intercepts were between 
− 0.44◦ and 2.70◦. The coefficients of determination (R2) between the 
manually and automatically quantified parameters varied from 0.88 to 
0.95 (Table 4). The 95 % CI of the mean difference between manually 
and automatically quantified anatomical parameters was found to be 
within less than 1◦ and 0.5 mm, except for glenoid inclination (Table 5). 
Figs. 6 and 7 summarize the agreement between automatic and manu-
ally quantified anatomical parameters, along with the inter-rater 
agreement with correlation and Bland-Altman plots, respectively. 

No significant differences were found between the manually and 
automatically quantified anatomical parameters (Table 4), except for 
glenoid inclination (p < 0.001). The high overlap between the 95 % CI of 
the difference between reference and automatic methods, and between 
different raters also demonstrated that the difference between automatic 
and manual quantification is comparable to the differences between 
human raters, except for glenoid inclination (Table 5). When consid-
ering the difference between the manual and automatic glenoid incli-
nation, it was found that the average difference was 1.6◦, indicating that 
the automatic quantification tended to result in a slightly lower glenoid 
inclination. Nevertheless, the correlation between the manual and 
automatic glenoid inclination was high, with a regression slope of 0.91 
and an R2 value of 0.93. 

Inter-rater agreement was lowest for glenoid height and width, with 
R2 values of 0.73 and 0.69, respectively. For other anatomical parame-
ters, the inter-rater agreement and the agreement with the manual 
quantification resulted in similar slopes of the best-fit lines and R2 values 
(Table 4). 

4. Discussion 

The proposed method is an automated method for measuring scap-
ular anatomy using deep learning and image analysis on CT images. The 
method consists of segmenting the scapula and identifying relevant bone 
landmarks to calculate various shoulder parameters that are crucial for 
the diagnosis and planning of shoulder surgery. The method was vali-
dated against manual assessment and showed similar accuracy in bone 
segmentation and landmark positioning, except for the glenoid land-
marks. In this case, however, the landmark positioning error is small 
(about 1.5 mm). More importantly, manual and automatic measure-
ments of glenoid height and width correlated well, with a higher cor-
relation than between different human raters. 

Overall, the automatic measurements correlated well with the 
manual measurements, with very high R2 values and slopes of the best- 
fit lines close to 1. Moreover, the agreement between manual and 
automatic measurements was comparable to the agreement between 
different human raters, indicating the high reliability of the proposed 
approach. The proposed automatic method significantly reduces the 
time required for segmentation and landmarking to measure anatomical 
parameters, from over an hour for manual measurement to less than 10 
minutes. This efficiency could facilitate the broader application of these 
measurements in the clinical setting. The reliability and objectivity of 
the automatic method are significant advantages, as they are not influ-
enced by the operator’s experience, subjectivity, or fatigue. 

Fig. 6. Comparison between manual and automatic measurements (left) of the 
anatomical parameters of the scapula and glenoid (glenoid orientation and 
size), along with the reliability of measurements between different human 
raters (right). 
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We assessed the agreement between our manual and automatic 
measurements and compared it with the agreement reported for the 
Blueprint software [15]. In this work, the best agreement between 
manual and automatic methods for the glenoid version had a 95 % CI of 
the limits of agreement (LoA) of [–3.9◦,9◦] in 60 patients with gleno-
humeral osteoarthritis. The same analysis on our automatic and manual 
measurements for 56 pathological cases in our data set yielded a range of 
[–5.1◦,5.6◦]. For glenoid inclination, the agreement between automated 
method and manual quantification yielded a 95 % CI of LoA within 
[–9◦,9.4◦], as reported by the authors, while the same analysis with our 
methods yielded a range of [–2.7◦,6◦]. This indirect comparison showed 
that the agreement between our manual and automated measurements 
was comparable to the agreement reported for Blueprint in the mea-
surement of the glenoid version and inclination. Both evaluations were 
performed on similar yet distinct datasets of pathological shoulder 
conditions. 

Despite different measurement approaches and datasets, our mea-
surements of glenoid version and inclination agreed well with those 
reported for Blueprint in pathological shoulders [15]. However, in 
addition to glenoid version and inclination, our tool also provides 
automatic measurements of the critical shoulder angle, glenopolar 
angle, and glenoid width and height. Furthermore, we have released our 
tool as open-source software so that clinicians can use it with their own 
datasets and extend it with additional morphometric measurements 
(https://gitlab.epfl.ch/publication/automatic-scapular-morphology). 

In a more recent study that compared two different software that 
automatically measures glenoid version and inclination (Blueprint and 
VIP (Arthrex, Naples, FL, USA)) on 63 CT scans of patients with primary 
glenohumeral osteoarthritis and rotator cuff arthroplasty or failed ro-
tator cuff repair, considerable variability was found [21] (more than 5◦

in 30 % of cases for glenoid version and almost half of the cases for 
glenoid inclination), emphasizing the need for an automated and open- 
source tool to quantify scapular anatomy. In another study, automatic 
quantification of the critical shoulder angle based on deep learning was 

proposed for 8467 anteroposterior radiographs [22]. A median differ-
ence of about 1◦ between the automatic and manual critical shoulder 
angle was found. However, the work was limited to 2D, and no inter- 
rater analysis was performed. Our automatic quantification of the crit-
ical shoulder angle resulted in lower median errors of 0.7◦ and 0.9◦ for 
normal and pathological cases in our dataset, respectively. 

External validation of the model was tested by examining the effects 
of different CT system models on morphometric quantification. 10 of the 
116 CT scans in our study were acquired with older generation CT 
systems (Lightspeed Ultra and Lightspeed VCT, released in 2001 and 
2004, respectively) compared to the rest of the dataset (Discovery 
CT750 HD and Revolution CT, released in 2008 and 2013, respectively). 
When the models were trained with the newer scans, validation on older 
scans showed that the results were consistent across old and new scanner 
models, indicating the robustness of the method. A further analysis was 
performed to determine whether the sample size was sufficient for 
training the deep learning models. We created four different training 
datasets, comprising 23, 46, 69 and 92 cases respectively, and evaluated 
the model accuracy using 24 cases. It was found that the dataset used 
was adequate, as increasing the training set from 69 to 92 cases did not 
significantly change the accuracy of the automatic quantification. 

The main limitation of our study concerns the extraction of the gle-
noid cavity, both manually and automatically due to poorly defined 
edges. The use of four landmarks to define the glenoid cavity mitigates 
this problem, as the exact identification of the glenoid is not crucial to 
obtain reliable results, as it is mainly used to fit to a sphere, and the 
center of this sphere is used to determine the glenoid orientation. The 
possible exclusion of the whole scapula from the CT field of view, which 
could lead to errors in the coordinate system, is another limitation of the 
study; however, this can be avoided by proper image acquisition. 
Another limitation of this study is the number and variety of experience 
and specialties of the human raters who made the manual annotations. 
Ideally, multiple raters with different experience and specialization 
would improve the analysis between raters, but the labor-intensive na-
ture of the manual annotations was a limiting factor. We also calculated 
the Dice overlap coefficients between automatic segmentation and two 
additional human raters, who each segmented manually 10 scapulae. 
The Dice coefficients varied between 0.94 and 0.99, demonstrating high 
agreement between automatic segmentation and different raters, whose 
annotations were not used in the training or validation of the model. 
Therefore, it can be said that although the model was trained with only 
one set of manual segmentations, the generalization of the model is not 
affected. Finally, the current dataset includes normal subjects and pa-
tients with glenohumeral osteoarthritis and cuff tear arthropathy. While 
the accuracy of the methods still needs to be assessed for other clinical 
indications, there are no technical reasons preventing wider application. 

In conclusion, this study demonstrates the effectiveness of deep 
learning-based automatic analysis of CT images for accurate morpho-
metric measurements of scapulae. The results agree very well with 
human measurements and offer significant time savings in increasingly 
busy clinical workflows, which can be used for clinical tasks where the 
contribution of human raters is more important (e.g. qualitative 
assessment or clinical reasoning). The approach can provide radiologists 

Table 4 
P-values, R2 and best-fit line slopes of the agreement between reference and automatic measurements, along with R2 and best-fit line slopes of the inter-rater 
agreement.   

p-values R2 Slope 

Reference-DL Reference-DL Inter-rater Reference-DL Inter-rater 

Glenoid version  0.539  0.95  0.95  0.92  0.98 
Glenoid inclination  <0.001  0.93  0.94  0.91  0.97 
Critical shoulder angle  0.761  0.90  0.95  0.92  0.97 
Glenopolar angle  0.068  0.95  0.90  0.93  0.95 
Glenoid height  0.964  0.88  0.73  0.93  0.86 
Glenoid width  0.374  0.94  0.69  0.95  0.83  

Table 5 
Average differences between reference and automatic measurements, along with 
95% CI of the mean difference between automatic and reference measurements, 
and between raters.   

Difference (◦) 

Average 95 % CI 

Reference-DL Reference-DL Inter-rater 

Glenoid version − 0.12 (− 0.51, 0.27) (− 0.22, 0.22) 
Glenoid inclination 1.34 (0.99, 1.70) (− 0.18, 0.18) 
Critical shoulder angle − 0.07 (− 0.53, 0.39) (− 0.19, 0.19) 
Glenopolar angle − 0.21 (− 0.45, 0.02) (− 0.21, 0.21)   

Difference (mm) 

Glenoid height 0.004 (− 0.21, 0.22) (− 0.19, 0.19) 
Glenoid width − 0.07 (− 0.24, 0.09) (− 0.23, 0.23)  
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and surgeons with a reliable understanding of the patient’s anatomy, 
which is crucial for diagnosis and surgical planning. This contributes to 
informed clinical decision-making and potentially better surgical out-
comes. In addition, this method could help to evaluate the relationship 
between anatomical parameters of the scapula and glenoid and the 
outcome of a TSA, as it allows for faster and more reliable analysis of 
larger data sets from clinical databases or registries. 
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