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two L. grimontii protein sequences (WP_027275480.1 and 
WP_261832807.1) were deposited in 2022 on the NCBI as 
“class A β-lactamase”. Nevertheless, no blaGRI exists in the 
Reference Gene Catalog of NCBI (https://www.ncbi.nlm.
nih.gov/pathogens/refgene/#).

Here, we describe the first complete genome sequence of 
L. grimontii. The strain was isolated from the larvae of the 
darkling beetle Zophobas morio and carried a chromosom-
ally-located blaGRI gene.

Materials and methods

Isolation and species identification (ID)

L. grimontii strain LG-KP-E1-2-T0 was isolated from the 
homogenized tissues of Z. morio larvae plated on Chro-
mID® ESBL agar (bioMérieux). Larvae were acquired from 
a Swiss pet retailer in 2023 during an ongoing project [9]. 
Bacterial species ID was carried out using the MALDI-TOF 
MS (Bruker; FlexControl v3.4 [build 135.14]).

Phenotypic testing

Antimicrobial susceptibility tests (ASTs) were performed 
by broth microdilution using the Sensititre™ GNX2F and 
ESB1F panels (Thermo Fisher Scientific). To detect ESBL(s) 

Introduction

Leminorella spp. are Gram-negative bacteria belonging to 
the order of Enterobacterales and the family Budviciaceae 
[1]. So far, the Leminorella genus includes three taxa: L. gri-
montii, L. richardii and Leminorella sp. strain 3 [2]. Among 
them, L. grimontii is the most frequently reported in humans 
[3, 4]. This species has been isolated in stool samples and 
identified as responsible for spontaneous peritonitis and 
neonatal sepsis [2–4]. However, no complete genomes of 
L. grimontii are currently available in the NCBI database.

With the exception of carbapenems, most Leminorella 
spp. strains are resistant to β-lactams, but susceptible to 
β-lactam/β-lactamase inhibitor combinations (βL/βLIC) [5–
7]. Therefore, an extended-spectrum β-lactamase (ESBL)-
like activity was suggested [6, 7]. In particular, Philippon A 
et al. (2016) indicated that L. grimontii produces GRI-1, a 
chromosomal class A β-lactamase with a 2be spectrum (Uni-
Prot: A4FRA6; GenBank: AM422900.1) [8]. Moreover, 
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production, combination disk testing (CDT) was performed 
on Mueller-Hinton agar (MHA; Oxoid) with the EUCAST 
ESBL Disk kit (Liofilchem). The double-disk synergy test 
(DDST) and induction assays with cefoxitin and imipenem 
disks were also conducted on MHA (see Figure S1). AST 
and phenotypic test results were interpreted according to the 
current EUCAST criteria [10, 11].

Whole-genome sequencing (WGS)

Genomic DNA was isolated using the Invitrogen™ Pure-
Link™ Microbiome DNA purification kit (Thermo Fisher 
Scientific) [12, 13]. Purity and gDNA quantification were 
determined by Nanodrop™ and Qubit™ 3 (Thermo Fisher 
Scientific). Short-read WGS was performed using the Illu-
mina NovaSeq 6000 sequencer, while long-read WGS 

was done with the Oxford Nanopore MinION [Oxford 
Nanopore Technologies (ONT)]. The Rapid Barcoding Kit 
SQK-RBK004 was used to generate long-read sequencing 
libraries, which were loaded on a flow cell FLO-MIN 106D 
R9.4.1 (ONT), and sequenced for 48 h. Short-read data were 
preprocessed with Trimmomatic v0.36 to remove adapt-
ers [14, 15]. The preprocessing of ONT raw data, which 
includes adapter-trimming and quality filtering, was per-
formed using Porechop v0.2.4 and Filtlong v0.2.1 (param-
eters: minimum read length of 1-kb and 1,000,000-kb target 
bases), respectively. Unless indicated otherwise, all bioin-
formatic analyses were conducted with default parameters. 
Genome assembly was done with the Unicycler v.0.4.8 
hybrid pipeline, followed by coverage estimation using 
QualiMap v2.2.2 [16, 17].

Genome characterization

The assembled genome underwent screening using the 
Center for Genomic Epidemiology (CGE; https://www.
genomicepidemiology.org/) and the NCBI AMRFinder 
(https://github.com/ncbi/amr) databases. Antimicrobial 
resistance genes (ARGs) were identified using the Res-
Finder v4.5.0 and the AMRFinder Plus v3.12.8 tools, while 
plasmid prediction was conducted with PlasmidFinder v2.1 
(parameters: 70% threshold identity, 60% minimum length) 
[18–20]. Putative bla genes were screened using the NCBI 
BLASTn. Insertion sequences (IS) were identified with 
ISFinder (https://isfinder.biotoul.fr/). Genome-based taxon-
omy was determined using the Type (Strain) Genome Server 
(TYGS), while JSpeciesWS was used to determine the aver-
age nucleotide identity based on BLASTn (ANIb) [21, 22]. 
Genome annotation was done automatically with the NCBI 
Prokaryotic Genome Annotation Pipeline (PGAP) (method: 
best-placed reference protein set; GeneMarkS-2 + v6.6) 
[23].

Core-genome phylogeny

Six L. grimontii draft genomes (5 composed of contigs and 
1 of scaffolds) available in the NCBI database (retrieved 
on 05.03.2024) were mapped to the complete assembly of 
LG-KP-E1-2-T0 using the “–ctgs” flag in Snippy v4.4.5 
[24, 25]. L. grimontii GCA_958349645.1 draft genome was 
excluded from the study given its small length.

The snippy-core function was then used to generate a 
core-genome single nucleotide variant (SNV) alignment. 
ISs were inferred with ISEScan v1.7.2.3 and masked before 
SNV calling (i.e., core-genome alignment), while Gubbins 
v2.3.4 was used to filter SNVs from recombinant regions. 
SNV distances were calculated with snp-dists v0.8.2. A 
maximum-likelihood phylogenetic tree, rooted to the most 

Table 1 Antimicrobial susceptibility profile of the L. grimontii strain 
LG-KP-E1-2-T0
Antibiotics MIC (µg/mL), interpretation a

Piperacillin-tazobactam ≤ 8/4, S
Ticarcillin-clavulanate ≤ 16/2, S
Ampicillin > 16, R
Ceftazidime ≤ 1, S
Ceftazidime-clavulanate ≤ 0.12/4, NA
Cefazolin > 16, R
Cefoxitin ≤ 4, S
Cephalothin > 16, NA
Cefpodoxime > 32, R
Cefotaxime 4, R
Cefotaxime-clavulanate ≤ 0.12/4, NA
Ceftriaxone ≤ 1, S
Cefepime ≤ 1, S
Aztreonam 8, R
Imipenem ≤ 1, S
Meropenem ≤ 1, S
Doripenem ≤ 0.12, S
Ertapenem ≤ 0.25, S
Gentamicin ≤ 1, S
Tobramycin ≤ 1, S
Amikacin 8, S
Ciprofloxacin ≤ 0.25, S
Levofloxacin ≤ 1, S
Colistin ≤ 0.25, S
Polymyxin B ≤ 0.25, NA
Doxycycline ≤ 2, NA
Minocycline ≤ 2, NA
Tigecycline ≤ 0.25, S
Trimethoprim-sulfamethoxazole ≤ 0.5/9.5, S
Note R, resistant; S, susceptible; NA, interpretative criteria not avail-
able; MIC, minimum inhibitory concentration
a Antimicrobial susceptibility was determined using the Sensititre™ 
GNX2F and ESB1F panels. MICs were interpreted according to the 
2024 EUCAST criteria for Enterobacterales [10]
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divergent strain LG-KP-E1-2-T0, was built with IQ-TREE 
v2.3.0 (parameters: GTR + ASC, -bb 1000, -alrt 1000), visu-
alized with iTOL v6.9 and annotated with Inkscape v1.3.

Analysis of GRI amino acid sequences

All bla coding sequences (CDS) confirmed by BLASTn 
as blaGRI were extracted from the six L. grimontii draft 
genomes. Subsequently, they were translated into amino 
acid sequences using Geneious Prime (Biomatters) 
v2023.2.1 (parameters: genetic code, bacterial, transl_table 
11). Furthermore, the three previously deposited proteins 
A4FRA6, WP_027275480.1 and WP_261832807.1 and the 
one found in LG-KP-E1-2-T0 were used to generate a mul-
tiple sequence alignment with MUSCLE v5.1 in Geneious 
Prime.

A BLASTp search was performed using the GRI sequence 
of LG-KP-E1-2-T0 [26]. Best-hit protein sequences were 
retrieved from the NCBI Bacterial Antimicrobial Resistance 
Reference Gene Database (https://www.ncbi.nlm.nih.gov/
bioproject/313047), along with other representative class A 
β-lactamase sequences, and subjected to an alignment and 
phylogenetic inference using the online MAFFT v7 (param-
eters: size, 40 sequences x 266 sites; model, Jones-Taylor-
Thornton (JTT) and Bootstrap resampling, 100; https://
mafft.cbrc.jp/alignment/server/index.html). The resulting 
tree was rooted to TEM β-lactamases, the most phyloge-
netically distant family (Table S1) and annotated with iTOL 
v6.9 and Inkscape v1.3, respectively.

Results and discussion

Phenotypic testing

The MALDI-TOF MS identified LG-KP-E1-2-T0 as L. gri-
montii (score of 2.36). The strain was resistant to cefotax-
ime and aztreonam, but susceptible to cefoxitin, ceftriaxone, 
cefepime, carbapenems and βL/βLIC (Table 1). This pheno-
type was consistent with the production of an ESBL, as fur-
ther confirmed by the results of the CDT and DDST assays 
(Figure S1-A/B) [10, 11]. Moreover, an inducible phenotype 
was suspected with the DDST and well-confirmed with the 
cefoxitin and imipenem assays (Figure S1-C/D).

Genomic features of LG-KP-E1-2-T0

Illumina and Nanopore sequencing runs yielded a total 
of 10,323,042-bp and 879,684-bp (N50 = 7,736-bp) reads, 
respectively, which were used to generate the complete 
genome of strain LG-KP-E1-2-T0. As a result, a circu-
lar 4,335,522-bp chromosome (GC content, 53.8%) with 
358.97× coverage was obtained, whereas plasmids (rep-
licons) were not identified [18]. TYGS and JSpeciesWS 
analysis confirmed that LG-KP-E1-2-T0 belonged to L. gri-
montii [21, 22]. As shown in Fig. 1, LG-KP-E1-2-T0 had 
an ANIb value of 98.65% to the NCBI reference genome 
ATCC 33999 = DSM 5078 (GCA_000735425.1).

Core-genome phylogeny resulted in a total of 45,761 
SNVs and identified 3 distinct groups (Fig. 1): two groups 
contained a single strain, either LG-KP-E1-2-T0 or JCM 
5900, while the remaining genomes clustered together 
(△SNVs = 0–40) in a separate group. Moreover, the closest 
match to LG-KP-E1-2-T0 was the reference genome ATCC 
33999 = DSM 5078 (△SNVs = 30,416).

Fig. 1 Core genome-based maximum-likelihood phylogenetic tree. 
a Alignment of all L. grimontii genomes (n = 7), which resulted in 
45,761 SNVs considering 90% of all aligned genomes. bL. grimontii 
ATCC 33999 = DSM 5078 (accession numbers GCA_000735425.1 
and GCA_000439085.1) represents the deposited NCBI reference 
genome (release date: 2014) and the TYGS type strain genome used 
for species identification (release date: 2013), respectively. The tree 
was rooted to LG-KP-E1-2-T0 as outgroup. Bootstrap support is 
shown in internal nodes (SH-aLRT ≥ 80% and UFBoot ≥ 95%, respec-
tively). Corresponding GenBank accession numbers are given in 

parentheses. The tree scale represents the average number of nucleo-
tide substitutions per site. Single nucleotide variants (SNVs) shared 
among genomes are represented by a ΔSNVs. Color-coded boxes in 
the columns show (from the left) for each strain: host, presence of 
antimicrobial resistance genes (ARGs; black square), and its average 
nucleotide identity (ANIb %) to the NCBI reference genome ATCC 
33999 = DSM 5078 (GCA_000735425.1). A star at the center of the 
column indicates ARGs that are 100% identical to that of the NCBI 
reference strain
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similar to blaOXY-3-1 (75.86% identity, 89.39% coverage) 
and OXY-10-1 (78.98% identity, 100% coverage), respec-
tively (data not shown). Using the NCBI BLASTn search, 
the putative bla CDS of LG-KP-E1-2-T0 showed the high-
est similarity to the deposited blaGRI gene of L. grimontii 
(GenBank: AM422900.1), with 98.99% identity and 100% 
coverage.

Other resistance mechanisms such as the multidrug efflux 
pumps MdtM, SmdA, SmdB and the iron efflux transporter 
FieF (70.50%, 72.71%, 70.36% and 72.58% amino acid 

Resistance genes in LG-KP-E1-2-T0

Within the chromosome of LG-KP-E1-2-T0, an 888-bp bla 
gene was identified in the PGAP annotation between posi-
tions 3,668,018-bp and 3,668,905-bp. The ampR gene (LysR 
family transcriptional regulator) was also found upstream 
[24]; such element has been previously associated to induc-
ible class A ESBLs (e.g., SFO-1) [27].

ARG detection using nucleotide and protein databases of 
ResFinder and AMRFinder Plus identified a bla CDS most 

Fig. 2 (A) Structure-based protein alignment of GRI-1 β-lactamase 
from L. grimontii. The signal peptide and mature protein regions are 
delineated in black, above the sequence. At substitution site, identi-
cal amino acid residues to each other are illustrated in black. Strictly 
conserved motifs in class A enzymes [SXXK (active site: position 
70–73), SDN (position 130–132), E and KTG (positions 166 and 
234–236)], subclass A1 [RXEXXLN (position 164–170), VGDKTG 
(position 231–236)] are shown in light blue and framed in black, 
respectively. Corresponding GenBank accession numbers are given in 
parentheses. (B) The phylogenetic tree represents the similarity at the 
amino acid sequence level of 40 representative class A β-lactamases. 

Bootstrap support (≥ 80%) is displayed below the nodes. The fol-
lowing sequences obtained from the NCBI Bacterial Antimicrobial 
Resistance Reference Gene Database were considered: TEM-1/-12, 
SHV-1/-12, CTX-M-1/-8/-15/-40, KLUG-1, OXY-1 (-4, -8, -13, -16 
subvariants), OXY-3-1, OXY-5 (-1, -5, -6, -7, -11 subvariants), OXY-
7-1, OXY-10-1, FONA-type (variants 1 to 13) and SFO-1. The pro-
tein sequences of GRI-1 and RIC-1 corresponding to the accession 
numbers WP_261832807.1, WP_027275480.1 and WP_111741508.1, 
were retrieved from the NCBI Reference Sequence, while for GRI-1 
(A4FRA6) was retrieved from UniProt. On the right is the amino acid 
similarity between β-lactamase families and GRI-1 of L. grimontii
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