ReSurveyEurope: A database of resurveyed vegetation plots in Europe

1Deceased.
For Affiliation refer page on 12

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2024 The Authors. Journal of Vegetation Science published by John Wiley & Sons Ltd on behalf of International Association for Vegetation Science.
Correspondence
Franz Essl, Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria.
Email: franz.essl@univie.ac.at

Abstract
Aims: We introduce ReSurveyEurope — a new data source of resurveyed vegetation plots in Europe, compiled by a collaborative network of vegetation scientists. We describe the scope of this initiative, provide an overview of currently available data, governance, data contribution rules, and accessibility. In addition, we outline further steps, including potential research questions.

Results: ReSurveyEurope includes resurveyed vegetation plots from all habitats. Version 1.0 of ReSurveyEurope contains 283,135 observations (i.e., individual surveys of each plot) from 79,190 plots sampled in 449 independent resurvey projects. Of these, 62,139 (78%) are permanent plots, that is, marked in situ, or located with GPS, which allow for high spatial accuracy in resurvey. The remaining 17,051 (22%) plots are from studies in which plots from the initial survey could not be exactly relocated. Four data sets, which together account for 28,470 (36%) plots, provide only presence/absence information on plant species, while the remaining 50,720 (64%) plots contain abundance information (e.g., percentage cover or cover–abundance classes such as variants of the Braun-Blanquet scale). The oldest plots were sampled in 1911 in the Swiss Alps, while most plots were sampled between 1950 and 2020.

Conclusions: ReSurveyEurope is a new resource to address a wide range of research questions on fine-scale changes in European vegetation. The initiative is devoted to an inclusive and transparent governance and data usage approach, based on slightly adapted rules of the well-established European Vegetation Archive (EVA). ReSurveyEurope data are ready for use, and proposals for analyses of the data set can be submitted at any time to the coordinators. Still, further data contributions are highly welcome.

KEYWORDS
biodiversity, community ecology, database, macroecology, monitoring, relevé, species richness, temporal change, time series, vascular plants, vegetation dynamics
1 | INTRODUCTION

Plot-based vegetation samples, called vegetation plots henceforth, document plant species diversity and community composition at a given location at a given time. Such data allow for a wide variety of research questions to be addressed, and accordingly, they have been widely used in vegetation ecology for more than a century (e.g., Braun-Blanquet, 1964; Ellenberg & Leuschner, 2017). More recently, the mobilization of vegetation-plot data, and their compilation in large repositories such as the European Vegetation Archive (EVA, http://euroveg.org/eva-database) and the global vegetation database sPlot (https://www.idiv.de/de/splot.html) have substantially expanded the availability of these types of data (Schaminée et al., 2009; Dengler et al., 2011).

Vegetation plots also contain metadata (Mucina et al., 2000) that describe properties of the surveyed site (e.g., topography, land use, slope inclination and aspect), the plot (e.g., size, shape), and the sampling (e.g., date of sampling, surveyor name). In most cases, information on the location of the vegetation plot is provided, although this information may be given in a variety of ways and with different geographic accuracies, ranging from vague textual descriptions of localities to highly accurate geographic coordinates based on GPS data or permanent marks in the field.

Increasing human pressures on the natural environment during the last decades have caused substantial changes in the European flora and vegetation (e.g., Richner et al., 2015; Jandt, Brueelheide, Jansen, et al., 2022). Vegetation-plot data offer excellent opportunities to study temporal vegetation changes with fine resolution across large areas by resurveying historical vegetation plots, or by establishing permanent plots that are revisited on a regular basis. In recent decades, an increasing number of studies have used these approaches for studying large-scale (including continental and global) vegetation change in response to pressures such as land-use change (e.g., Nielsen et al., 2021), climate change (e.g., Gottfried et al., 2012; Steinbauer et al., 2018), eutrophication (e.g., Peppler-Lisbach et al., 2020; Ridding et al., 2020; Kammer et al., 2022; Staude et al., 2022), and biological invasions (e.g., Del Vecchio et al., 2015).

The number of publications (and corresponding data sets) based on resurveyed vegetation plots in Europe (and elsewhere) has increased strongly since the start of the new millennium (Figure 1). While some initiatives with a focus on specific habitats such as forests (forestREplot, https://forestreplot.ugent.be/) and alpine environments (GLORIA, https://www.gloria.ac.at/home/) have integrated a part of these data, many resurvey data sets are not yet integrated into large data repositories that ensure easy access and interoperability of the data. As a consequence, the potential of using existing data to address research questions remains limited. Therefore, we launched ReSurveyEurope in 2020 to fill this gap at the European level. ReSurveyEurope is closely connected to the European Vegetation Archive and aims to build a data repository of fine-scale plot-based plant community resurvey data (relevés, plots). Here, we describe the scope of this initiative, provide an overview on data, governance rules, accessibility, and outline further steps of how to ensure that ReSurveyEurope stays a living database.

2 | COMPILATION AND CONTENT OF THE ReSurveyEurope 1.0 DATABASE

2.1 | Scope of ReSurveyEurope

The geographic scope of ReSurveyEurope is the continent of Europe, including adjacent, biogeographically similar areas such as the Macaronesian Islands (excluding Cape Verde), Greenland, Georgia, Armenia, Azerbaijan, Anatolia, Cyprus, and the Mediterranean Biome in northern Africa and the Near East. Suitable data sets are fine-grain biodiversity data (e.g., vegetation plots, relevés, transects) from all habitats that document the presence (and ideally also proxies of the cover) of vascular plants (and optionally bryophytes and lichens) with at least two repeated observations (i.e., individual surveys of each plot) in different years. Observations have to be made with identical or at least similar and comparable methods at the same or a similar location close by.

To be suitable for ReSurveyEurope, data sets have to fulfill a set of minimum requirements: (i) a complete list of vascular plants in defined plots, preferably also with information on species cover or proxies for cover such as biomass; (ii) plot location including longitude and latitude, and information on the precision of the coordinates; (iii) sampling date (ideally the precise date, minimum the year); and (iv) plot size (see Appendix S1 for details). Further, information on the methods of data collection, total vegetation cover, elevation, slope inclination and aspect, bedrock, land use, recent land-use change and vegetation or habitat type are welcome to increase the value of the data set.

2.2 | Data preparation, integration and taxonomic standardization

The first data call for ReSurveyEurope was announced on October 6, 2020 (http://euroveg.org/download/ReSurveyEurope_EVA_Call.pdf). Data contributors were asked to ideally provide their data in Turboveg 2 format (Hennekens & Schaminée, 2001), with a set of pre-defined header data fields following the guidelines in Appendix S1. For easier data preparation, providers can download the database structure with the standard database fields from https://www.synbiosys.alterra.nl/turboveg/ (under Database dictionaries/ReSurvey) using Turboveg 2 version 2.148 or higher.

All databases in ReSurveyEurope are stored and managed in Turboveg 2 using national species lists as the taxonomic backbone for the individual databases. The header data were checked and, if necessary, standardized by the first author of this article before integrating the data sets into ReSurveyEurope. As a next step, all databases were pooled in a single database in Turboveg 3, which...
has been developed for EVA by S.M. Hennekens to facilitate joint management of databases using different species lists and database dictionaries.

2.3 | Description and characterization of the plots and observations

In total, version 1.0 of ReSurveyEurope contains 79,190 plots with 283,135 observations (i.e., resurveys of individual plots) from 449 independent resurvey projects (Figure 2; see https://euroveg.org/resurvey/database for a full list). Of the total number of plots, 62,139 (78%) are from permanent (incl. manipulated) plots, for example, marked or geotagged plots which allow for high spatial accuracy in resurveying (Figure 2b,c). Note that this category also includes plots that are not permanently marked in the field, but were located with high precision (e.g., GPS-measured locations, photos).

The remaining 17,051 (22%) plots are quasi-permanent plots, which in the initial survey had not been sufficiently georeferenced to guarantee their unambiguous retrieval (Figure 2d). Resurveys of such plots rely on the geographic information available from the first survey including geographic coordinates, textual description of plot locations, information from field notes and maps, and surveyors’ knowledge of plot locations. These plots are thus associated with higher uncertainties on the location of the initial plots.

Four data sets accounting for 28,470 (35%) plots provide only presence/absence information on plant species; one data set from Denmark is especially large and accounts for most of the presence/absence-only data; however, for this data set, abundance information will be provided in the near future. Of the remaining 50,720 (65%) plots, the majority contain abundance information (e.g., percentage cover or cover-abundance classes such as variants of the Braun-Blanquet scale) with some plots from mixed data sets (i.e., containing abundance information for a subset of plots).

The geographical distribution of plots included in ReSurveyEurope is uneven, with central and northwestern European countries contributing the most data so far (Table 1; Figure 2; Appendix S2). For the full data set (including abundance and presence/absence data sets), Denmark ranks first by a wide margin (35%), followed by the United Kingdom (17%), Germany (15%), Switzerland (7%), and Poland (3%). When only considering the plots with species abundance information, the highest percentages are for the United Kingdom (28%), followed by Germany (25%), Switzerland (10%), Poland (5%), and Spain (4%).

For the full data set, the density of plots (i.e., number of plots per 100 km²) is by far the highest in Denmark (62 plots/100 km²), followed by Switzerland (13), the United Kingdom (6), Belgium (5), and Germany as well as the Czech Republic (3 each) (Table 1, Appendix S2). For observations with species abundance information, Switzerland (12 plots/100 km²) ranks first, followed by the United Kingdom (6), Belgium (5), Germany (3), and the Czech Republic (2).
The oldest plot included was sampled in 1911 in the Swiss Alps (data set “DISEQUALP”, Braun-Blanquet, 1913; Rumpf et al., 2018), while the latest resurveys are from 2022 (Figure 3, Appendix S3). Thus, the total time span covered by ReSurveyEurope is 111 years. The mean time span between sampling the first and the last observation is 26 years across all the 449 projects. Mean starting dates within data sets are more recent, as often first observations of plots within a data set have been done in different years (Appendix S3). Four projects started with the first plots until 1930, 21 additional projects by 1950, and another 84 projects by 1970. The longest mean time span covered by one data set is 104 years (data set “DISEQUALP”).

The assignment of the data in ReSurveyEurope 1.0 to EUNIS Level 1 habitat classes using the classification expert system EUNIS-ESy (Chytrý et al., 2020) (Figure 4) shows that for 36,333 plots (46%) an assignment to a EUNIS habitat class was not possible—most often this was the case because the assignment to a habitat type is not possible for plots without species cover information. A total of 21,357 plots (27%) were assigned to grasslands, followed by 8976 (11%) assigned to multiple habitat groups (i.e., as a result of change of habitat types over time due to e.g., succession, land-use change or disturbance), forests (6936 plots; 9%), heathlands, scrub and tundra (1363 plots; 2%), vegetated man-made habitats (1126 plots; 1%), and wetlands (1020 plots; 1%); all other EUNIS classes are represented by lower numbers of observations.

Plot size differed substantially between plots, with plots located in forests being larger on average than plots in non-forest vegetation types (Figure 5b). In non-forest vegetation, median plot size is 2 m² (minimum: 0.001 m²; maximum: 2500 m², mean: 26 m²), while the median plot size for forest plots is 100 m² (minimum: 3 m²; maximum: 2500 m², mean: 153 m²).

Spatial uncertainty of plot locations varies between 0 and 15,000 m (Figure 5c). By far the highest number of observations has
Table 1 Overview of the top 10 countries ranked by plots included in ReSurveyEurope.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Country area [km²]</th>
<th>Plots</th>
<th>Observations</th>
<th>Plots [%]</th>
<th>Observations [%]</th>
<th>Plots per 100 km²</th>
<th>Observations per 100 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Denmark</td>
<td>44,493</td>
<td>27,777</td>
<td>99,650</td>
<td>35</td>
<td>35</td>
<td>62</td>
<td>224</td>
</tr>
<tr>
<td>2</td>
<td>United Kingdom</td>
<td>242,495</td>
<td>13,747</td>
<td>40,164</td>
<td>17</td>
<td>14</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Germany</td>
<td>357,386</td>
<td>12,057</td>
<td>40,393</td>
<td>15</td>
<td>14</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Switzerland</td>
<td>41,285</td>
<td>5365</td>
<td>11,208</td>
<td>7</td>
<td>4</td>
<td>13</td>
<td>27</td>
</tr>
<tr>
<td>5</td>
<td>Poland</td>
<td>312,685</td>
<td>2618</td>
<td>6612</td>
<td>3</td>
<td>2</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>Sweden</td>
<td>450,295</td>
<td>2296</td>
<td>12,446</td>
<td>3</td>
<td>4</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Spain</td>
<td>498,511</td>
<td>1977</td>
<td>7310</td>
<td>3</td>
<td>2</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Italy</td>
<td>301,318</td>
<td>1754</td>
<td>5012</td>
<td>2</td>
<td>2</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>Czech Republic</td>
<td>78,866</td>
<td>1544</td>
<td>14,242</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Belgium</td>
<td>30,510</td>
<td>1543</td>
<td>2425</td>
<td>2</td>
<td>0.9</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

Only data with species abundance information

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Country area [km²]</th>
<th>Plots</th>
<th>Observations</th>
<th>Plots [%]</th>
<th>Observations [%]</th>
<th>Plots per 100 km²</th>
<th>Observations per 100 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>United Kingdom</td>
<td>242,495</td>
<td>13,747</td>
<td>40,164</td>
<td>17</td>
<td>14</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>Germany</td>
<td>357,386</td>
<td>11,994</td>
<td>40,267</td>
<td>15</td>
<td>14</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Switzerland</td>
<td>41,285</td>
<td>5088</td>
<td>10,499</td>
<td>6</td>
<td>4</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>Poland</td>
<td>312,685</td>
<td>2618</td>
<td>6612</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>Spain</td>
<td>498,511</td>
<td>1968</td>
<td>7348</td>
<td>2</td>
<td>3</td>
<td>0.4</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Italy</td>
<td>301,318</td>
<td>1754</td>
<td>5012</td>
<td>2</td>
<td>3</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>Belgium</td>
<td>30,510</td>
<td>1543</td>
<td>2425</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>Russian Federation*</td>
<td>3,968,200</td>
<td>1523</td>
<td>8179</td>
<td>2</td>
<td>4</td>
<td>0.04</td>
<td>0.2</td>
</tr>
<tr>
<td>9</td>
<td>Czech Republic</td>
<td>78,866</td>
<td>1508</td>
<td>13,543</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td>Austria</td>
<td>83,858</td>
<td>1474</td>
<td>3876</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: Countries are ranked by the number of plots within their borders. For the full list of countries, see Appendix S2.

*For the Russian Federation, only the European territory is considered.
FIGURE 3 Time period covered by the 449 individual projects in ReSurveyEurope 1.0. Projects with permanent, manipulated permanent and quasi-permanent plots are shown in different colors. Note that manipulated permanent projects may also contain some unmanipulated (=control) plots. Black points indicate sampling times.
a spatial uncertainty of less than 10 m (53,252 plots). These plots are either permanently marked in the field or located using GPS or photos. On the opposite side of uncertainty, there are 975 plots with an uncertainty of 100–1000 m, and 117 plots with an uncertainty greater than 1000 m. Typically, these spatially most uncertain observations were from plots established several decades ago and (re-)located post-hoc based on historical materials like maps or descriptive textual information given in the original source.

The number of observations per plot varies among data sets. The majority of data sets have been surveyed twice (mostly resurveying studies) or at most a few times (mostly studies with permanent plots), while a few, mostly small data sets have high numbers of observations (Table 2).

2.4 | Taxonomic and nomenclatural standards and recommendations for data usage

ReSurveyEurope applied the EVA approach of simultaneously using a set of nationally used plant taxonomic and nomenclatural concepts to best represent individual data sets. A total of 31 species lists are used for storing species data in particular databases. Some species lists are fully taxonomically standardized and follow taxonomic concepts of particular countries (e.g., GermanySL 1.4, Czechia_Slovakia_2015), other lists are not fully standardized. In different species lists, the same name can refer to different taxa, different names can refer to the same taxon, and taxa can be circumscribed and ranked differently. To unify different taxonomic concepts, species lists were matched to the taxonomic and nomenclatural backbone of the Euro+Med PlantBase (Euro+Med, 2006) using the SynBioSys Taxon Database developed for EVA. Some taxa (e.g., non-European aliens, aggregates, unresolved names from the original data sets) that are not included in Euro+Med were retained in the data set. Both the original and harmonized taxonomies are preserved so that users can decide which of them they prefer to use. For cryptogams (lichens, bryophytes), taxonomy and nomenclature are so far largely unresolved across data sets in EVA and ReSurveyEurope.

The harmonized nomenclature for vascular plants according to Euro+Med can be further adjusted using the expert system EUNIS-ESy (Chytrý et al., 2020) to merge multiple taxonomic levels (e.g., subspecies) to the level of species and aggregates for groups of closely related species that are often identified inconsistently across vegetation plots. This adjustment can be performed using JUICE 7 (Tichý, 2002), Turboveg 3 (Hennekens, 2015) or an R script developed by Bruelheide et al. (2021). Before analyses, different observations from the same plot should also be checked for possible inconsistencies (e.g., the same taxon can be identified to the level of aggregate in the first sampling and to the level of species in the second sampling). In any case of doubt about correct taxonomic interpretation, the users should check the taxonomy and nomenclature used in the original data set.

2.5 | Cooperations and side projects

ReSurveyEurope makes use of pre-existing infrastructure, procedures and expertise developed and employed by EVA, and it is embedded in the EVA governance structure. Data integration and storage are coordinated and conducted at Masaryk University in Brno. EVA data are formally divided into EVA core databases (non-repeated observations) and ReSurveyEurope. There is some overlap between these two subsets. Some databases contain mostly non-repeated observations but also a small part of repeatedly
sampled plots included in ReSurveyEurope. Other databases (e.g., EU-GB-004 FloodplainMeadows, EU-GB-005 Scottish Coastal Survey or EU-GB-006 Scottish Vegetation Resurvey) include only repeated plots but from vegetation types and areas that are otherwise poorly represented in EVA, and therefore they are included both in EVA core databases and ReSurveyEurope. Both EVA core databases and ReSurveyEurope can be provided for projects using the same data request form, in which the project proponent indicates the data selection criteria.

ReSurveyEurope has established a number of cooperation agreements on data-sharing and possible joint analyses with other initiatives. These include, in particular: forestREplot, a database of forest resurvey plots in temperate zones (Verheyen et al., 2017; https://forestreplot.ugent.be/), the Global Observation Research Initiative in Alpine Environments (GLORIA) network (Pauli et al., 2015; https://www.gloria.ac.at/home), and the Long-term Vegetation Sampling (LOTVS; Sperandii et al., 2022; https://lotvs.csic.es/). Most European data sets from these global networks were integrated into ReSurveyEurope with the help of database managers and based on the consent of owners or providers of the individual original data sets. ReSurveyEurope also integrated the ReSurveyGermany database, developed in parallel with the development of ReSurveyEurope and using the same structure (Jandt, Bruelheide, Berg, et al., 2022). Further, a cooperation has been initiated with the Nutrient Status Initiative, which explores the role of nutrient availability on local plant diversity. A joint data call has been launched (http://euroveg.org/download/ReSurveyEurope_NutrientStatus_DataCall2021.pdf).

2.6 | Strengths, gaps, limitations, and pitfalls

ReSurveyEurope represents the first European data set of vegetation plots resurveyed at least once from a wide range of habitats. The original data were in most cases sampled for different purposes, by using a range of methodologies applied within the respective projects. Despite the harmonization of basic attributes upon integration of the data sets into ReSurveyEurope, there is substantial variation in many relevant features such as the accuracy of plot location, plot...
successional series. If the aim is to study spontaneous vegetation change in Europe. A particular strength of ReSurveyEurope is that study of vegetation dynamics and their responses to environmental survey is the same. Trends, although the interval length between the first and last also allow assessing the change in the conservation status of Annex one habitats of the EU Habitats Directive. At times of global climate and land-use change, ReSurveyEurope is an important archive of past vegetation composition. Such data can be used to inform conservation and management decisions, improve our understanding of ecosystem dynamics and help develop strategies to mitigate the impacts of climate change.

TABLE 2 Overview on the 10 largest projects by number of plots included in ReSurveyEurope 1.0.

<table>
<thead>
<tr>
<th>Name</th>
<th>Country</th>
<th>Abundance information</th>
<th>Number of plots</th>
<th>Number of observations</th>
<th>Start year</th>
<th>End year</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOVANA: Danish National Monitoring data</td>
<td>DK</td>
<td>No</td>
<td>27,689</td>
<td>99,298</td>
<td>1988</td>
<td>2020</td>
</tr>
<tr>
<td>UK floodplain meadows long-term monitoring</td>
<td>UK</td>
<td>Yes</td>
<td>9316</td>
<td>25,867</td>
<td>1986</td>
<td>2020</td>
</tr>
<tr>
<td>Scottish Coastal Survey</td>
<td>UK</td>
<td>Yes</td>
<td>2539</td>
<td>5064</td>
<td>1976</td>
<td>2010</td>
</tr>
<tr>
<td>Bavarian grassland monitoring</td>
<td>DE</td>
<td>Yes</td>
<td>2509</td>
<td>5159</td>
<td>2002</td>
<td>2013</td>
</tr>
<tr>
<td>Monitoring Effectiveness of Habitat Conservation</td>
<td>CH</td>
<td>Yes</td>
<td>1961</td>
<td>3921</td>
<td>2011</td>
<td>2019</td>
</tr>
<tr>
<td>DISEQALP</td>
<td>CH</td>
<td>Yes</td>
<td>1516</td>
<td>3032</td>
<td>1911</td>
<td>2015</td>
</tr>
<tr>
<td>Monitoring Effectiveness of Agrienvironmental Schemes</td>
<td>PL</td>
<td>Yes</td>
<td>1200</td>
<td>2376</td>
<td>2012</td>
<td>2019</td>
</tr>
<tr>
<td>Monitoring tidal marshes Zeeschelde</td>
<td>BE</td>
<td>Yes</td>
<td>819</td>
<td>819</td>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>Mechanisms of coexistence in species-rich grasslands</td>
<td>NL</td>
<td>No</td>
<td>750</td>
<td>4500</td>
<td>1985</td>
<td>1994</td>
</tr>
</tbody>
</table>

Note: The full list of projects is given in Appendix S3.

Accordingly, it is crucial to clarify which data are suitable for specific analyses and to select—and possibly edit—data sets accordingly (Chytrý et al., 2014; Kapfer et al., 2017). Perhaps most importantly, it is necessary to know whether particular plots represent non-manipulated vegetation, or experimental plots after some manipulation (e.g., nutrient addition, experimental disturbance) or a successional series. If the aim is to study spontaneous vegetation change, it may be necessary to select only control plots from experiments. Even then, researchers have to be careful about selecting the suitable subset of data (e.g., in regularly mown areas, experimental manipulation can be abandoned with a mown plot as a control, whereas in abandoned areas, manipulation can be mowing with an abandoned plot as a control).

Further, individual studies should only compare changes over identical periods, in terms of both the interval between two samplings and between the starting or mean date. For example, two re-survey data sets, one collected between the 1960s and 1980s and the other collected between the 1990s and 2010s, can show different trends, although the interval length between the first and last survey is the same.

Resurveyed vegetation plots provide a valuable resource for the study of vegetation dynamics and their responses to environmental change in Europe. A particular strength of ReSurveyEurope is that empirical time-series data are provided for largely exact locations, which makes them ideal for calibrating or validating models. For example, the plot records might be linked to remote-sensing information on land-use change or change in habitat quality. They may also allow assessing the change in the conservation status of Annex 1 habitats of the EU Habitats Directive. At times of global climate and land-use change, ReSurveyEurope is an important archive of past vegetation composition. Such data can be used to inform conservation and management decisions, improve our understanding of ecosystem dynamics and help develop strategies to mitigate the impacts of climate change.

3 PROPERTY RIGHTS, DATA USAGE AND ACCESS

ReSurveyEurope is devoted to an inclusive and transparent governance, collaboration, co-authorship, and data usage approach. ReSurveyEurope Data Property and Governance Rules (approved at the first ReSurveyEurope workshop in Vienna in April 2022; http://euroveg.org/download/ReSurveyEurope_Rules.pdf) are based on experience gathered in similar community-based initiatives, and basically are slightly modified rules of EVA. Thus, (i) data owners/contributors have control over the use of their data in any specific analysis (allowing them to opt-in for individual projects according to specific criteria such as the number of plots used in the analysis), and (ii) colleagues not directly involved in ReSurveyEurope can submit proposals for analyses, which will be subject to approval by the ReSurveyEurope Board consisting of the initiators of ReSurveyEurope and elected members of the EVA Coordinating Board (https://euroveg.org/resurvey/). The data request form is available at http://euroveg.org/download/eva-data-request-form.docx.

4 FUTURE DEVELOPMENTS AND OUTLOOK

ReSurveyEurope is intended to be a living and dynamic resource, and thus, we expect that it will further grow and mature in the years to come. While a large number of existing resurvey data sets from Europe have already been included in ReSurveyEurope 1.0, we expect and hope that further data sets will become mobilized...
and contributed. In addition, several studies resurveying historic vegetation-plot data are underway or have been proposed. Thus, we expect that further data sets will be sampled and, hopefully, contributed to ReSurveyEurope. As regular data updates are foreseen, we highly encourage colleagues to provide additional data once they become available. Submission of data sets is possible at any time (see https://euroveg.org/resurvey/ for further information).

In addition, we believe that there is substantial potential for developing further collaborations or joint activities with colleagues and initiatives to expand the scope of ReSurveyEurope. This may include (i) expanding the geographic scope, (ii) expanding the taxonomic scope, and (iii) standardizing and expanding metadata content in ReSurveyEurope.

To conclude, the ReSurveyEurope consortium is open and interested in discussing suggestions for extending the initiative and thus encourages colleagues to bring any such ideas forward. As ReSurveyEurope data have become ready for use, several projects have already been initiated, and further proposals for analyses can be submitted to the coordinators.

AUTHOR CONTRIBUTIONS
Franz Essl, Ilona Knollová, Milan Chytrý, Helge Bruelheide, and Stefan Dullinger conceived the original idea for ReSurveyEurope, which was jointly developed by a core team also including Bernd Lenzner, Ilona Knollová, Florian Jansen, Ute Jandt and Stephan Hennekens. Stephan Hennekens, Milan Chytrý, Helge Bruelheide, Ute Jandt and Ilona Knollová designed the database structure. Ilona Knollová compiled the database with help from Stephan Hennekens. Ilona Knollová, Ekin Kaplan, Michael Glaser and Bernd Lenzner created the figures and tables for this article. Franz Essl led the writing of the manuscript with substantial contributions of Milan Chytrý, Helge Bruelheide, Stefan Dullinger, Ute Jandt, and Ilona Knollová. All other authors (ordered alphabetically) contributed plot data and commented on an advanced version of the manuscript. All authors agreed with the final manuscript.

AFFILIATIONS
1 Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
2 Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
4 Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
5 Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
6 Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao, Spain
7 Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
8 Centro de Investigaciones sobre Desertificación (CSIC-UV-GV), Valencia, Spain
9 Division of BioInvasions, Global Change & Macroecology, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
10 Wageningen Environmental Research, Wageningen, Netherlands
11 Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
12 Biodiversity Research Institute (Univ.Oviedo-CSIC-Princ.Asturias), University of Oviedo, Gijón, Spain
13 Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
14 Gloriæ co-ordination, Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Vienna, Austria
15 Gloriæ co-ordination, Department of Integrative Biology and Biodiversity Research, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
16 Forest & Nature Lab, Department of Environment, Ghent University, Kontrode, Belgium
17 Institute of Ecology, School of Natural Sciences and Medicine, Ila State University, Tbilisi, Georgia
18 Department of Botany, Faculty of Agriculture, University of Belgrade, Belgrade, Serbia
19 Department of Sciences, University of Rome Tre, Rome, Italy
20 UMR BAGAP, INRAE - Institut Agro - ESA, Rennes, France
21 LTSER Zone Atelier Armorique, Rennes, France
22 Ecology, Evolution & Environmental Change, UK Centre for Ecology & Hydrology, Edinburgh, UK
23 Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
24 Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
25 Institute of Natural Resource Management, Zurich University of Applied Sciences, Wädenswil, Switzerland
26 Research and Education Laboratory, Ojcow National Park, Ojcow, Poland
27 Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
28 Jolobe Consultor Botánico, Jaca, Spain
29 Instituto Pirenaico de Ecología IPE-CSIC, Jaca, Spain
30 Institute of Biology, Graz University, Graz, Austria
31 Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
32 Department of Earth Sciences, University of Sopron, Sopron, Hungary
33 Department of Nature Conservation and Research, Gesäuse National Park, Admont, Austria
34 Forschungsförderung, Karlsruhe Institute of Technology, Karlsruhe, Germany
35 Department of Life Sciences, University of Siena, Siena, Italy
36 Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech Republic
37 Department of Ecological Sciences, James Hutton Institute, Aberdeen, UK
38 Southern Sweden Forest Research Centre, Swedish University of Agricultural Sciences, Lomma, Sweden
39 BIOME Lab, Department of Biological, Geological & Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
40 LifeWatch ERC Research Infrastructure, Lecce, Italy
41 Agroscope, Research Division Agroecology and Environment, Zürich, Switzerland
42 County Administrative Board of Jämtland, Environment and Water, Östersund, Sweden
43 EnvixLab – Department of Biosciences and Territory, University of Molise, Termoli and Pesche, Termoli, Italy
44 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
45 Vegetation Ecology Group, Institute of Natural Resources (IUNR), Zurich University of Applied Sciences, Delémont, Switzerland
46 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECa, Grenoble, France
47 IMBE - Institut Méditerranéen de Biodiversité et d’Écologie, Aix Marseille Univ, Avignon Univ, CNRS, IRD, Marseille, France
48 Large-Scale Vegetation Ecology Research Group, Institute of Ecology and Botany, HUN-REN Centre for Ecological Research, Vác, Hungary
49 Institute of Agroecology and Plant Production, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
50 Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
Botany, Czech Academy of Sciences, Třeboň, Czech Republic
132 Center for Sustainable Landscapes Under Global Change, Department of Biology, Aarhus University, Aarhus, Denmark
133 CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
134 CREAF, Cerdanyola del Vallés, Catalonia, Spain
135 Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
136 Department of Hydrobiology, Institute of Biology, University of Pécs, Pécs, Hungary
137 Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
138 Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
139 Department of Vegetation Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
140 Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
141 Foundation for Biodiversity Research, Wroclaw, Poland
142 Department of Life Sciences, Institute of Technology and Life Sciences, National Research Institute, Raszyn, Poland
143 Ecology and Conservation Biology, Institute of Plant Sciences, University of Regensburg, Regensburg, Germany
144 Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
145 Kazan, Russia
146 Elabuga, Russia
147 Landscape Ecology and Nature Management, Research Institute for Nature and Forest, Brussels, Belgium
148 A. Borza Botanic Garden, Babes-Bolyai University, Cluj-Napoca, Romania
149 Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
150 Interdisciplinary Centre for Mountain Research, Department of Ecology & Evolution, University of Lausanne, Lausanne, Switzerland
151 Centre Alpina de Phytogéographie CAP, Foundation Jean-Marcel Aubert, Champex-Lac, Switzerland
152 Institute of Botany, Nature Research Centre, Vilnius, Lithuania
153 FORNAT AG, Zürich, Switzerland
154 Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
155 Mountain Ecosystems Group, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
156 Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
157 Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
158 Physiological Diversity, UFZ, Helmholtz Centre for Environmental Research, Leipzig, Germany
159 Department of Landscape and Vegetation Ecology, University of Kassel, Kassel, Germany
160 Department of Earth and Environmental Sciences, University of Pavia, Pavia, Italy
161 AVL - Agency for Vegetation Ecology and Landscape Planning, Wien, Austria
162 UniVege-Herbier CLF, University of Clermont Auvergne, Clermont-Ferrand, France
163 Department of Environmental Sciences, University of Basel, Basel, Switzerland
164 Hungarian Department of Biology and Ecology, Babes-Bolyai University, Cluj-Napoca, Romania
165 Faculty of Geography and Earth Sciences, University of Latvia, Riga, Latvia
166 Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
167 Sustainable Land Management, DLR Projektträger, Bonn, Germany
168 Research Group Applied Ecology, Institute for Ecosystem Research, Kiel University, Kiel, Germany
169 Institute for Biosciences, Ecology, University of Rostock, Rostock, Germany
170 Department of Biology, Vegetation and Restoration Ecology, Technical University Darmstadt, Darmstadt, Germany
171 Biologische Station Kreis Steinfurt, Tecklenburg, Germany
172 Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts (ZRC SAZU), Ljubljana, Slovenia
173 Centre for Applied Ecology Prof. Baeta Neves, School of Agriculture, University of Lisbon, Lisbon, Portugal
174 Ega Moniz Center for Interdisciplinary Research (CIEM), Ega Moniz School of Health and Care, Caparica, Portugal
175 Department of Ecosystem Biology, University of South Bohemia, České Budějovice, Czech Republic
176 Waldkirch, Germany
177 Department of Plant Ecology, Institute of Botany, Faculty of Biology, Jagiellonian University, Kraków, Poland
178 Glütenbunt-Insektenereich, Deutscher Verband für Landschaftspflege, Kiel, Germany
179 Jürgen ámboro Vegetation and Environmental Consulting, Ustr, Germany
180 Museum of Natural History, University of Wrocław, Wrocław, Poland
181 Botanical Garden, Center for Biological Diversity Conservation, Polish Academy of Sciences, Warsaw, Poland
182 HUN-REN-UD Biodiversity and Ecosystem Services Research Group, University of Debrecen, Debrecen, Hungary
183 Department of Plant Sciences, University of Geneva, Chambéry, Switzerland
184 Fondation J.-M. Aubert, Champex-Lac, Switzerland
185 Center for Sustainable Landscapes under Global Change, Department of Biology, Aarhus University, Aarhus, Denmark
186 Centre for Systems Biology, Biodiversity and Bioresources (3B), Babes-Bolyai University, Cluj-Napoca, Romania
187 Emil G. Racobită Institute, Babes-Bolyai University, Cluj-Napoca, Romania
188 Department of Applied Ecology, Technical University in Zvolen, Zvolen, Slovakia
189 Institute of Biological Research Cluj, National Institute for Research and Development for Biological Sciences, Cluj-Napoca, Romania
190 Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Katowice, Poland
191 Flemish Government Research Institute for Nature and Forest, Brussels, Belgium
192 Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
193 KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
194 Flanders Environment Department, Research Institute for Nature and Forest, Brussels, Belgium
195 Department of Plant and Fungal Diversity and Resources, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Science, Sofia, Bulgaria
196 Conservación de la Biodiversidad y Restauración de Ecosistemas, Instituto Pirenaico de Ecología IYPE-CSIC, Jaca, Spain
197 Ecology & Genetics, University of Oulu, Oulu, Finland
198 Institute of Earth Surface Dynamics, Faculty of Geosciences and Environment, University of Lausanne, Lausanne, Switzerland
199 Department of Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
200 Faculty of Environmental Sciences, TUD Dresden University of Technology, Tharandt, Germany
201 Melle, Germany
202 Bern, Switzerland
203 International Institute Zittau, Technical University Dresden, Zittau, Germany
204 Institute of Education in Science and Social Studies, University of Teacher Education Lucerne, Lucerne, Switzerland
205 Department of Research and Monitoring, Swiss National Park SNP, Zernez, Switzerland
206 Außenstelle Naturschutzstation Wümme, Betriebsstelle Lüneburg, Geschäftsbereich Naturschutz, Lower Saxony Water Management, Coastal Protection and Nature Conservation Agency, Broclet, Germany
207 Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2, University of Bremen, Bremen, Germany
ACKNOWLEDGEMENTS

We would like to thank the many colleagues who sampled historical field data that were later resurveyed and became the basis for the ReSurveyEurope initiative. We also thank Petr Novotný for an update of the EVA website to include ReSurveyEurope information. We appreciate the comments of two anonymous reviewers on the manuscript.

FUNDING INFORMATION

Ilona Knollová, Milan Chytrý and Lubomír Tichý were funded by the Czech Science Foundation (19-28491X). Bernd Lenzner and Franz Essl appreciate funding by the Global Plant Invasions-project funded by the Austrian Science Foundation (FWF; pr.no. I 5825-B). Helge Brueelheide and Ute Janndt appreciate the support of the German Research Foundation for funding sPlot as one of the iDiv (DFG FZT 118, 202548816) research platforms. Ekin Kaplan appreciates funding from the Vienna Doctoral School of Ecology and Evolution (VDSEE). Michael Glaser appreciates funding from the Austrian Climate Research Program (FA772033 “AgriWeedClim”). Stefan Dullinger received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 883669). Idoia Biurrun, Juan A. Campos, Itzizar García-Mijangos and Irati Sanz-Zubizarreta were funded by the Basque Government (IT1487-22). Manuela Winkler received funding from the Austrian Academy of Sciences under the Earth System Sciences program (project “MEDIALPS”). Harald Pauli acknowledges funding from the Austrian Climate Research Programme (ACRP 6: GZ B368633, KR13AC6K11076). Solvita Rūsiņa was supported by the LIFE Integrated Project LatViaNature LIFE19 IPE/LV/000010. Marta Gaia Sperandii acknowledges funding from the European Union’s Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101090344. Borja Jiménez-Alfaro received funding from the Spanish Agency of Research (AEI), grant MCI-20-PID2019-108636GA-I00. Alessandro Chiarucci was supported by the “National Biodiversity Future Center—NBFC” (Next Generation EU. Project code CN_00000033, CUP J33C22001190001). Róbert Kanka is supported by the VEGA 2/0048/22 grant.

DATA AVAILABILITY STATEMENT

The data used in this paper are derived from the ReSurveyEurope 1.0 database (accession date: 1 May 2023). They can be requested from ReSurveyEurope following the Data Property and Governance Rules of ReSurveyEurope available at https://euroveg.org/resurvey/.

ORCID

Ilona Knollová https://orcid.org/0000-0003-4074-789X
Milan Chytrý https://orcid.org/0000-0002-8122-3075
Helge Brueelheide https://orcid.org/0000-0003-3135-0356
Stefan Dullinger https://orcid.org/0000-0003-3919-8887
Ute Janndt https://orcid.org/0000-0002-3177-3669
Markus Bernhardt-Römermann https://orcid.org/0000-0002-2740-2304
Idoia Biurrun https://orcid.org/0000-0002-1454-0433
Francesco de Bello https://orcid.org/0000-0001-9202-8198
Michael Glaser https://orcid.org/0000-0002-4695-6150
Stephan Hennekens https://orcid.org/0000-0003-1221-0323
Florian Jansen https://orcid.org/0000-0002-3311-5185
Borja Jiménez-Alfaro https://orcid.org/0000-0001-6601-9597
Daniel Kadaš https://orcid.org/0009-0002-5491-8223
Ekin Kaplan https://orcid.org/0000-0002-7303-5883
Kristina Klickovská https://orcid.org/0000-0002-1644-2140
Bernd Lenzner https://orcid.org/0000-0002-2616-3479
Harald Pauli https://orcid.org/0000-0002-9842-9934
Marta Gaia Sperandii https://orcid.org/0000-0002-2507-5928
Kris Verheyen https://orcid.org/0000-0002-2067-9108
Manuela Winkler https://orcid.org/0000-0002-8655-9555
Otmar Abdaladze https://orcid.org/0000-0001-8140-0900
Svetlana Aćić https://orcid.org/0000-0001-6553-3797
Alicia T. R. Acosta https://orcid.org/0000-0001-6572-3187
Audrey Alignier https://orcid.org/0000-0002-7619-7124
Christopher Andrews https://orcid.org/0000-0003-2428-272X
Raphael Arlettaz https://orcid.org/0000-0001-6360-5339
Fabio Attorre https://orcid.org/0000-0002-7744-2195
Irena Axmanová https://orcid.org/0000-0001-9440-7976
Lander Baeten https://orcid.org/0000-0003-4262-9221
Jakub Baran https://orcid.org/0000-0001-5455-9158
Eleonora Barni https://orcid.org/0000-0001-7256-0064
José-Luis Benito-Alonso https://orcid.org/0000-0003-1086-8834
Christian Berg https://orcid.org/0000-0002-0587-3316
Ariel Bergamini https://orcid.org/0000-0001-8816-1420
Imre Berki https://orcid.org/0000-0002-8585-1327
Steffen Borch https://orcid.org/0000-0003-2814-5343
Barbara Bock https://orcid.org/0009-0008-8529-5683
Gianmaria Bonari https://orcid.org/0000-0002-5574-6067
Karel Boublik https://orcid.org/0000-0002-8587-4238
Andrew J. Britton https://orcid.org/0000-0002-0603-7342
Jörg Brunet https://orcid.org/0000-0003-2667-4575
Serge Buhlzer https://orcid.org/0000-0002-5588-6641
Sabina Burrascano https://orcid.org/0000-0002-6537-3313
Juan A. Campos https://orcid.org/0000-0001-5992-2753
Maria Laura Carranza https://orcid.org/0000-0001-5753-890X
Tomáš Černý https://orcid.org/0000-0003-2637-808X
Kévin Charmillot https://orcid.org/0000-0002-2311-6386
Alessandro Chiarucci https://orcid.org/0000-0003-1160-235X
Philippe Choler https://orcid.org/0000-0002-9062-2721