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Modelling the lymphatic metastatic 
progression pathways of OPSCC 
from multi‑institutional datasets
Roman Ludwig 1,2*, Adrian Daniel Schubert 4,5,7, Dorothea Barbatei 8, Lauence Bauwens 8, 
Jean‑Marc Hoffmann 1, Sandrine Werlen 4,5, Olgun Elicin 3, Matthias Dettmer 6,10, 
Philippe Zrounba 9, Bertrand Pouymayou 1, Panagiotis Balermpas 1, Vincent Grégoire 8, 
Roland Giger 4,5 & Jan Unkelbach 1,2

The elective clinical target volume (CTV‑N) in oropharyngeal squamous cell carcinoma (OPSCC) is 
currently based mostly on the prevalence of lymph node metastases in different lymph node levels 
(LNLs) for a given primary tumor location. We present a probabilistic model for ipsilateral lymphatic 
spread that can quantify the microscopic nodal involvement risk based on an individual patient’s 
T‑category and clinical involvement of LNLs at diagnosis. We extend a previously published hidden 
Markov model (HMM), which models the LNLs (I, II, III, IV, V, and VII) as hidden binary random 
variables (RVs). Each represents a patient’s true state of lymphatic involvement. Clinical involvement 
at diagnosis represents the observed binary RVs linked to the true state via sensitivity and specificity. 
The primary tumor and the hidden RVs are connected in a graph. Each edge represents the conditional 
probability of metastatic spread per abstract time‑step, given disease at the edge’s starting node. To 
learn these probabilities, we draw Markov chain Monte Carlo samples from the likelihood of a dataset 
(686 OPSCC patients) from three institutions. We compute the model evidence using thermodynamic 
integration for different graphs to determine which describes the data best.The graph maximizing 
the model evidence connects the tumor to each LNL and the LNLs I through V in order. It predicts 
the risk of occult disease in level IV is below 5% if level III is clinically negative, and that the risk 
of occult disease in level V is below 5% except for advanced T‑category (T3 and T4) patients with 
clinical involvement of levels II, III, and IV. The provided statistical model of nodal involvement in 
OPSCC patients trained on multi‑institutional data may guide the design of clinical trials on volume‑
deescalated treatment of OPSCC and contribute to more personal guidelines on elective nodal 
treatment.

When treating head and neck squamous cell carcinoma (HNSCC) with radiotherapy or surgery, the aim is to 
irradiate or resect as much of the malignant tissue as possible. This includes the primary tumor mass and clini-
cally detected lymph node metastases. However, to reduce the risk of locoregional failure, treatment also includes 
regions of the lymph drainage system of the neck with possible microscopic tumor spread, which in-vivo imag-
ing modalities such as computed tomography (CT), magnetic resonance imaging (MRI), or positron emission 
tomography (PET) cannot detect. This is referred to as elective nodal irradiation or prophylactic neck dissection. 
Treatment decisions regarding the CTV-N or the extent of neck dissection must balance the conflicting goals of 
treating regions at risk of occult lymph node metastases to avoid recurrences while avoiding toxicity related to 
unnecessary treatment of healthy tissues.
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This work concerns itself with OPSCC, where approximately 70-80% of patients present with lymph 
node metastases at the time of diagnosis. In clinical practice, CTV-N definition in radiotherapy is based on 
 guidelines1–8 that are mostly derived from the observed prevalence of involvement in an LNL for a given tumor 
location. These guidelines currently suggest extensive irradiation of both sides of the neck for most patients. In 
the ipsilateral neck, the CTV-N includes LNLs II, III and IV for all patients, and levels I and V for the majority of 
patients. These guidelines, however, do not account for the personal risk of the patients that may depend greatly 
on their state of tumor progression at diagnosis. E.g., a patient with macroscopic metastases detected via PET in 
both LNLs II and III may have a substantial risk for occult disease in LNL IV. Instead, patients who present with 
a clinically N0 neck or a single metastasis in LNL II may have a much smaller risk for occult disease in LNL IV.

We previously developed a model of lymphatic metastatic progression for estimating the risk of microscopic 
disease, given a patient’s personal diagnosis. The initial model was based on the methodology of Bayesian net-
works (BNs)9. It was subsequently extended and formulated as an HMM to include T-category in an intuitive 
 manner10. However, these models were introduced based only on a small dataset of approximately 100 early 
T-category patients available at that  time11. The limited data did not allow us to quantify the probability of 
metastases in the rarely involved LNLs I, V, and VII, nor did the data allow us to verify that the HMM is adequate 
to describe the dependence on lymph node involvement on T-category. In this paper, we extend the previous 
 work10 by making the following contributions: 

1. We provide an HMM of ipsilateral lymph node involvement including all relevant LNLs, namely the levels I, 
II, III, IV, V, and VII. To determine the optimal underlying DAG we compare different graphs by calculating 
the model evidence through TI.

2. We collect a multi-centric dataset consisting of 686 patients from three institutions, allowing us to train the 
model based on a sizable  dataset12,13.

3. We use the trained model to provide personalized risk estimations for occult metastases for typical clinical 
states of tumor progression at diagnosis, illustrating its potential for guiding volume-deescalated treatment 
strategies in the future.

HMM formalism and notation
State of the hidden Markov model
We have introduced a probabilistic model for lymph node involvement based on Bayesian networks (BNs)  in9. 
The model was extended using HMMs  in10. We will briefly recap the hidden Markov model to introduce the 
notation used throughout the work.

A patient’s state of (hidden) lymphatic involvement at time t is described as a collection of binary RVs, one 
for each of the V LNLs:

Each of the LNLs can be in the state Xv = 0 (FALSE), meaning LNL v is healthy, or in the state Xv = 1 (TRUE), 
indicating the LNL harbors metastases. The involved state includes occult disease.

The transition from one time-step to another is governed by the transition probability 
P
(

X[t + 1] = ξ i | X[t] = ξ j

)

 , which can conveniently be collected into a transition matrix when we enumerate 
all 2V distinct possible states ξ i with i ∈

{

1, 2, . . . , 2V
}

 of lymphatic involvement:

The term P
(

ξ i | ξ j

)

 describes the probability to transition from the hidden state of lymphatic involvement ξ j to 
the state ξ i between the time t and t + 1 . Using a DAG as depicted in fig. 1, we can formulate this transition 
probability in the following way:

In this equation, we have denoted LNLs that are parents of LNL v with the symbol r ∈ pa(v) . Also, ξiv denotes the 
value that LNL v takes on when the patient is in state ξ i . The term Q(a; b) ∈ {0, 1} is there to prohibit self-healing. 
It is always one, except if LNL v is healthy in state ξi , but was metastatic in the previous state ξj . In that case the 
function becomes Q(0; 1) = 0 , making the transition back to healthier states impossible.

The terms of the form P
(

ξiv |
{

ξjr
}

r∈pa(v)

)

 implicitly depend on how we parameterize the arcs of fig. 1. For 
example, if we look at the probability of spread to LNL III ( X3 ) depending on the state of that level’s parent 
– which, in this case, is pa(3) = 2 – we can write the different combinations into a conditional probability table 
as below.

X2 = 0 X2 = 1

X3

= 0 1− b3 (1− b3)(1− t23)

= 1 b3 1− b3 − t23 + b3t23

The variable b3 denotes the probability of lymphatic spread from the tumor to LNL III during one time-step, 
and t23 is the probability of spread from an involved level II further down the lymphatic chain into LNL III.

(1)X[t] = (Xv[t]) v ∈ {1, 2, . . . ,V}

(2)A =
(

Aij

)

=
(

P
(

X[t + 1] = ξ i | X[t] = ξ j

))

(3)P
(

ξ i | ξ j

)

=
∏

v≤V

Q
(

ξiv; ξjv
)

P
(

ξiv |
{

ξjr
}

r∈pa(v)

)1−ξjv
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Diagnostic observation
We also need to introduce a separate collection of RVs that describe the diagnostic observation of a patient’s 
involvement. In analogy to the hidden true state X[t] at time t, we write this diagnosis as

We do not need to differentiate between different times t here, since a patient is ever only diagnosed once, after 
which treatment usually starts timely. Diagnosis and true state of a patient are formally connected via the sensi-
tivity sN and specificity sP of the used diagnostic modality. In clinical practice, these modalities are CT, MRI, or 
PET scan, but it may also include information from biopsies after a fine needle aspiration fine needle aspiration 
(FNA) or other techniques to detect lymphatic metastases. For each LNL v the conditional probability table of 
P(Zv | Xv) is given by:

X = 0 X = 1

Z
= 0 sP 1− sN

= 1 1− sP sN

Consequently, the conditional probability to observe a diagnosis Z = ζ ℓ , given a hidden involvement state 
X = ξ k is a matrix B made up of products of terms from the table above:

We define the time t = 0 to be the moment a patient’s tumor formed, and hence Xv[t = 0] = 0 ∀v . However, 
using this definition, we cannot know how many time-steps have passed until tD , when the patient was diagnosed 
with cancer. We can only make the assumption that a patient with an earlier T-category tumor was probably 
diagnosed after fewer time-steps than a patient with a advanced T-category tumor.

We can use this assumption by marginalizing over the diagnose times tD of patients in different T-categories 
using different prior distributions over the diagnose time. E.g., P

(

t = tD | early
)

 for early T-category patients 
(T1 & T2) and P(t = tD | late) for advanced T-category patients (T3 & T4). Throughout this work we will use 
binomial distributions for these probability mass functions.

Here, the parameter pTx can be interpreted as the probability that the patient with a tumor of T-category x will 
be diagnosed at time-step t + 1 given they are in time-step t. We will use as the latest time-step tmax = 10 . Bino-
mial distributions depend only on a single parameter, which when multiplied with the number of considered 

(4)Z = (Zv) v ∈ {1, 2, . . . ,V}

(5)B = (Bkℓ) =

V
∏

v=1

P(Zv = ζℓv | Xv[tD] = ξkv)

(6)P(t = tD | Tx) = B(tmax, pTx)

Figure 1.  DAG representing a possible abstraction of the lymphatic network comprising the tumor (red shaded 
circle) and LNLs II through IV as hidden binary RVs (blue outlined circles). Attached to each of these is the 
corresponding observed RV (orange shaded squares). Lymphatic flow is depicted in the form of parameterized 
arrows (red and blue) that represent the probability of spread along the respective arc per time-step. Sensitivity 
and specificity (orange arrows) connect the hidden RVs to the diagnosis.
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time-steps, conveniently also represents the distribution’s mean (in our previous publication on the lymphatic 
progression model, we have shown that the shape of the time-prior and number of time-steps have no impact 
as long as only one T-category is  considered10). tmax = 10 will therefore give us a distribution over the diagnosis 
time that has its mean at E[tD] = 10 · pTx.

The likelihood function
Using the definitions up to this point, we can compute a vector of likelihoods for every possible diagnosis:

This likelihood implicitly depends on how we parameterize the arcs of the DAG underlying the model – see 
Eq. 3 – and the parameterization of the distribution over diagnosis times – e.g., as in Eq. 6.

Together with the parametrizations of the distributions over the diagnosis time, the parameters bv and tvr that 
make up the transition matrix A comprises the set of model parameters:

To infer these parameters from a dataset of N OPSCC patients D = (d1, d2, . . . , dN ) , we compute the data 
log-likelihood:

Which effectively amounts to computing the element-wise logarithm of the likelihood vector ℓ from Eq. 7 and 
summing up the entries that correspond to each of the patients di for i ≤ N.

Note that it is also possible to account for incomplete diagnoses, i.e., a diagnosis where the involvement 
information for one or more LNLs is missing. In that case, we can sum over those elements of ℓ that correspond 
to complete diagnoses which match the provided incomplete one. In this paper, for some patients involvement 
information of level VII was missing and hence marginalized over. A detailed explanation of this formalism can 
be found  in14, section 6.2.7.

Using this log-likelihood function one may now employ a variety of inference methods to learn the parameters 
of the model that best describe the observed data.

Parameter inference
We use Markov chain Monte Carlo (MCMC) sampling to draw parameter samples ˆθ i for i ≤ S from the likeli-
hood described in Eq. 9 (i.e. the unnormalized posterior distribution over the parameters θ , since we used a 
uniform prior in this work).

More specifically, we use the Python implementation emcee15 and two sample proposal mechanisms based 
on differential evolution  moves16,17 for sampling. Instead of proposing and then accepting or rejecting individual 
parameter samples one after the other (as in the classical Metropolis-Hastings algorithm), the emcee imple-
mentation makes use of an ensemble of W so-called “walkers”. This gives rise to W parallel chains of samples 
that mutually influence each others proposal such that the sampling proceedure overall is affine invariant. This 
means that scaling the parameter space along any dimension has no effect on the performance of the MCMC 
sampling algorithm.

For the experiments in this work, we used W = 20 · k walkers, where k is the dimensionality of the parameter 
space � . After an initial “burn-in” phase, during which all drawn samples are discarded because they are not yet 
independent of the initial state, we continued sampling for another 200 steps of which we discarded every 10th 
to be left with S = 20 ·W samples.

These S parameter estimates are then used to compute expectation values of estimates that depend on the 
parameters θ through an integral over the parameter space �:

Alternatively, the individual f̂i = f
(

ˆθ i
)

 can be used to plot histograms over the distribution of f. We will do so 
in section 5 to show distributions over prevalence predictions and risk computations.

Another relevant model parameter that needs to be set for the inference process, is the maximum number of 
time-steps we used for the evolution of the system. We set this value to tmax = 10 , such that t ∈ {0, 1, 2, . . . , 10} . 
The binomial “success probability” used to fix the shape of the early T-category’s time-prior was set to pearly = 0.3.

Risk estimation
The main task for personalizing the CTV-N definition is to predict the probability of the hidden possible states 
ξ k given the diagnosis d⋆ = ζ ℓ of a new patient at the time of diagnosis. Using Bayes’ theorem, we get

(7)

ℓ =
(

P
(

Z = ζ i
))

=

tmax
∑

t=0

[

π · At · B
]

· P(t | T)

(8)θ =
(

{bv}, {tvr}, pearly, plate
)

with v≤V
r∈pa(v)

(9)logL(D | θ) =

N
∑

i=1

logP(Z = di)

(10)

Ep

[

f
]

=

∫

�

p(θ)f (θ)dθ

≈
1

S

S
∑

i=1

f
(

ˆθ i
)
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The described model along with the inferred parameters ˆθ will yield an estimate (or multiple estimates) for the 
“prior” in the above equation P

(

ξ k |
ˆθ
)

.
From this probability for any possible hidden state, we can also compute the probability of, for example, 

involvement in LNL IV. To that end, we marginalize over all states ξ k where ξk4 = 1 , meaning those states in 
which LNL IV harbors metastases. Formally, we can define a marginalization vector m that is one for every 
hidden state we want to include in the marginalization and zero elsewhere. In the example of the marginalized 
probability for LNL IV involvement, the components would look like this:

Subsequently, we can compute the marginalization as a dot product:

Complete model of ipsilateral spread in OPSCC
Investigating spread graphs
The DAG shown in fig. 1 includes the LNLs II, III, and IV, which represent the most relevant lymph node levels for 
OPSCC. It includes the arcs from II to III and from III to IV, representing the main direction of lymphatic drain-
age, which is well motivated anatomically and by the data on lymph node involvement. Previous  publications9,10 
focused on these levels because they relied on a limited reconstructed dataset of OPSCC  patients11. Now, with the 
datasets available for this work, we can extend the graph to include random variables for all LNLs that are relevant 
for OPSCC: I, II, III, IV, V, and VII. The main question to answer is: which arcs between LNLs are needed to 
accurately model the data on lymph node involvement without increasing the model’s complexity unnecessarily.

First, we notice that the direct arcs from tumor to each of the LNLs must be present, since every LNL appears 
metastatic in isolation at least once in the dataset. For example, some patients presented with metastases in LNL 
I, while the other levels appeared healthy. If no spread was allowed from the tumor to X1 (i.e., b1 = 0 ), the likeli-
hood of observing this patient would be zero.

We have more freedom in choosing how to connect the LNLs to each other. To investigate which connections 
to add we start by establishing a baseline from a model using a minimal base graph. It contains only the connec-
tions from LNL II to III and an arc from LNL III to IV, as motivated by the main lymphatic pathway18. The base 
graph is illustrated in fig. 2 via the red and blue arcs. The lymphatic drainage to or from levels I, V, and VII is not 
as clearly defined. Therefore, we define a set of candidate arcs (green arcs in fig. 2) and use the model comparison 
methodology described in section 3.2 to determine which graph is most supported our data.

To connect level I, we investigate two candidate arcs: from I to II and from II to I. An arc from I to II was used 
 in9,10 and is anatomically motivated. However, since LNL I is rarely involved compared to level II, the associated 
parameter t12 is mostly undetermined. Therefore, we also consider the flipped arc from LNL II to I and investigate 
if it helps to describe the correlations between the involvement of levels I and II.

Anatomically, the posterior accessory pathway that drains LNL II through LNL V motivates investigating and 
arc from X2 into X5

18. And, although no lymphatic pathway is described that directly drains LNL III or IV into 
level V, due to their proximity to each other, we will also investigate additional edges from the levels III and IV 
into LNL V. Finally, we look at adding an arc from LNL II to LNL VII also due to their anatomical proximity.

To determine the optimal graph, we first consider six models, each with one of the six green candidate arcs 
of Fig. 2 added to the base graph. Every one of these models was evaluated by computing an approximation to 
its evidence via thermodynamic integration as described below in the "Model comparison" sect.. Subsequently, 
graphs combining multiple arcs that individually improve the model evidence are considered. Thereby, the 
“winning graph” is determined, which yields the highest (i.e., the least negative) value of the logarithm of the 
model evidence.

Model comparison

The aim of this work is to refine the graph structure underlying our risk model introduced in the previous sec-
tion. This DAG determines the number of parameters of the model as well as how exactly the transition matrix 
A is parameterized. To compare different models that are based on different DAGs, e.g. models M1 and M2 , in 
a Bayesian setting, we need to compute the probabilities of these models, given the data D:

If we assume all models Mi for i ∈ {1, 2} to have the same a priori probability – meaning in this case 
P(M1) = P(M2) – then we can compute the so-called Bayes factor of the two models as the ratio of their 
likelihoods. The interpretation of the values for different Bayes factors is given in table 1. It is defined as follows:

(11)P
(

X = ξ k | Z = ζ ℓ
)

=
P
(

ζ ℓ | ξ k
)

P
(

ξ k | θ
)

∑2V

r=1 P
(

ζ ℓ | ξ r
)

P
(

ξ r | θ
)

(12)m4k = id(ξk4 = 1)

(13)
P
(

IV = 1 | Z = ζ ℓ
)

=
∑

k:ξk4=1

P
(

X = ξ k | Z = ζ ℓ
)

= m4 · P
(

X = ξ k | Z = ζ ℓ
)

(14)P(Mi | D) =
P(D | Mi)P(Mi)

P(D)
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These likelihoods are commonly called the model evidence or marginal likelihood. The latter because computing 
it involves marginalizing the data likelihood over all model parameters:

However, this quantity is often very hard to compute or even intractable, due to the high dimensionality of the 
parameter space � . In our case, the number of dimensions ranges from k = 9 for the base graph to k = 11 for 
the winning graph. A brute-force integration over a unit cube with this many dimensions is inefficient and error-
prone, which is why we resorted to TI for computing the (log-)evidence.

Below, we will briefly outline the main concept behind this algorithm. An intuitive and extensive derivation 
of TI is given  by20.

We start by taking the logarithm of the model evidence E and subtract a zero from it in the form of the term 
0 = ln

∫

p(θ | M)dθ . Further, we can multiply the distribution over the parameters θ inside this integral by 
1 = P(D | θ ,M)β=0 . Subsequently, we can write the logarithm of the evidence as an integral over a derivative:

Where we have used the (unnormalized) power posterior pβ(θ | D,M) = P(D | θ ,M)βp(θ | M) to compute 
the respective evidence Eβ =

∫

pβ(θ | D,M)dθ.
The derivatives of the log-evidences ln Eβ are essentially expectation values of the data log-likelihood under 

the power posteriors of the corresponding value for β . They can be computed using MCMC:

(15)K1v2 =
P(M1 | D)

P(M2 | D)
=

P(D | M1)

P(D | M2)

(16)EM = P(D | M) =

∫

�

P(D | θ ,M)p(θ | M)dθ

(17)
ln E = ln

∫

P(D | θ ,M)β=1p(θ | M)dθ − ln E0

=

∫ 1

0

d

dβ
ln Eβdβ

(18)

d

dβ
ln Eβ =

∫

pβ(θ | D,M) ln P(D | θ ,M)dθ

= E[ln P(D | θ ,M)]pβ (θ |D,M)

≈
1

S

S
∑

i=1

ln P
(

D | θ̂βi ,M
)

=: AMC(β)

Figure 2.  Extended DAG representing different possible spread graphs underlying the HMM. As in fig. 1, red 
arcs are parametrized with probabilities of spread from the tumor (red circle) to the LNLs (blue circles). These 
red arcs, together with the blue arcs fron LNL to LNL, make up the base graph. One after the other, each of the 
green arcs was added to the base graph. Subsequently, the performance of the resulting models in terms of its 
Bayesian information criterion (BIC) was compared to the base graph to assess whether the additional edge 
should be kept in the winning graph or not.
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The integral in Eq. 17 can then be computed via a trapezoidal rule using the AMC to yield a numerical approxi-
mation of the model evidence:

This estimate gets better for more samples S per sampling from the power posterior pβ but more importantly it 
gets better for a tighter spacing of the values for β within the interval [0, 1]. The variable β is also often referred 
to as an inverse temperature, due to its origins in statistical physics. Often when performing TI, the most drastic 
changes in the values of the AMC occur at high temperatures (meaning β very close to zero), while the changes 
become smaller and smaller for lower temperatures ( β towards one). It is therefore efficient to space the tem-
perature ladder unevenly, e.g. according to a fifth order power rule:

For the TIs that were performed in this work we used such a fifth order power rule with 64 steps, meaning that 
R = 63.

The process of computing the log-evidence using TI was as follows: We randomly initialized the starting 
positions of the W samplers in the ensemble within the k dimensional unit cube � . Subsequently, for each 
j ∈ {0, 1, 2, . . . ,R = 63} we drew samples from the corresponding power posterior with the value of βj set accord-
ing to the power rule in eq .20. This sampling at point j consisted of 1000 burn-in steps, followed by 200 steps, of 
which only every tenth was kept. The last position of the W chains for the j-th β value in the ladder was used to 
initialize the subsequent sampling round with βj+1 . Hence, after the computations are finished, we are left with 
S = 20 ·W samples ˆθ i,j and respective log-likelihood ℓ̂i,j from each of the 64 power posteriors corresponding to 
the respective βj . Subsequently, we numerically integrated the following quantity S times:

And then computed the mean and standard deviation of all the integrated ln Êi . We then used this for the log-
evidence and its error.

Without derivation or insight, we would like to mention that the model evidence naturally balances a model’s 
accuracy against its complexity. The value of ln E will generally be larger (i.e., less negative) if a model fits the 
data better than another while being similarly complex. On the other hand, if e.g. additional parameters are 
introduced without sufficiently improving how well the model explains the data, the evidence will penalize the 
increase in complexity.

An approximation to the evidence that also attempts to balance accuracy and complexity against each other 
is the heuristic called BIC. The negative one half of the BIC approximates the ln E via Lagrange’s  method23 and 
yields an easy to compute estimate that may also be used to compare models, as long as its underlying assump-
tions are valid:

Here, L̂ = maxθ (ln P(D | θ)) is the maximum log-likelihood. The approximation is good, when the posterior 
distribution over the parameters p(θ | D) is single-modal and falls quickly to zero from the maximum. Also, 
the number of data points N needs to be much larger than the number of parameters k. We will see that for the 
models we consider here, the BIC is generally a good approximation and the conclusions drawn from comparing 
models using this metric can be reproduced reliably using the true model evidence computed with TI.

Multicentric dataset
The dataset D that we used for inference is comprised of the detailed reports on lymph node involvement pat-
terns in OPSCC patients treated at three different institutions in France and Switzerland: The Centre Leon Bérard 
(CLB) in Lyon (France), the Inselspital Bern (ISB) in Bern (Switzerland), and the University Hospital Zurich 
(USZ) in Zürich (Switzerland). We have previously published the patterns of nodal involvement for the USZ 
cohort (287 patients)12 and described its characteristics in  detail24. The first CLB dataset (263 patients) underlies 
a publication on human papilloma virus (HPV) status in  OPSCC25 and is made available in a separate “Data in 
Brief ” article alongside the second dataset from France and the lymphatic progression patterns from the  ISB13. 
All datasets may be explored online in our web-based interface LyProX.

In total, the dataset contains 686 patients with newly diagnosed OPSCC. It includes patients treated with 
definitive (chemo)radiotherapy, adjuvant (chemo)radiotherapy following neck dissection, or neck dissection 
alone. Pathologically assessed LNL involvement was available for 263 surgically treated patients, while for the 
remainder the nodal involvement was assessed based on available diagnostic modalities (FDG-PET-CT, CT, 
MRI, FNA). If multiple modalities were used to diagnose a patient’s lymph node involvement, the available 
modalities were combined into a consensus decision. When different modalities were conflicting, the conflicts 
were resolved by inferring the most likely state (healthy or metastatic) for each LNL separately. To do so, we used 
literature values for the sensitivity and specificity of the diagnostic  modalities21,22, which we also tabulated in 
table 2. Practically, this means that, whenever pathology after neck dissection was available, the pathology result 
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1
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was taken as the consensus, overruling any other clinical diagnostic modality. If, for example, PET-CT and MRI 
ware available and conflicting, PET-CT was taken as the consensus, overruling MRI.

The dataset containing the consensus decision for the involvement of each level in every patient was then 
used for model parameter learning. We assumed that it represents an observation of the true hidden state ξ k . 
The frequencies of some of the most important combinations of involved lymph node levels are listed in table 3.

Results
Involvement of levels II, III, and IV
For the base graph, we have plotted the predicted prevalence of involvement patterns in the investigated patient 
cohort for scenarios involving the most commonly metastatic LNLs II, III and IV in fig. 4. It shows – for each 
pattern of lymphatic involvement – two plots overlaid: 

1. The colored histograms over the base graph model’s prediction for the prevalence of the respective pattern 
of involvement. These histograms are obtained by computing the same prevalence with different samples 
from the inference process, thus providing us with a measure of uncertainty for the prediction.

2. Colored lines, depicting the beta posterior over the same involvement pattern’s prevalence, given a uniform 
beta prior and the binomial likelihood of the observed data. The maximum of the beta distributions always 
coincides with the data prevalence but we additionally gain an intuition into how statistically significant the 
data is. E.g., Observing 3 out of 10 patients with a particular pattern of nodal metastases is less convincing 
than 300 out of a cohort of 1000 patients. A beta posterior over these prevalences reflects that in its variance.

fig. 4 shows that this minimal graph is already capable of describing the most important parts of the observed data 
very well. Notably, the model is not only accurate in its predictions, it also correctly estimates the variance stem-
ming from the limited amount of data. The separation between involvement prevalences of early and advanced 
T-category tumors is also reproduced well by the model. This is remarkable because the model introduces only a 
single parameter to describe the differences between early and advanced T-category for all involvement patterns. 
This shows that expecting later diagnosis times, on average, for patients with advanced T-category tumors can 
explain more severe lymphatic involvement.

It is interesting to note that not all involvement patterns become more prevalent with advanced T-category. 
For example, a healthy LNL III together with a metastatic level II is observed slightly less often for advanced 
T-category tumors compared to early T-category (yellow histogram, row 1 versus 2). This is because, for advanced 
T-category, it is more likely the disease has already spread to LNL III (blue histogram, row 1 versus 2). Our model 
captures this accurately and precisely.

Comparison of candidate graphs

The model evidences of all candidate graphs are reported in table 4. For the graph with the highest and lowest 
model evidence, the expected log-accuracy is plotted against the inverse temperature in fig. 3. A visual ranking 
is provided in fig. 5. Let us first consider the six models in which one of the candidate arcs is added to the base 
graph. Evidently, adding a connection from LNL I to II is strongly supported given this dataset, and is slightly 
superior to the reverse connection from LNL II to I. In addition, there is strong evidence for introducing an arc 
from LNL IV to V. Furthermore, there is substantial evidence for an arc from LNL III to V. All other investigated 
additions lead to improvements that are barely worth a mention or do not justify the additional complexity at 
all, indicated by a lower evidence.

Based on these results, we consider three additional candidates for the optimal graph that combine the added 
arc from LNL I to II with the arc(s) III → V and/or IV → V . The model evidence for these three graphs is also 
reported in table 4. The best performing graph with decisive evidence over the base graph turned out to be the 
one which combines the arcs from LNL I to II and IV to V. Interestingly, the evidence gain of this “winning 
graph” is roughly the sum of the gains seen in the two candidates where only one of these connections was added, 
respectively. This indicates that the two additional parameters are largely independent of each other and manage 
to describe different aspects of the data.

table 4 additionally shows the evidence of graphs in which the arc from level II to III or from level III to IV is 
removed. The low model evidence for these graphs confirms the importance of these connections and is consist-
ent with the anatomical motivation. The connection from level III to IV is crucial for describing the observation 
that metastases in level IV are extremely rare without simultaneous involvement of the upstream level III.

The winning graph
The most likely model parameters for the winning graph, corresponding to the mean of the marginals of the 
sampled posterior distributions, are tabulated in table 5. We have fixed pearly = 0.3 for early T-category tumors 
(i.e., T0, T1, and T2), and tmax = 10 time steps. The result that tII→III and tIII→IV are relatively large compared to 
bIII and bIV reflects the observation that skip metastases in levels III and IV without involvement of the upstream 
level are rare. Since level II’s parent node (level I) is rarely involved, bII can approximately be related to the preva-
lence of involvement in level II. The probability for no involvement of level II when the patient is diagnosed 
after t time steps is (1− bII)

t . The prevalence of level II involvement for advanced T-category patients is thus
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which agrees with the second panel from the top in fig. 4. The large value for the parameter tI→II reflects the 
observation that in almost all patients with level I involvement, level II is also involved. The large uncertainty in 
tI→II is related to the fact that level I involvement is rare compared to level II.

Involvement of levels I and V
We can observe that the winning graph describes the involvement of levels II, III, and IV equally well as the base 
graph, a result that is expected and not further shown. We thus focus on the improvements w.r.t. involvement 
patterns that include the LNLs I and V, that more rarely harbor metastases.

Level V: In fig. 6 we compare the base graph’s and the winning graph’s estimations for prevalences of involve-
ment patterns that include LNL V. The base graph underestimates the probability that level IV and V are 

(23)
prevIIlate = 1−

10
∑

t=0

(1− bII)
t · ptlate (1− plate)

(10−t)

(

10
t

)

≈ 79%

Figure 3.  The expected log-accuracy under the power posterior plotted against the value of the inverse 
temperature β for the graph with the best (blue) and worst (red) log-evidence. The are under this curve 
yields the respective graph’s model evidence. The scaling of the x-axis is chosen such that the 64 points on the 
temperature ladder appear evenly spaced. This is to stress how the log-accuracy develops in the range from 
β = 0 to around β = 0.1 . Note how the winning graph’s advantage begins to show already shortly before 
β = 0.031.

Table 1.  Interpretation of Bayes factors and their natural logarithms in terms of their support for or against 
one of the two compared models as introduced  by19.

K1v2 lnK1v2 Support for M1

< 10
0 < 0 Negative (supports M2)

10
0 to 10

1

2 0 to 1.15 Barely worth a mention

10
1

2 to 101 1.15 to 2.3 Substantial

10
1 to 10

3

2 2.3 to 3.45 Strong

10
3

2 to 102 3.45 to 4.6 Very strong

> 10
2 > 4.6 Decisive

Table 2.  Literature sensitivity and specificity values that we used to infer the most likely involvement for a 
patient when multiple diagnostic modalities reported conflicting nodal  involvement21,22.

Modality Specificity (%) Sensitivity (%)

CT 76 81

PET 86 79

MRI 63 81

FNA 98 80

Pathology ≈ 100 ≈ 100
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simultaneously involved, and overestimates the probability that level V but not IV is involved. By introducing 
the arc from level IV to V, the winning graph can describe the observation that level V involvement is typically 
associated with severe involvement of level II-IV. In the dataset, 14 patients out of 62 patients with level IV 
involvement have metastases in level V (22 %). Instead, only 40 patients out of 624 patients without level IV 
involvement have metastases in level V (6 %).

Level I: In fig. 7, analogous comparisons are shown for involvement patterns that include LNL I. The base 
graph overestimates the probability of level I involvement without simultaneous involvement of level II. By intro-
ducing the arc from level I to II, the winning graph can capture the correlations between levels I and II. It can 
also be noted that both models overestimate level I involvement for early T-category patients and underestimate 
level I involvement for advanced T-category patients. This is further described in the discussion section below.

Risk prediction for occult disease
In this section, the model corresponding to the winning graph is applied to estimating the risk of occult metasta-
ses in clinically negative LNLs. We assume a sensitivity of 0.76 and a specificity of 0.81 for the clinical diagnosis 
of lymph node metastases, corresponding to CT imaging in table 2.

Level II: As can be seen in table 5, spread from the tumor to LNL II to be the most probable transition at any 
given time step. As a consequence, even for an early T-category patient that presents with a clinical N0 neck, our 
model predicts a 31.13 % ± 1.78 % risk for microscopic metastases in LNL II.

Level III: fig. 8 compares the risk of occult disease in level III between patients that are clinically N0 (orange) 
and patients with clinically diagnosed involvement of only level II (red), for early T-category (upper panel) and 
advanced T-category (bottom panel). The histograms represent the uncertainty in the model’s risk prediction 
arising from the uncertainty in the model parameters and are generated by randomly drawing a tenth of the sam-
ples from the model parameter’s joint posterior distribution. This amounts to S = 20 ·W samples, as described 

Table 3.  Prevalence of involvement patterns in the multi-centric dataset. An involvement pattern is 
characterized by the state of the six LNLs: A red dot means the LNL was reported to be metastatic, a green dot 
means it was determined to be healthy and a question mark means that the prevalence was marginalized over 
the state of this LNL.
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Figure 4.  Prevalence of involvement as predicted by the base graph model for different scenarios involving the 
most commonly metastatic LNLs II, III, and IV (shaded histograms). The model’s predictions are compared 
to Beta posteriors over the prevalence based on the frequency of the same scenarios in the data assuming a 
uniform prior (solid lines). E.g., out 423 early T-category patients, 100 (23.6%) presented with involvement 
of the LNLs II and III, as shown by the blue line in the uppermost panel. The top panels of each of the three 
subfigures show some selected scenarios with early T-category tumors and the bottom panel the same scenarios 
for advanced T-category. Similar scenarios are color-coded: Blue for joint involvement with downstream LNL, 
orange for a level’s involvement without the downstream LNL, red for an LNL’s overall involvement prevalence, 
and green for involvement without direct upstream metastases. The black scenario in the bottom subfigures only 
appears once and did not fit into these categories. This figure shows that for the most important LNLs II, III, and 
IV the base graph model already fits the data well.
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in the "Model comparison" section. The model predicts a risk of just below 6% for early T-category tumors and 
8% for T3 or T4 ones. For patients with involvement of level II, the risk in level III increases to approximately 
9% and 12%, respectively.

Level IV: fig. 9 (left panels) compares the risk of occult disease in level IV for the typical clinical presentations: 
clinically N0 (green), metastases in level II (blue), and metastases in levels II and III (orange). The model predicts 
a low risk of 1-2% in level IV for patients with clinically healthy level III. For patients with clinical involvement 
of level III, the risk of occult disease in level IV increases to approximately 3% for early T-category and 5% for 
advanced T-category tumors.

Level V: The right panels in fig. 9 show the risk of occult disease in level V depending on T-category and the 
clinical involvement of levels II-IV. For clinically N0 patients, the risk in level V is estimated to be just above 

Table 4.  Model comparison results for all compared graph structures. For all DAGs we show the difference of 
the log-evidence to the base graph, as in fig. 5, computed via thermodynamic integration.

Graph � Log-evidence

 Add I −→ II & IV −→ V 5.99

Add I −→ II & III −→ V 4.96

Add I −→ II & III −→ V & IV −→ V 4.44

Add IV −→ V 3.05

Add I −→ II 2.86

Add II −→ I 1.95

Add III −→ V 1.56

Base graph 0.0

Remove II −→ III −2.35

Add II −→ V −2.35

Add II −→ VII −2.84

Remove III −→ IV −20.39

Remove II−→ III & III −→ IV −22.47

Figure 5.  Visual ranking of the investigated graphs w.r.t. their model evidence, computed via thermodynamic 
integration. Not shown are the two graphs where the arc from LNL III to IV was removed. Their respective 
log model evidence differed from the base graph by more than −19 and the two graphs would appear far left 
in the figure. In the bottom left corner, we provide a visual reference in analogy to table 1: E.g., any difference 
in the model evidence shorter than the first of the three rulers indicates that the improvement is “barely worth 
a mention” Anything longer than it, but shorter than the second ruler from the top indicates a “substantial” 
improvement.
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1%. Extensive nodal involvement of levels II-IV increases the risk in level V to more than 4% for advanced 
T-category tumors.

Level I: fig. 10 shows the risk of occult disease in level I depending on T-category and the clinical involvement 
of levels II-IV. For clinically N0 patients, the risk in level I is estimated to be in the order of 1-2%. Extensive 
nodal involvement of levels II-IV increases the risk in level I to just below 4% for advanced T-category tumors. 
It is pointed out that the winning graph does not contain arcs from levels III or IV to LNL I (and anatomically 

Figure 6.  Observed (Beta posteriors as lines) vs. predicted (histograms) prevalences of involvement 
combinations that include LNL V. We have plotted the predictions from the winning graph (colored histograms) 
and those of the base graph (black, hatched histograms). The top two panels show scenarios for early T-category 
patients, the bottom two panels for advanced T-category. The left two panels consider combinations of LNL III 
and V involvement, while the right two panels consider combinations of LNL IV and V. The colored lines show 
the Beta posterior over the prevalence of the respective involvement pattern, given the data. Especially the right 
two panels indicate the winning graph model’s better fit to the data over the base graph’s model.

Figure 7.  Comparison of observed and predicted prevalences of LNL I and II involvement patterns. The top 
and bottom panels show the prevalences for early and advanced T-category, respectively. The solid lines are 
Beta posteriors from the data, while the histograms are predicted prevalences (colored: winning graph, black-
hatched: base graph). Blue and red plots indicate overall LNL I and II involvement, respectively. Green plots 
indicate LNL I involvement without level II, while orange plots indicate the opposite (LNL II without level I). 
The winning graph has an added edge from LNL I to II, which improves the prediction of the rare green pattern. 
Otherwise, the winnings graph does not meaningfully improve the model’s fit to the data.
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we do not assume that there is lymphatic drainage from levels III or IV to level I). Thus, the increased risk in 
level I is related to the time evolution: Getting diagnosed at a later time during the disease’s evolution probably 
correlates with more advanced nodal metastasis. And involvement in the levels III and IV corresponds to a more 
advances state of disease that is likely diagnosed at a later time step, such that the tumor also had more time to 
spread to level I. The correlation between the clinical involvement pattern, the likely time of diagnosis in the 
tumor’s time frame based on it, and from that the risk of involvement is another benefit of the formulation of 
the model as an HMM.

To illustrate the flexibility of the model in predicting various risks, we have plotted the risk for occult disease 
in any of the LNLs I, IV, and/or V, given different clinical diagnoses in fig. 11. Similar to this, we may compute 
the risk for an arbitrary combination of involved levels, given a similarly arbitrary clinical diagnosis. For the base 
graph (base- graph- v2) and the winning graph (win- graph- v3), one may also interactively explore these risks in 
our web-based interface LyProX, similar to how it is possible to explore the underlying data in an interactive way.

Discussion
Summary
In this publication we present a statistical model of ipsilateral lymph node involvement in oropharyngeal SCC 
patients. Although the basic HMM of lymphatic progression has been conceptually introduced in a previous 
 work10, this is the first publication that evaluates the model based on a large multi-institutional dataset con-
taining 686 patients. It is demonstrated for the first time that the model can accurately describe the patterns of 
lymph node involvement observed in the data, including the correlations between levels and its dependence 
on T-category. Furthermore, techniques from statistical physics are applied to calculate the model evidence for 

Table 5.  Mean and standard deviation of parameters sampled for the winning graph in percent.

Parameter Mean (%) Std. dev. (%)

bI 2.65 ± 0.31

bII 37.67 ± 1.81

bIII 8.1 ± 1.26

bIV 1.1 ± 0.24

bV 2.13 ± 0.28

bVII 2.16 ± 0.31

tI→II 66.76 ± 21.37

tII→III 9.49 ± 3.04

tIII→IV 14.48 ± 2.43

tIV→V 14.57 ± 5.29

plate 38.34 ± 2.26

Figure 8.  Histograms over the risk for microscopic involvement in LNL III, given that a patient presents as 
clinically N0 (green), or given that the patient’s LNL II shows clinical involvement (blue). The top panel displays 
these risks for early T-category, the bottom panel for advanced T-category.

https://lyprox.org/riskpredictor/9
https://lyprox.org/riskpredictor/8
https://lyprox.org/riskpredictor/list
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Bayesian model comparison. This yields a complete model including all LNLs relevant for OPSCC: I, II, III, IV, 
V, and VII with a parameterization that balances accuracy and model complexity.

Implications for elective nodal treatment
Risk predictions obtained by the model may be used to design clinical trials on volume-deescalated treatment of 
OPSCC. In the context of radiotherapy, this corresponds to excluding LNLs from the CTV-N, which are irradi-
ated according to the current guidelines. The list below should be seen as a summary of the "Risk prediction for 
occult disease" sect. and the limitations discussed in the "Limitations and future work" sect. should be taken into 
account in its interpretation. Assuming that one accepts approximately a 5% risk of occult metastases per LNL, 
the statistical model presented in this paper would suggest to:

Figure 9.  Distributions over the risk for microscopic involvement in LNL IV (left panels) and in LNL V (right 
panels) as predicted by the winning graph model, given early (top panels) or advanced T-category (bottom 
panels), and different CT-based diagnoses: (1) A clinical N0 patient (green histograms), (2) visible metastases 
in LNL II, but otherwise healthy-looking lymph nodes (blue histograms), (3) macroscopic metastases in the 
LNLs II & III, with the rest of the neck still being clinically node negative (orange histograms), and finally (4) 
extensive clinical involvement in the levels II, III, and IV (red histograms).

Figure 10.  Distributions over predicted risk for involvement in LNL I, given different clinical diagnosis 
scenarios: For N0 patients (green), patients with macroscopic involvement in LNL II (blue), and for the case 
where the LNLs II, III, and IV show involvement. The top panel shows these risks for early T-category and the 
bottom row for advanced T-category.
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• Irradiate level II for all patients.
• Irradiate level III for most patients. Only for clinically N0, early T-category patients, not irradiating level III 

could be considered.
• Exclude level IV from the CTV-N for patients with clinically negative level III. For advanced T-category 

patients with involvement of level III, level IV should be irradiated.
• Exclude level V from the CTV-N for most patients. Only for patients with extensive involvement of levels II, 

III, and IV, irradiation of level V can be considered.
• Exclude level I from the CTV-N for early T-category patients with limited metastatic disease. For advanced 

T-category patients with extensive nodal involvement of levels II, III, and IV, level I should be irradiated (see 
also the limitations discussed in the "Limitations and future work" sect.).

• Exclude level VII in all patients, unless it is clinically involved.

Limitations and future work
T-category dependence of level I involvement: As shown in fig. 4, the model describes the involvement of LNLs II, 
III, and IV depending on T-category very well despite having only a single parameter related to T-category. fig. 7 
shows that the model does not perfectly describe the T-category dependence of level I. It adjusts the parameters 
such that level I involvement is correctly described for the set of all patients combined, but it overestimates 
level I involvement for early T-category and underestimates it for advanced T-category. A possible explanation 
is that advanced T-category tumors are more likely to have grown into regions with direct lymph drainage to 
level I. The more severe involvement in levels II, III, IV for advanced T-category can be explained by tumors 
having more time to spread while keeping the spread probability rates b2 , b3 , b4 constant. Regarding level I, early 
versus advanced T-category tumors the model may need different spread probability rates b1 to describe their 
involvement correctly.

Contralateral Spread: The work presented in this paper considers only ipsilateral lymphatic spread. To guide 
the elective CTV-N definition for the contralateral neck, the model must be extended to the contralateral side. 
Contralateral lymph node involvement is strongly dependent on whether the primary tumor extends over the 
midsaggital plane, but also on T-category and the extent of ipsilateral  involvement24. A comprehensive model 
accounting for these risk factors on contralateral spread is the subject of a follow-up publication.

Sensitivity and Specificity: Estimating the risk of occult metastases depends on the assumed parameter values 
for sensitivity and specificity of clinical detection of lymph node metastases. For this work, we adopted literature 
values for sensitivity and specificity. However, different authors have estimated these values using different criteria 
and different methods. Consequently, these values need to be considered with caution. fig. 12 illustrates for one 
example how the risk of occult disease depends on sensitivity and specificity. Here, we consider the risk in level 
IV in patients with clinically detected metastases in levels II and III. For our default parameters of 81% specificity 
and 76 % sensitivity, the risk is 5%, but it increases to around 8% for a a sensitivity of 66%.

Also, as described in the "Multicentric dataset" sect., we assumed the consensus of the data to represent the 
true state of nodal involvement. This was not strictly necessary: Instead of computing a consensus beforehand 
and providing that with sensitivity and specificity of 1 to the model, as if it were the ground truth, we could have 
provided multiple diagnostic modalities per patient to the model directly. In fact, for patients with a pathology 
report available, this would even yield the same results. But we also decided to consider the consensus as an 

Figure 11.  Shown are the histograms over the predicted risk for involvement in any of the LNLs I, IV, V, or VII. 
The risk is plotted given a clinical N0 diagnosis (green), macroscopically detected metastases in LNL II (blue), 
and lastly given visible involvement in both LNL II and III (orange). The top row shows these risks for early 
T-category diagnoses and the bottom row for advanced T-category.
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observation of the true hidden state for patients without pathologically assessed involvement. We did this because 
the literature values for sensitivity and specificity of around 80% do not plausibly match the observation that 
around 78% of patients in the USZ cohort showed clinical LNL II involvement. The most likely true prevalence 
of involvement in LNL II would need to be close to 100%.

Discussing the possible origins for this discrepancy is beyond the scope of this work. Assuming the consensus 
to represent the true hidden state of a patient nonetheless allowed us to investigate if the model can describe 
plausible patterns of nodal involvement well. Future work may aim at developing new methods to model the 
difference between pathological and clinical lymph node involvement based on surgically treated patients in 
whom both is reported.

Data availability
The patient data detailing lymphatic involvement is publicly available in the form of CSV tables in the GitHub 
repository rmnld wg/ lydata. In another GitHub repository, rmnld wg/ lynfe rence, we define the experiments based 
on different graph structures. These experiments are reproducible via the tool DVC and their locally computed 
results are uploaded to an Azure blob storage container. Lastly, the LaTeX source code, all Python scripts to 
generate the figures and tables in this work, and the pipeline definition to build the document (using 

26) are made public in the GitHub repository rmnld wg/ graph- exten sion- paper. To rebuild 

it, the  tool first pulls the patient data from the rmnld wg/ lydata repository and the trained 

models in the form of MCMC samples from the Azure blob storage container, then runs the Python scripts, and 
finally compiles the LaTeX article. Detailed instructions on how to reproduce the entire pipeline, including the 
individual experiments, may be found in the respective repository’s README.md file. We also gladly provide 
support for any effort to reproduce our results.
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Figure 12.  Dependence of risk of occult disease on sensitivity and specificity. The figure shows the risk of 
involvement in level IV, given the mean of the parameter samples, drawn during sampling, in patients with 
clinical involvement of levels II and III. This illustrates the dependence of the risk prediction on the provided 
sensitivity and specificity of the diagnostic modality.

https://github.com/rmnldwg/lydata
https://github.com/rmnldwg/lynference
https://dvc.org
https://github.com/rmnldwg/graph-extension-paper
https://github.com/rmnldwg/lydata


18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15750  | https://doi.org/10.1038/s41598-024-66012-1

www.nature.com/scientificreports/

 5. Biau, J. et al. Selection of lymph node target volumes for definitive head and neck radiation therapy: A 2019 update. Radiotherapy 
and Oncology 134, 1–9 (2021).

 6. Chao, K., Wippold, F. J., Ozyigit, G., Tran, B. N. & Dempsey, J. F. Determination and delineation of nodal target volumes for 
head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. International Journal 
of Radiation Oncology Biology Physics 53, 1174–1184 (2002).

 7. Vorwerk, H. & Hess, C. F. Guidelines for Delineation of Lymphatic Clinical Target Volumes for High Conformal Radiotherapy: 
Head and Neck Region. Radiat. Oncol. 6, 97 (2011) (ISSN: 1748-717X).

 8. Ferlito, A., Silver, C. E. & Rinaldo, A. Elective management of the neck in oral cavity squamous carcinoma: Current concepts 
supported by prospective studies. British Journal of Oral and Maxillofacial Surgery 47, 5–9 (2021).

 9. Pouymayou, B., Balermpas, P., Riesterer, O., Guckenberger, M. & Unkelbach, J. A Bayesian network model of lymphatic tumor pro-
gression for personalized Elective CTV definition in head and neck cancers. Phys. Med. Biol. 64, 165003 (2019) (ISSN: 1361-6560).

 10. Ludwig, R., Pouymayou, B., Balermpas, P. & Unkelbach, J. A hidden Markov model for lymphatic tumor progression in the head 
and neck. Sci. Rep. 11, 12261 (2021).

 11. Sanguineti, G. et al. Defining the Risk of Involvement for Each Neck Nodal Level in Patients with Early T-stage Node-Positive 
Oropharyngeal Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 74, 1356–1364 (2009).

 12. Ludwig, R. et al. A dataset on patient-individual lymph node involvement in oropharyngeal squamous cell carcinoma. Data Brief 
43, 108345 (2022) (ISSN: 2352-3409.).

 13. Ludwig, R. et al. A Multi-Centric Dataset on Patient-Individual Pathological Lymph Node Involvement in Head and Neck Squa-
mous Cell Carcinoma SSRN Scholarly Paper. Rochester, NY, Dec. 2023. (2023).

 14. Ludwig, R. Modelling Lymphatic Metastatic Progression in Head and Neck Cancer PhD thesis (University of Zurich, Zurich, 2023).
 15. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. Emcee: The MCMC Hammer. PASP 125, 306 (Mar. 2013).
 16. ter Braak, C. J. F. & Vrugt, J. A. Differential evolution Markov chain with snooker updater and fewer chains. Stat. Comput. 18, 

435–446 (2022).
 17. Nelson, B., Ford, E. B. & Payne, M. J. Run DMC: an efficient, parallel code for analyzing radial velocity observations using n -body 

integrations and differential evolution markov chain Monte Carlo. The Astrophysical Journal Supplement Series 210, 11 (2022).
 18. Lengelé, B., Hamoir, M., Scalliet, P. & Grégoire, V. Anatomical Bases for the Radiological Delineation of Lymph Node Areas Major 

Collecting Trunks, Head and Neck. Radiother. Oncol. 85, 146–155 (2022).
 19. Jeffreys, H. The Theory of Probability (OUP Oxford, 1998).
 20. Aponte, E. A. et al. An introduction to thermodynamic integration and application to dynamic causal models. Cognitive Neuro-

dynamics 16, 1–15 (2022).
 21. De Bondt, R. et al. Detection of Lymph Node Metastases in Head and Neck Cancer: A Meta-Analysis Comparing US, USgFNAC, 

CT and MR Imaging. Eur. J. Radiol. 64, 266–272 (2007).
 22. Kyzas, P. A. et al. 18F-fluorodeoxyglucose Positron Emission Tomography to Evaluate Cervical Node Metastases in Patients with 

Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. J. Natl Cancer Inst. 100, 712–720 (2008).
 23. Bhat, H. & Kumar, N. On the Derivation of the Bayesian Information Criterion (Jan. 2010).
 24. Ludwig, R. et al. Detailed patient-individual reporting of lymph node involvement in oropharyngeal squamous cell carcinoma 

with an online interface. Radiother. Oncol. 169, 1–7 (2022) (ISSN: 0167-8140.).
 25. Bauwens, L. et al. Prevalence and distribution of cervical lymph node metastases in HPV-positive and HPV-negative oropharyngeal 

squamous cell carcinoma. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology 
157, 122–129 (2021) (ISSN: 1879-0887).

 26. Luger, R. et al. Mapping Stellar Surfaces III: An Efficient, Scalable, and Open-Source Doppler Imaging Model Oct. 2021. arXiv: 
2110. 06271 [astro-ph]. (2022).

Acknowledgements
This work was supported by the Swiss Cancer Research Foundation under grant KFS 5645- 08- 2022 and by the 
University Zürich under the Clinical Research Priority Program Artifi cial  Intel ligen ce in Oncol ogica l Imagi ng.

Author contributions
RL and JU wrote the main manuscript. RL created all results, figures, and tables. AS, SW, OE, MD, and RG col-
lected the ISB patient data. DB, LB, PZ, and VG collected the CLB datasets. JMH, BP, PB, RL, and JU collected 
the table of USZ patients. All authors reviewed the manuscript.

Competing Interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to R.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://arxiv.org/abs/2110.06271
http://arxiv.org/abs/2110.06271
https://www.krebsforschung.ch/unterstuetzen-sie-uns/stiftungen/-dl-/fileadmin/downloads/unterstuetzen-sie-uns/projekte-der-stiftung-krebsforschung-schweiz-2023.pdf
https://www.crpp-ai-oncology.uzh.ch/en/Projects/Project-5.html
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Modelling the lymphatic metastatic progression pathways of OPSCC from multi-institutional datasets
	HMM formalism and notation
	State of the hidden Markov model
	Diagnostic observation
	The likelihood function
	Parameter inference
	Risk estimation

	Complete model of ipsilateral spread in OPSCC
	Investigating spread graphs
	Model comparison

	Multicentric dataset
	Results
	Involvement of levels II, III, and IV
	Comparison of candidate graphs
	The winning graph
	Involvement of levels I and V
	Risk prediction for occult disease

	Discussion
	Summary
	Implications for elective nodal treatment
	Limitations and future work

	References
	Acknowledgements


