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Marginal odds ratios
What they are, how to compute them,
and why we might want to use them
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Background

Odds ratios form the backbone of much quantitative research in
social sciences, epidemiology, and other disciplines.

But: Falling out of favor!

▶ Magnitude of odds ratios depends on unmeasured covariates
orthogonal to the predictor of interest.

▶ Noncollapsibility (rescaling bias).

▶ Invalid cross-model and subgroup coefficient comparisons.

▶ See, e.g., Allison (1999), Mood (2010), Pang et al. (2016), Breen et
al. (2018), Norton, Edward and Dowd (2018), Schuster et al. (2021),
Bloome and Ang (2022).
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Background

Solutions?

KHB for cross-model comparisons (Karlson et al. 2012)

Compare sign not magnitude

Average marginal effects based on nonlinear probability model
(AME)

Linear probability models (LPM)
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Background

At least in social sciences, AMEs are now the standard. Some even
suggest simply applying LPM, as the difference to AMEs is typically
small.
▶ For illustration: Papers published in the American Sociological Review

2010–2015 2016–2021
“odds ratio” 32 9
“marginal effect” 2 11
“linear probability model” 3 16

But this might be throwing out the baby with the bathwater,
because . . .

. . . magnitudes of AMEs likely depend on the margin,

. . . AMEs focus on absolute probability differences, not relative
differences, which are key to much theory and applied research.
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Background

What we suggest (Karlson and Jann 2023):

Use (covariate-adjusted) marginal (log) odds ratios, which . . .

. . . behave like AMEs but retain the (relative) odds ratio
interpretation!

✔ unaffected by noncollapsibility

✔ an average effect (population-averaged)

✔ comparable across populations/studies
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Marginal odds ratio

Following Zhang (2008) and Daniel et al. (2021) we use potential
outcomes notation to define the marginal odds ratio.

Yt : Potential outcome that would realize if treatment T was set to
level t by manipulation (i.e., without changing anything else).

We focus on binary outcomes only, that is, Yt ∈ {0, 1} (failure or
success).

Thus:

Pr(Yt = 1) = E [Yt ] is the (marginal) probability that Yt will be
equal to 1 (probability of success).
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Marginal odds ratio

Consider a binary treatment T ∈ {0, 1}.

The marginal odds ratio (MOR) of the alternative treatment
(T = 1) versus the standard treatment (T = 0) is defined as

MOR =
odds(Pr[Y1 = 1])
odds(Pr[Y0 = 1])

where odds(p) stands for p/(1− p).

Interpretation of MOR: The ratio of the odds of success if everyone
would receive the alternative treatment versus the odds of success if
everyone would receive the standard treatment (assuming that there
are no general equilibrium effects, i.e., SUTVA holds).

“Marginal” refers to how a predictor affects the “marginal distribution” of an outcome (i.e., not to a marginal change
in a predictor). “Unconditional” would be another term but we use “marginal” because the term is established in the
literature (Stampf et al. 2010; Karlson, Popham, and Holm 2021).

Ben Jann (ben.jann@unibe.ch) Marginal odds ratios London, 18.01.2024 9



Adjusting for covariates

The probability of success may not only depend on T , but also on
other factors X.

Assume that X has a specific distribution in the population and let
Pr(Yt = 1|X = x) = E [Yt |X = x] be the conditional success
probability given X = x.

By the law of iterated expectations,

Pr(Yt = 1) = EX[Pr(Yt = 1|X = x)]

where EX is the expectation over the distribution of X.
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Adjusting for covariates

The marginal odds ratio, adjusting for X, can then be written as

MOR =
odds(Pr[Y1 = 1])
odds(Pr[Y0 = 1])

=
odds{EX[Pr(Y1 = 1|X = x)]}
odds{EX[Pr(Y0 = 1|X = x)]}

We term this the adjusted MOR.

Note:
▶ The adjusted MOR is the same as the unadjusted MOR by definition

(i.e., same estimand)!

▶ However, estimation based on the adjusted MOR formulation can be
used to address confounding bias in observational data. It can also be
used to increase efficiency in analyses of randomized experiments.

▶ Close relationship to AME, which is defined as

AME = EX[Pr(Y1 = 1|X = x)]− EX[Pr(Y0 = 1|X = x)]
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Continuous treatments

In case of a continuous treatment, the MOR may depend on the
level of the treatment (i.e., the MOR may not be constant).

We define the level-specific marginal log odds ratio as the derivative
of the marginal log odds by the treatment:

lnMOR(t) = lim
ϵ→0

ln odds[Pr(Yt+ϵ = 1)]− ln odds[Pr(Yt = 1)]
ϵ

= lim
ϵ→0

ln odds{EX[Pr(Yt+ϵ = 1|X = x)]}
− ln odds{EX[Pr(Yt = 1|X = x)]}

ϵ

We can then obtain the average MOR by integrating over the
distribution of T :

MOR = exp{ET [lnMOR(t)]}
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Continuous treatments

Another possibility is to integrate over T when obtaining the
population-averaged probabilities, that is,

lnMOR′ = lim
ϵ→0

ln odds{ET [Pr(Yt+ϵ = 1)]}
− ln odds{ET [Pr(Yt = 1)]}

ϵ

= lim
ϵ→0

ln odds{ET ,X[Pr(Yt+ϵ|X = x)]}
− ln odds{ET ,X[Pr(Yt |X = x)]}

ϵ

This corresponds to the marginal odds ratio that is obtained if
treatment is slightly increased for each population member, given
the member’s existing values for T and X.
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Relationship to the logistic model

Consider a simple logistic model

Pr(Yt = 1) = logistic(α+ δt) where logistic(z) =
exp(z)

1 + exp(z)

which implies
ln odds(Pr[Yt = 1]) = α+ δt

Assume T is binary. We then recover the MOR as

MOR = exp{ln odds(Pr[Yt = 1])− ln odds(Pr[Y0 = 1])}
= exp{(α+ δ)− (α)} = exp(δ)

Meaning: the (exponent of the) slope coefficient in a simple logistic
regression estimates the MOR
(The same also holds in case of a continuous treatment, which is easy to show.)
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Relationship to the logistic model
If we condition on X, then

Pr(Yt = 1|X = x) = logistic(α+ δt + xβ)

Here exp(δ) is the conditional odds ratio (i.e., the odds ratio within
a subgroup defined by a specific value of X). For a binary treatment:

COR =
odds{logistic(α+ δ + xβ)}

odds{logistic(α+ xβ)} = exp(δ)

This conditional odds ratio (COR) is different from the
(covariate-adjusted) MOR, which has a more involved form. For
example, in case of a binary treatment:

MOR =
odds{EX[logistic(α+ δ + xβ)]}

odds{EX[logistic(α+ xβ)]}

This will be different from COR when β ̸= 0.
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Marginal vs. conditional odds ratios

The difference between the COR and the (covariate-adjusted) MOR
is referred to as noncollapsibility or rescaling bias.

“Noncollapsibility of the OR derives from the fact that when the
expected probability of outcome is modeled as a nonlinear function
of the exposure, the marginal effect cannot be expressed as a
weighted average of the conditional effects” (Pang et al. 2016).

The (covariate-adjusted) MOR will be attenuated compared to the
COR, what is commonly referred to as rescaling effect.
▶ For example, if there is just a single covariate, the relationship

between MOR and COR can be approximated by

lnMOR =
lnCOR√

1 + 0.35β2var(X )
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Key message

MOR and COR correspond to different estimands!
They are conceptually different.

Both are valid estimands. Why should we prefer one over the other?
1. While there exists only one MOR, there are many CORs, as the latter

depend on the conditioning set X. That is, the interpretation of the
COR depends on the covariates included in the regression equation.

2. The MOR has an interpretation similar to an AME on the probability
scale: it quantifies the “population response” to a treatment.

3. Because the MOR is unaffected by noncollapsibility, it can be used to
compare results from same-sample models including different
covariates (e.g. effect decompositions in mediation analysis).

4. The MOR is straightforward to compare across different studies or
populations as it does not depend in arbitrary ways on the
conditioning set.
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Two illustrations

1. Academic ability and intergenerational college mobility
▶ This example illustrates the difference between the conditional OR

and the (covariate-adjusted) marginal OR.

2. College gap in attitudes toward racial segregation
▶ This example illustrates the difference between average marginal

effects (AMEs) and marginal odds ratios.
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Academic ability and intergenerational college mobility

Comparison of “secondary effects” of family background on
educational attainment between the United States (National
Longitudinal Survey of Youth, 1979 cohort) and Denmark (Danish
Longitudinal Survey of Youth).

How much does educational attainment (here: going to college)
depend one whether parents have college education, once we control
for academic ability (the “primary effect”)?
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Academic ability and intergenerational college mobility

Odds ratios of parental college attainment gap in college attainment unadjusted and 
adjusted for academic ability. The United States and Denmark. Standard errors in 
parentheses. 

 USA 
(N = 10,068) 

DNK 
(N = 2,185) USA/DNK  

Unadjusted odds ratio 7.7 
(0.46) 

3.8 
(0.55) 2.03* 

Conditional odds ratio adjusted for 
academic ability 

3.4 
(0.23) 

2.9 
(0.45) 1.17 

Marginal odds ratio adjusted for 
academic ability 

2.5 
(0.13) 

2.5 
(0.33) 1.00 

Notes: US data are from the NLSY79; the Danish data are from the Danish Longitudinal Survey 
of Youth. * indicates that the country difference in log odds ratios is statistically significant at a 
five percent level. 
 (Karlson and Jann 2023)
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Academic ability and intergenerational college mobility

The unadjusted or gross marginal odds ratio is about twice as large
in the US as in Denmark, meaning that Denmark is significantly
more educationally mobile.

However, the “secondary effects” of family background are of similar
magnitude in the two countries (adjusted marginal odds ratio). This
means that academic ability “mediates” a significantly larger portion
of the overall effect in the US than in Denmark.

Had we been using the conditional odds ratio, we would have
concluded that, net of academic ability, Denmark is a (albeit only
slightly) more educationally mobile country than the US.

This is because the attenuating impact of noncollapsibility is more
pronounced in the US than in Denmark (since academic ability is a
much stronger predictor of college attainment in the US).
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College gap in attitudes toward racial segregation

Analysis of how the gap in attitudes toward racial segregation
between respondents with and without a four-year college degree
changed over time.

General Social Survey cumulative file, 1976–1996

Outcome: Agreement with claim that white people have a right to
keep black people out of their neighborhoods.

Predictor of interest: college attainment

Controls: survey year, age, gender, race, marital status,
liberal–conservative scale

Joint model across time points with survey year fully interacted with
college attainment and all other covariates; we obtain AMEs and
MORs from the model at different years.
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College gap in attitudes toward racial segregation
Average marginal effects and marginal odds ratios of the college gap in 
the attitude toward racial segregation in 1976, 1981, 1986, 1991, and 
1996. Standard errors in parentheses. 

 AME ln(MOR) 

1976 -0.213 -1.006 

1981 -0.181 -0.983 

1986 -0.147 -0.959 

1991 -0.115 -0.934 

1996 -0.088 -0.909 

1976–1996 difference 0.125 
(0.028) 

0.097 
(0.211) 

1976–1996 proportional reduction 58.5% 9.7% 
Note: MOR is marginal odds ratio; AME is average marginal effect. Estimates 
are adjusted for gender, race, age, marital status, and overall political view. Data 
are from General Social Surveys Cumulative File, N = 12,239. 
 (Karlson and Jann 2023)
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College gap in attitudes toward racial segregation

Main finding is that the absolute college gap (as measured by the
AME) in the attitude toward racial segregation has declined
significantly over the 20-year period, whereas the relative gap (as
measured by the MOR) remained practically unchanged.

The absolute gap reduced over time because there is a general
decline in support of racial segregation, and this decline is steeper
among the non-college educated in absolute terms because they
start at a higher level than the college educated. However, the
relative difference does not change much (see figure).

The example illustrates how the MOR can be an informative
complement to the AME.
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College gap in attitudes toward racial segregation

(Karlson and Jann 2023)
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Estimation

Estimand ⇒ Estimation

There are several approaches how we can estimate the adjusted
MOR.
▶ G-computation (using predictions from a model)
▶ Inverse probability weighting
▶ Unconditional logistic regression (RIF regression)

All are discussed in detail in Jann and Karlson (2023) (for
binary/categorical as well as continuous treatments; including
formulas for analytic standard errors based on influence functions).

Our preferred method is G-computation as it closely resembles the
formulation of the adjusted MOR above. That is, G-computation
obtains the MOR that is implied by the chosen logit model. The
other methods follow a somewhat different logic.
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G-computation
G-computation estimates the MOR using counterfactual predictions
from a logit model (or any other model in principle).

For example, for a binary treatment, the procedure is as follows.
1. Regress Y on T and X using logistic regression (or, in principle, any

other model).
2. Use the model estimates to generate two predictions for each

observation, one with T set to 0 and one with T set to 1, that is,
p̂0

i = P̂r(Y = 1|T = 0,X = xi ) and p̂1
i = P̂r(Y = 1|T = 1,X = xi ).

3. Average the predictions across the sample to obtain estimates of
population-averaged success probability by treatment level, that is,
p0 = 1

W

∑n
i=1 wi p̂0

i and p1 = 1
W

∑n
i=1 wi p̂1

i where wi are sampling
weights and W is the sum of weights.

4. Finally, plug these averaged predictions into the formula for the MOR:

ln M̂OR = ln odds(p1)− ln odds(p0)

Note that, in case of a binary treatment, margins followed by nlcom
can be used to do the above computations.
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G-computation

For continuous treatments we evaluate level-specific MORs (using
analytic derivatives) at each level of the treatment (possibly using an
approximation grid) and then average over the treatment
distribution (not directly possible with margins).

An alternative approach is based on applying fractional logit to
averaged counterfactual predictions at each value of T . For
binary/categorical treatments this leads to the same results as the
procedure above. For continuous treatments results slightly differ
(due to the different implicit averaging). Nonetheless we prefer this
approach due to its generality and flexibility.
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Software

We provide three Stata packages for the estimation of marginal odds
ratios, each implementing one of the three approaches (Jann and
Karlson 2023). All packages provide consistent standard errors and
support complex survey estimation.
▶ lnmor: G-computation

(https://github.com/benjann/lnmor)

▶ ipwlogit: Inverse probability weighting
(https://github.com/benjann/ipwlogit)

▶ riflogit: Unconditional logistic regression
(https://github.com/benjann/riflogit)

Installation:
▶ Type

ssc install name, replace

where name is the package name.
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Example application: Gender gap in STEM
Data:
▶ cohort of school leavers in Switzerland in 2016 (9th grade, age 15)
▶ dependent variable (two years later): in educational track leading to a

STEM (Science, Technology, Engineering, and Math) profession
▶ Swiss panel study on “Transitions from Education to Employment”

(www.tree.unibe.ch, Hupka-Brunner et al. 2021, TREE 2021)

. use stem, clear
(Excerpt from TREE cohort 2)
. describe
Contains data from stem.dta
Observations: 6,809 Excerpt from TREE cohort 2

Variables: 7 22 Oct 2023 21:07

Variable Storage Display Value
name type format label Variable label

stem byte %8.0g Is in STEM training in 2018
male byte %8.0g Is male
mathscore double %10.0g Math score in 2016
repeat byte %8.0g Ever repeated a grade
books byte %19.0g books Number of books at home
wt double %10.0g Sampling weight
psu int %8.0g Sampling unit

Sorted by:
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Example application: Gender gap in STEM

Probability difference
. mean stem [pw=wt], over(male) cluster(psu)
Mean estimation Number of obs = 6,809

(Std. err. adjusted for 800 clusters in psu)

Robust
Mean std. err. [95% conf. interval]

c.stem@male
0 .163234 .0093646 .1448519 .1816161
1 .2748687 .0145161 .2463745 .3033629

. regress stem i.male [pw=wt], cluster(psu) noheader
(sum of wgt is 78,600.1929332293)

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Coefficient std. err. t P>|t| [95% conf. interval]

1.male .1116347 .0142969 7.81 0.000 .0835708 .1396987
_cons .163234 .0093653 17.43 0.000 .1448506 .1816174
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Example application: Gender gap in STEM

Unadjusted (marginal) odds ratio
. logit stem i.male [pw=wt], or cluster(psu) nolog
Logistic regression Number of obs = 6,809

Wald chi2(1) = 67.37
Prob > chi2 = 0.0000

Log pseudolikelihood = -40949.278 Pseudo R2 = 0.0172
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.943131 .1572663 8.21 0.000 1.658099 2.27716
_cons .1950773 .0133746 -23.84 0.000 .1705485 .2231338

Note: _cons estimates baseline odds.
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Example application: Gender gap in STEM

How does the gender gap change once covariates such as math skills
are taken into account?

Conventional approach: conditional odds ratio
. logit stem i.male mathscore i.repeat books [pw=wt], or cluster(psu) nolog
Logistic regression Number of obs = 6,809

Wald chi2(4) = 596.03
Prob > chi2 = 0.0000

Log pseudolikelihood = -31905.554 Pseudo R2 = 0.2343
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds ratio std. err. z P>|z| [95% conf. interval]

1.male 1.959295 .1675426 7.87 0.000 1.65696 2.316794
mathscore 2.606164 .1252437 19.93 0.000 2.371897 2.86357
1.repeat .6563627 .0965248 -2.86 0.004 .4920011 .8756321

books 1.087051 .0341241 2.66 0.008 1.022185 1.156034
_cons .1058314 .0166897 -14.24 0.000 .0776926 .1441616

Note: _cons estimates baseline odds.
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Example application: Gender gap in STEM

Computation of covariate-adjusted marginal odds ratio using lnmor
▶ lnmor is a post-estimation command, i.e. first estimate the model,

then apply lnmor

. lnmor i.male, or
Enumerating predictions: male..done
Marginal odds ratio Number of obs = 6,809

Command = logit
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.677032 .1103015 7.86 0.000 1.473911 1.908145
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Example application: Gender gap in STEM

Compare results (SEs in parentheses)

ln(OR) Unadjusted COR MOR

1.male 0.664 0.673 0.517
(0.0809) (0.0855) (0.0658)

OR Unadjusted COR MOR

1.male 1.943 1.959 1.677
(0.157) (0.168) (0.110)
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Example application: Gender gap in STEM

lnmor allows you to store the influence functions of the estimates.

Influence functions (IFs) are awesome!

For example, here is how you could construct a test for confounding
using the IFs.
. quietly logit stem i.male [pw=wt], cluster(psu)
. quietly lnmor i.male, nodots rif(RIF*)
. quietly logit stem i.male mathscore i.repeat books [pw=wt], cluster(psu)
. quietly lnmor i.male, nodots rif(RIFadj*)
. quietly total RIF2 RIFadj2 [pw=wt], cluster(psu)
. lincom RIFadj2 - RIF2
( 1) - RIF2 + RIFadj2 = 0

Total Coefficient Std. err. t P>|t| [95% conf. interval]

(1) -.1472752 .0420574 -3.50 0.000 -.2298313 -.0647192

. drop RIF*
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Some further functionality

Obtain results for several predictors in one call
. logit stem i.male mathscore i.repeat books [pw=wt], cluster(psu)

(output omitted )
. lnmor i.male mathscore i.repeat books, or
(mathscore has 491 levels; using 82 binned levels)
Enumerating predictions: male..mathscore......................................
............................................repeat..books.......done
Marginal odds ratio Number of obs = 6,809

Command = logit
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1.male 1.677032 .1103015 7.86 0.000 1.473911 1.908145
mathscore 2.544257 .1227974 19.35 0.000 2.314279 2.797088
1.repeat .7244256 .0839026 -2.78 0.006 .5771099 .9093457

books 1.065542 .025807 2.62 0.009 1.01607 1.117423
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Some further functionality

Using at() to evaluate interactions
. logit stem i.male##c.mathscore##c.mathscore##i.repeat##c.books [pw=wt], ///
> cluster(psu)

(output omitted )
. lnmor i.male, nodots or at(repeat)
Marginal odds ratio Number of obs = 6,809

Command = logit
Evaluated at:

1: repeat = 0
2: repeat = 1

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1
1.male 1.700763 .1254126 7.20 0.000 1.471573 1.965648

2
1.male 1.514474 .3348553 1.88 0.061 .9812346 2.337496
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Some further functionality

Using at() to evaluate interactions
. lnmor i.male, nodots or at(mathscore = -2(2)2)
Marginal odds ratio Number of obs = 6,809

Command = logit
Evaluated at:

1: mathscore = -2
2: mathscore = 0
3: mathscore = 2

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

1
1.male 1.697829 .6740845 1.33 0.183 .7788088 3.701323

2
1.male 1.890954 .2009018 6.00 0.000 1.535003 2.329448

3
1.male 1.991302 .3565062 3.85 0.000 1.401245 2.829831
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Some further functionality

Nonlinear effects: polynomials
. logit stem i.male c.mathscore##c.mathscore i.repeat c.books [pw=wt], ///
> cluster(psu)

(output omitted )
. lnmor c.mathscore##c.mathscore
(mathscore has 491 levels; using 82 binned levels)
Enumerating predictions: mathscore............................................
......................................done
Marginal log odds ratio Number of obs = 6,809

Command = logit
(Std. err. adjusted for 800 clusters in psu)

Robust
stem Coefficient std. err. t P>|t| [95% conf. interval]

mathscore 1.022883 .0698188 14.65 0.000 .8858334 1.159933

c.mathscore#
c.mathscore -.0757118 .0276166 -2.74 0.006 -.1299215 -.0215022
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Some further functionality

Nonlinear effects: level-specific MORs using option dx()
. lnmor mathscore, or dx(-3(1)3)
Enumerating predictions: mathscore.......done
Marginal odds ratio Number of obs = 6,809

Command = logit
Type of dx() = levels

(Std. err. adjusted for 800 clusters in psu)

Robust
stem Odds Ratio std. err. t P>|t| [95% conf. interval]

mathscore@l1 4.423561 1.002176 6.56 0.000 2.835543 6.900933
mathscore@l2 3.805173 .6532834 7.78 0.000 2.716539 5.33007
mathscore@l3 3.259279 .3848859 10.01 0.000 2.584945 4.109527
mathscore@l4 2.779502 .1942306 14.63 0.000 2.423232 3.18815
mathscore@l5 2.378501 .1148555 17.94 0.000 2.163402 2.614986
mathscore@l6 2.056937 .1577385 9.40 0.000 1.769484 2.391087
mathscore@l7 1.789337 .2248394 4.63 0.000 1.398208 2.289877

Terms affected by dx(): mathscore
Levels of dx(): -3 -2 -1 0 1 2 3
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Discussion

We provide a clear definition of the marginal OR (clarification of
estimand).

We illustrate the advantages of the marginal odds ratio over the
conditional odds ratio; we illustrate the value of the marginal odds
ratio as a complement to AMEs.

We provide flexible software that can estimate the marginal OR for
categorical as well as continuous predictors (including support for
complex surveys).

But . . .

. . . is it worth the hassle? How much do applied researchers love
odds ratios?

. . . will it change practice?
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Appendix: Some simulation results

Setup
▶ Binary outcome Y depends on treatment T and control variable X

through a logistic model.
▶ The effects of T and X on Y (the conditional log odds ratios) are set

to 1 in all simulations (intercept is 0).
▶ X has a standard normal distribution.
▶ T is either binary or continuous.
▶ Two scenarios:

1. unconfounded: T is independent from X (X has an even distribution if
binary and a standard normal distribution if continuous)

2. confounded: T depends on X (binary: logistic model with slope 0.5;
continuous: linear model with slope 0.5 and standard normal errors)

▶ 10’000 replications.
▶ Using violinplot (Jann 2022) to display results.
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Appendix: Some simulation results
Distribution of effect estimates for binary treatment

logit: conditional

logit: unadjusted

lnmor

ipwlogit: default

ipwlogit: truncated

riflogit

.2 .4 .6 .8 1 1.2 1.4 1.6 1.8 .2 .4 .6 .8 1 1.2 1.4 1.6 1.8

without confounding with confounding

ln(OR)
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Appendix: Some simulation results
Distribution of standard errors for binary treatment

logit: conditional

logit: unadjusted

lnmor

ipwlogit: default

ipwlogit: truncated

riflogit

.11 .12 .13 .14 .15 .16 .17 .11 .12 .13 .14 .15 .16 .17

without confounding with confounding

Standard error
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Appendix: Some simulation results
Distribution of effect estimates for continuous treatment

logit: conditional

logit: unadjusted

lnmor: default

lnmor: averaged

lnmor: observed

ipwlogit: default

ipwlogit: truncated

riflogit

.4 .6 .8 1 1.2 1.4 1.6 .4 .6 .8 1 1.2 1.4 1.6

without confounding with confounding

ln(OR)
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Appendix: Some simulation results
Distribution of standard errors for continuous treatment

logit: conditional

logit: unadjusted

lnmor: default

lnmor: averaged

lnmor: observed

ipwlogit: default

ipwlogit: truncated

riflogit

.04 .06 .08 .1 .12 .04 .06 .08 .1 .12

without confounding with confounding

Standard error
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Appendix: Some simulation results

Binary treatment:
▶ All estimators appear to work well.
▶ However, note that the treatment has an even distribution in these

simulations; may need to do more simulations with uneven
distributions.

Continuous treatment:
▶ IPW does not fully remove confounding. Furthermore, stability of

IPW becomes problematic. Truncation helps somewhat but also
increases bias.

▶ MOR′ (“observed”) is a different estimand than MOR (“averaged”).
RIF logit appears to approximate MOR′, not MOR.
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