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ABSTRACT: Background: Speech dysfunction repre-
sents one of the initial motor manifestations to develop in
Parkinson’s disease (PD) and is measurable through
smartphone.

Objective: The aim was to develop a fully automated
and noise-resistant smartphone-based system that can
unobtrusively screen for prodromal parkinsonian speech
disorder in subjects with isolated rapid eye movement
sleep behavior disorder (iRBD) in a real-world scenario.
Methods: This cross-sectional study assessed regular,
everyday voice call data from individuals with iRBD com-
pared to early PD patients and healthy controls via a
developed smartphone application. The participants also
performed an active, regular reading of a short passage
on their smartphone. Smartphone data were continu-
ously collected for up to 3 months after the standard in-
person assessments at the clinic.

Results: A total of 3525 calls that led to 5990 minutes of
preprocessed speech were extracted from 72 participants,
comprising 21 iRBD patients, 26 PD patients, and 25 controls.
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With a high area under the curve of 0.85 between iRBD
patients and controls, the combination of passive and active
smartphone data provided a comparable or even more sensi-
tive evaluation than laboratory examination using a high-
quality microphone. The most sensitive features to induce
prodromal neurodegeneration in iRBD included imprecise
vowel articulation during phone calls (P = 0.03) and mono-
pitch in reading (P = 0.05). Eighteen minutes of speech
corresponding to approximately nine calls was sufficient to
obtain the best sensitivity for the screening.

Conclusion: We consider the developed tool widely applica-
ble to deep longitudinal digital phenotyping data with future
applications in neuroprotective trials, deep brain stimulation
optimization, neuropsychiatry, speech therapy, population
screening, and beyond. © 2024 The Author(s). Movement
Disorders published by Wiley Periodicals LLC on behalf of
Interational Parkinson and Movement Disorder Society.
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Early recognition of Parkinson’s disease (PD) has cru-
cial implications for the future development of neuro-
protective therapy, as prodromal stages of the disease
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offer the best opportunity to intervene.'” Therefore,
establishing a suitable biomarker effective in prodromal
stages would be a game-changing milestone that would
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impact the diagnosis and future treatments of PD.* Iso-
lated rapid eye movement sleep behavior disorder
(iRBD) is now considered an essential prodromal symp-
tom of synucleinopathies; most patients develop an
overt neurodegenerative disease, particularly PD or
dementia with Lewy bodies, within a decade.’® Such a
long prodromal window provides a unique opportunity
to study disease development and design suitable
biomarkers.

With the advent of digital health, there is the poten-
tial to remotely and noninvasively detect and track
early signs of PD using tools such as smartphones.”?
However, many existing tests, such as finger tapping
or walking a predefined distance, require an active,
and instructed involvement,'* while an ideal digital
biomarker should be passively measured without addi-
tional effort from the subject or investigator. In this
context, speech analysis offers intriguing potential
advantages as a large part of the population communi-
cates through smartphones daily. Thus, extracting
speech patterns from smartphone calls in real-world
settings presents a unique opportunity to provide a
passive biomarker, allowing for continuous monitoring
of the effectiveness of experimental treatments in a
natural environment and facilitating large-scale
screening.

Because speech represents the most complex quantita-
tive marker of motor function that is highly sensitive to
damage to neural structures,'” it is unsurprising that
speech dysfunction has been found to be one of the first
signs to develop in PD.'® Specifically, dysprosody and
imprecise vowel articulation have been detected in iRBD
subjects with impaired olfactory function but still largely
functional nigrostriatal dopaminergic transmission,'”~'®
that is, in Braak stage 2 before the substantia nigra is
affected by synucleinopathy.'” Unfortunately, these find-
ings are based on actively performed speech recordings
obtained using a professional condenser microphone in
laboratory settings, which considerably limits the
broader applicability of speech assessment.”’ Several
challenges must be overcome, including typically the
low quality of smartphone microphones, background
noise in everyday environments, and unstable direction
and distance of the smartphone from the lips due to var-
ious holding positions, to allow passive smartphone
speech monitoring.?"**

We developed a fully automated and noise-resistant
smartphone-based system that can unobtrusively moni-
tor speech in a real-world scenario. We aimed to (1) test
the reliability of passively obtained acoustic speech fea-
tures via everyday smartphone calls to detect prodro-
mal parkinsonism in subjects with iRBD, (2) compare
the sensitivity of passive voice monitoring with active
speech tasks performed using smartphones at home and
professional microphones in laboratory settings,
and (3) estimate the necessary sample duration to reach

the optimal sensitivity for the detection of prodromal
parkinsonism through smartphone-captured speech in a
real-world setting.

Subjects and Methods

Study Design and Participants

From 2021 to 2023, we enrolled native Czech iRBD,
early PD, and healthy control subjects at the Depart-
ment of Neurology, First Faculty of Medicine, Charles
University. Patients with iRBD were diagnosed
according to the diagnostic criteria of the third edition
of the International Classification of Sleep Disorders,
including video polysomnography.”> The exclusion
criteria were as follows: (1) iRBD onset before age
50 years, (2) overt parkinsonism or dementia at base-
line, and (3) iRBD onset within 12 months of introduc-
tion of antidepressant treatment. PD patients were
diagnosed based on the Movement Disorder Society
clinical diagnostic criteria for PD.** The exclusion
criteria were as follows: (1) disease duration from diag-
nosis =5 years, (2) current involvement in any speech
therapy, and (3) not on a stable dose of medication
over the previous 4 weeks prior to the start of the
study. Exclusion criteria for healthy controls were a his-
tory of parasomnias or other sleep disorders in adult-
hood, or the diagnosis of iRBD on video
polysomnography. The exclusion criteria for all groups
included (1) a history of communication disorders
unrelated to parkinsonism (ie, problems in speech com-
prehension or expression) or other neurological disor-
ders potentially affecting speech and (2) unwillingness
to achieve at least 10 minutes of phone calls in a
month.

The clinical evaluation of each subject included the
following: (1) medical history, history of drug and
substance intake, and current drug usage; (2) quanti-
tative testing of motor and nonmotor symptoms
of PD using the Movement Disorders Society-Unified
Parkinson’s Disease Rating Scale, Part III
(MDS-UPDRS)*’;  (3) cognitive testing using the
Montreal Cognitive Assessment (MoCA)*®; (4) auto-
nomic testing using the Scales for Outcomes in
Parkinson’s Disease—Autonomic Dysfunction®’; and
(5) University of Pennsylvania Smell Identification
Test.”® Perceptual speech severity was estimated
using the speech item score from the MDS-UPDRS,
Part III. Symptom duration was estimated based on
the self-reported first occurrence of dream enactment
in iRBD and motor symptoms in PD.

Each participant provided written informed consent.
The study was approved by the Ethics Committee of the
General University Hospital in Prague, Czech Republic, in
accordance with the ethical standards established in the
1964 Declaration of Helsinki.
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Smartphone Speech Examination

All subjects received HONOR 9X Lite (Shenzen
Zhixin New Information Technology, Shenzhen,
China) phone, operating on the Android version 9 sys-
tem. The phone was chosen as a mainstream product
(ie, commercially available and a relatively inexpensive
midrange smartphone) among the smartphones avail-
able in the Czech Republic in 2021. The recordings
were sampled at 44.1 kHz with 16-bit quantization.

The smartphone was equipped with preinstalled
application,”” which ran in the background and recorded
the subject’s voice during calls, removing the content
from the distant speaker using adaptive filtering
(Fig. 1A). After each incoming or outgoing call, the user
was prompted by a screen containing an option to delete
the call or send it to confidential analysis. On agreement,
the audio recording was kept on the device for 24 hours
to allow participants to replay and eventually delete
it. After 24 hours, the pseudonymized recording was sent
to a secure server and validated by a speaker recognition
framework. Comprehensive technical details of the appli-
cation were previously described in the protocol.”” In
addition, the application contained an active part.
Subjects were prompted to read a passage twice, selected
randomly from six samples of ~80 words, displayed on
the application screen every 14 days (mean duration:
35.1, standard deviation [SD]: 5.5 seconds). All data were
collected from the smartphone during a period of up to
3 months after the in-person visit at the clinic. Acquisi-
tion and secure data transfer were carried out in accor-
dance with the directive on the legislation on personal
data protection of the European Union.

Laboratory Speech Examination

Speech recordings were performed in a quiet room
with a low ambient noise level using a high-quality
head-mounted condenser microphone (Beyerdynamic
Opus 55, Heilbronn, Germany) placed ~5 ¢cm from the
subject’s mouth. Speech signals were sampled at
48 kHz with 16-bit quantization. Fach subject was
recorded during a single session accompanied by a
speech specialist who guided the standardized protocol.
Participants were instructed to deliver a monologue
about an arbitrary topic of at least 90 seconds (mean
duration: 123.6, SD: 19.3 seconds) and perform a read-
ing passage task twice of a standardized text of
80 words (mean duration: 35.7, SD: 5.1 seconds).

Smartphone Call Preprocessing

The incoming calls contained nonspeech periods with
no relevant information due to the dialogue nature of a
conversation on the phone. Therefore, the recordings
were stripped of any nonspeech segments longer than
0.7 seconds. The threshold was set to preserve natural
pauses as a significant aspect of speech production.

r SMARTPHONE

CALL SCREENING IN iRBD
Subsequently, to normalize the calls in terms of dura-
tion, the recordings were partitioned into time frames of
equal length, each treated as an individual recording.
The frame length was chosen as 20, 30, 45, and
60 seconds to evaluate the impact of different durations.
If there was a remainder, it was considered only if longer
than 50% of the corresponding segment length (eg, if a
20-second window was selected for a 32-second call,
both 20- and 12-second segments were analyzed).

Acoustic Speech Features

We selected seven representative acoustic speech fea-
tures (Fig. 1B) following three main criteria: (1) rep-
resenting a unique aspect of speech (the features were
found to be only weakly correlated [Pearson’s
|r| < 0.48]), aligning with the perceptual description of
the primary patterns of hypokinetic dysarthria’’;
(2) enabling automated analysis of connected speech;
and (3) proven sensitivity in iRBD or early PD in previ-
ous studies.'®>! We limited the number of acoustic
parameters included in the experiment to reduce the
probability of a type I error and to reduce potential
overfitting for the regression analysis.

Monopitch was assessed by an SD of pitch contour,
imprecise vowel articulation by a formant ratio
index,?* voice quality by cepstral peak prominence,**
articulatory decay by an SD of mel-frequency cepstral
coefficients (global MFCC),?* monoloudness by an SD
of intensity contour after removal of pauses,>* pro-
longed pauses by median duration of pause intervals,®
and articulation rate through net speech rate acquired
via automatic speech recognizer followed by hyphen-
ation.*®>” All analyses were performed in MATLAB
(MathWorks, Natick, MA) and Python.

21

Speech Sample Duration Estimation

A unified, sufficient speech sample from each partici-
pant as well as the most optimal call frame duration
(eg, whether to analyze 10 or 30 minutes of cumulative
calls per participant, in 20- or 30-second frames) was
determined. A binary logistic regression followed by a
leave-one-out cross-validation using a combination of
all acoustic features was utilized to determine the classi-
fication accuracy. The speech sample was then chosen
based on group classification accuracy, at the point
when the average accuracy across call frames reached
95% of its maximum value in the cumulative analyzed
interval. The largest sample duration across the three
classifications (controls vs. iRBD, controls vs. PD, and
iRBD vs. PD) was chosen for the statistical analysis.
The effect of call frame length was assessed based on
accuracy of the selected speech sample. In active speech
assessment, the number of reading tasks required for
analysis was determined analogously to sample dura-
tion determination via calls.
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FIG. 1. The principal speech analysis scheme. (A) lllustrative diagram of the smartphone data acquisition system. (B) lllustrative table of speech dimen-
sions described in the study, their definition, and example of healthy and dysarthric speakers. [Color figure can be viewed at wileyonlinelibrary.com]

Statistical Analysis

An ad hoc power analysis for a given large effect size
(Cohen’s d of 0.8), with the type I error probability («)
set at 0.05 and a power of 80%, based on a three-

group analysis of variance with one covariate (group),
determined a minimum sample size of 66 subjects (ie,
22 per group). A one-way analysis of variance with
Bonferroni post hoc test was applied to analyze group
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differences. The relationships between features were
evaluated using Spearman’s correlation coefficient. To
assess the sensitivity between groups, a binary logistic
regression model followed by leave-one-out cross-
validation was utilized. The features used were deter-
mined based on an exhaustive search, providing the
best outcome across spontaneous speech (calls and
laboratory monologue) and reading tasks (smartphone
and laboratory) and their combination, and we com-
pared the receiver operating curve along with its area
under the curve (AUC).

Results

Collected Data

Of 52 available iRBD subjects, 21 (40%) met the
inclusion criteria and were willing to participate.
The main reason for nonparticipation was that subjects
(1) made only exceptional phone calls, (2) were unwill-
ing to use smartphones, and (3) did not like the purpose
of the project and/or the need to share personal voice
calls. Additionally, we recruited 25 healthy controls
and 26 early PD patients (Table 1).

During the 3 months of data collection, 3525 calls
(mean: 49.0, SD: 61.1 per participant) were recorded
and analyzed. Of these, 5990 minutes (mean: 83.2,
SD: 119.7 per participant) of preprocessed speech
was extracted for the analysis. On average, one call

r SMARTPHONE CALL SCREENING IN iRBD

contained 2.26 minutes (SD: 1.96) of preprocessed
speech useful for analysis. Considering active assess-
ment, 950 (mean: 13.2, SD: 7.0 per participant) read-
ing tasks were obtained.

Speech Sample Duration Estimation

For smartphone calls, the best accuracy reached the
threshold (95% of maximum discriminative accu-
racy) at the cumulative call duration of 15 minutes
for differentiating between PD and controls,
18 minutes between iRBD patients and controls, and
3 minutes between iRBD patients and PD (Fig. 2A).
However, 8 minutes of sample duration provided sta-
ble classification between iRBD and controls, and the
performance continuously increased with increasing
sample duration. Regarding call frame durations, no
specific option exhibited notable advantages in accu-
racy. Because the 20-second time frame provides
enhanced flexibility given its brief duration, the anal-
ysis was carried out using 18 minutes of calls,
preprocessed in 20-second frames.

For active reading tasks, the threshold was reached in
two tasks (one trial) in differentiating between PD
patients and controls, three tasks between iRBD
patients and controls, and one task between iRBD and
PD patients (Fig. 2B). As a result, an average of three
reading tasks were considered for the analysis.

TABLE 1  Clinical data of participants

Controls (n = 25) iRBD (n = 21) PD (n = 26) P-value
Men 24 (96%) 20 (95%) 25 (96%) 0.99
Age (y) 67.1/7.3 (55-84) 68.3/8.6 (53-86) 58.5/8.6 (45-76) <0.001*°
Symptom duration (y) = 10.3/6.7 (2-29) 5.5/2.1 (2-11) -
MDS-UPDRS, Part III, total 6.5/2.7 (2-11) 9.8/2.5 (5-15) 25.9/9.8 (10-51) <0.001*"
MDS-UPDRS, Part III, speech item 0.370.5 (0-1) 0.4/0.5 (0-1) 1.070.3 (0-2) <0.001*"
MoCA 26.2/2.6 (22-30) 25.9/2.2 (21-30) 26.8/2.8 (18-30) 0.46
SCOPA-AUT 7.3/5.1 (1-24) 13.0/8.7 (3-39) 10.0/6.0 (1-24) <0.05°
UPSIT 30.7/4.1 (21-39) 22.7/7.6 (13-36) 24.7/6.4 (12-35) <0.001**
Antidepressant therapy 1 (4%) 2 (10%) 4 (15%) 0.4
Levodopa equivalent (mg/day) 0 0 632.9/311.7 (50-1440) <0.001*"
Clonazepam therapy 0 (0%) 10 (48%) 0 (0%) <0.001°¢
RBD presence’ 0 (0%) 21 (100%) 10 (38%) <0.001"°

Data are the mean/standard deviation (range) or the number (%).

“Significant difference between PD patients and controls.
*Significant difference between iRBD and PD patients.

“Significant difference between iRBD patients and controls.

“Presence of RBD was diagnosed by history and video polysomnography.
Abbreviations: iRBD, idiopathic rapid eye movement sleep behavior; PD, Parkinson’s disease; MDS-UPDRS, Movement Disorder Society-Unified Parkinson’s Disease Rating
Scale; MoCA, Montreal Cognitive Assessment; SCOPA-AUT, Scales for Outcomes in Parkinson’s Disease-Autonomic Dysfunction; UPSIT, University of Pennsylvania Smell

Identification Test.
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FIG. 2. Sample duration estimation. Accuracy of a binary logistic regression followed by a leave-one-out cross-validation using a combination of all the
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rapid eye movement sleep behavior disorder; PD, Parkinson’s disease. [C

Speech Differences

Statistically significant differences between iRBD
patients and controls were observed in monopitch dur-
ing the laboratory reading task (P = 0.049) and impre-
cise vowels in calls (P = 0.03) (Fig. 3). Furthermore,
compared to controls, PD patients exhibited impair-
ment in monopitch during the laboratory reading task
(P < 0.001), imprecise vowels in calls (P = 0.01), articu-
latory decay in laboratory monologue (P < 0.001), pro-
longed pauses in laboratory monologue (P < 0.001),
and increased articulation rate in calls (P = 0.01) and
both reading tasks (P < 0.001). Voice quality and mon-
oloudness did not reach significance between the
groups. No significant relationships were found
between individual acoustic features and MDS-UPDRS,
Part III, and MoCA scores in PD patients, iRBD

olor figure can be viewed at wileyonlinelibrary.com]

patients, or controls. No relevant differences were
detected between PD with RBD and PD without RBD
(Fig. S1) as well as between iRBD treated with and
iRBD not treated with clonazepam (Fig. S2).

Correlations among Data from Different
Sources

Between calls and laboratory monologue, a signifi-
cant correlation coefficient was achieved only for
imprecise vowels (r = 0.67, P < 0.001) (Fig. 3). Between
reading tasks, the significant correlations were generally
more frequent, with a high correlation coefficient dem-
onstrated for monopitch (r=0.70, P <0.001), voice
quality (r =0.66, P <0.001), and articulation rate
(r=0.70, P < 0.001).
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FIG. 3. Group differences between speech features in individual tasks and correlations of features between tasks. The calls measure is taken from
18 minutes of speech. The smartphone reading task is based on an average of three repetitions. Horizontal line represents median, the box lower and
upper quartiles, the bars minimum and maximum values that are not outliers, and the circles outliers. ***, **, and * represent significant differences with
P <0.001, P<0.1, and P<0.5, respectively, after Bonferroni adjustment. CPP, cepstral peak prominence; DPI, duration of pause intervals;
FOsd, standard deviation of pitch contour; FRI, formant ratio index; HC, healthy control; INTsd, standard deviation of intensity contour; iRBD, isolated
rapid eye movement sleep behavior disorder; MFCC, mel-frequency cepstral coefficient; NSR, net speech rate; PD, Parkinson’s disease; r, Spearman’s

correlation coefficient. [Color figure can be viewed at wileyonlinelibrary.com]

Sensitivity Analysis

Based on the exhaustive search, the optimal combina-
tion of features for spontaneous speech comprised
monopitch, imprecise vowels, articulatory decay, pro-
longed pauses, and articulation rate, whereas that for
reading tasks included monopitch, articulatory decay,
monoloudness, and articulation rate. The highest AUC
between iRBD patients and controls was 0.79 via calls
compared to 0.66 via laboratory monologue (Fig. 4).
Similar AUC values up to 0.87 were found between PD
patients and controls for both smartphone and labora-
tory settings. For reading tasks, a superior AUC of up
to 0.83 was obtained in laboratory settings compared
to smartphones for distinguishing controls from both
PD and iRBD patients. In general, the accuracy of pro-
dromal speech disorders detection via smartphones
improved to an AUC of up to 0.85 when combining
both passive calls and active reading.

Discussion

This study is the first to evaluate speech characteris-
tics collected in the wild in individuals with iRBD and

early PD. It revealed that voice calls provide prodromal
biomarkers of parkinsonism in iRBD patients, with
sensitivity levels comparable to or even exceeding
those of laboratory examination using high-quality
equipment. The combination of passive and active
smartphone data captured distinct yet complementary
voice information, reaching a high AUC of 0.85
between iRBD and controls. Among the most promi-
nent features of iRBD were monopitch in reading and
imprecise vowel articulation in phone calls. These
findings endorse the feasibility of employing a fully
automated and noise-resistant smartphone-based sys-
tem for passive speech monitoring in real-world sce-
narios for future clinical trials and detecting subjects
at risk of later overt synucleinopathy development.

Speech Sample Duration

The effect of speech sample duration on biomarker
performance has rarely been investigated. Although not
systematically researched, a previous study suggested
that 50 smartphone call sessions lasting between
15 and 75 seconds (corresponding to ~13-65 minutes)
are sufficient to detect PD-related speech impairment.®®
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FIG. 4. Sensitivity analysis. Receiver operating characteristic curves of a binary logistic classification of optimal features based on an exhaustive sea-
rch. The optimal features for spontaneous speech were monopitch, imprecise vowels, articulatory decay, prolonged pauses, and articulation rate,
whereas those for reading task were monopitch, articulatory decay, monoloudness, and articulation rate. The calls measure is taken from 18 minutes of
speech. The smartphone reading task is based on an average of three repetitions. AUC, area under curve; iRBD, isolated rapid eye movement sleep

behavior disorder; PD, Parkinson’s disease. [Color figure can be viewed at wileyonlinelibrary.com]

The duration is greater than that in the current study,
where we found 18 minutes of speech (corresponding
to approximately nine calls) sufficient to capture pro-
dromal voice changes in the wild using smartphones.
Interestingly, it takes a lesser duration to capture voice
impairment in PD patients, suggesting that the higher
the severity of dysarthria, the less data are needed.
However, a stable but lower accuracy for distinguishing
between iRBD patients and controls was achieved
already for 8 minutes of calls.

Considering active smartphone data collection, three
reading tasks are sufficient to fully capture prodromal
voice characteristics in iRBD, demonstrating that guided
tasks require a smaller sample size for effective analysis.>’
This is principally in agreement with a previous study
showing that at least 120 words are necessary to obtain
stable results during reading in controlled settings.*’ In
general, the need for a high-quality microphone and

controlled environment can be replaced by a longer sam-
ple duration.

Speech Biomarkers

In agreement with previous studies,'”'®31*! speech

disorder in iRBD was mainly characterized by mono-
pitch and imprecise vowel articulation. The novel
observation is that vowel articulation was particularly
affected during spontaneous speech, whereas intonation
was reduced only during reading. This behavior can
likely be explained by different compensatory mecha-
nisms involved.*! The low intonation pattern that is
admissible during a reading of a prepared neutral pas-
sage is likely compensated for during dialogue to make
the speech more compelling for the second side. On the
contrary, deficits in internal cueing specific for PD
might lead to higher intelligibility in prepared
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utterances compared to spontaneous speech.** The
quality of vowel articulation is highly related to intelli-
gibility.*® Because vowel articulation is a demanding
process of articulatory coordination and intelligibility is
preserved in the early stages of the disease, it may be
difficult or unnecessary for patients to compensate dur-
ing spontaneous speech. A previous study showed
slower articulation rate and prolonged pauses during
monologue in iRBD as predictors of development into
parkinsonism.** In the present iRBD cohort, we
observed only trends toward these changes, possibly
due to lower sample size or better cognitive perfor-
mance (average MoCA 25.9 vs. 24.8 previously). Con-
sidering our early PD cohort, the observed trend for
worse voice quality, articulatory decay, and prolonged
pauses is consistent with previous literature.”"** Inter-
estingly, spontaneous speech assessment during phone
calls led to the finest sensitivity in increased speech rate
in PD, which is presumably a precursor of oral fes-
tination.*® Contributing to palilalia, this is one of the
most  debilitating symptoms with no available
therapies,*” leading to social isolation and degradation
of interpersonal interactions. Because laboratory speech
material is typically short and not representative of
everyday situations, it might not be sufficient for
advanced analyses. Therefore, spontaneous speech eval-
uation through phone calls in natural settings may pro-
vide a novel approach to identify markers for
predicting the onset of symptoms such as oral fes-
tination, potentially paving the way for more effective
personalized therapies.

Effect of Smartphone Assessment on Individual
Speech Biomarkers

The characteristics of the microphone, environmental
noise, position of the microphone, and hardware filtering
can all influence the robustness of speech assessment.*®
Many relationships were still surprisingly strong consid-
ering that smartphones and laboratory microphone
recordings were not done in parallel but at different
times and situations. In accordance with previous
research,”' the acoustic measurement of fundamental fre-
quency variability reflecting monopitch demonstrated
high resistance against device effect. This is likely due to
the nature of the fundamental frequency, which repre-
sents a major trend in the frequency domain of a speech
signal, and thus can be detected accurately despite the
influence of detrimental factors. Imprecise vowels,
reflecting the position of resonant frequencies (so-called
“formants”),** represent another frequency measure that
demonstrated good robustness in the analysis of
smartphone data. The voice quality measure was unsur-
prisingly robust only in a controlled environment with-
out substantial noise.”* Articulatory decay calculated
from MFCCs represents, in principle, an amplitude

r SMARTPHONE

CALL SCREENING IN iRBD
measure. It demonstrated little resistance against the
device effect, as the coefficients tend to be impacted by
microphone position and type*’ and, therefore, is
unsuitable for phone screening. Another amplitude mea-
sure, monoloudness, was robust only in reading text,
probably because of varying conditions in calls. Due to
the dialogue nature of calls, pauses cannot be directly
compared to those from uninterrupted monologue. In
reading, pauses were moderately correlated between the
smartphone and the high-quality microphone, which
could be due to the insufficient accuracy of speech-pause
detection.®® Articulation rate, calculated as the number
of syllables per time, reached high reliability between
both devices, indicating the high robustness of the auto-
matic speech-to-text transcription independent of the
microphone quality.*

Strengths and Limitations

In some participants, we did not obtain enough speech
data from calls, likely due to factors such as reluctance
to share all speech calls or difficulties associated with
smartphone operation. However, most of the partici-
pants achieved at least 18 minutes of call speech, that is,
duration sufficient to detect prodromal voice impair-
ment. In future scenarios, smartphone skills are likely to
be widespread across the population. Additionally, the
software can be directly implemented on smartphones to
process recordings immediately after completion, com-
puting selected features as anonymized numerical values,
thus eliminating the need for audio transfer ensuring
maximum privacy by storing only the values of speech
features. Furthermore, speech testing should be followed
by a more detailed neurological and neuroimaging anal-
ysis if the screen is abnormal. Legally and ethically, it is
essential to create frameworks that allow for large-scale
passive monitoring while safeguarding privacy and
security.’’

A similar diagnostic accuracy of an AUC of 0.86 was
observed between PD patients and controls compared
to an AUC of 0.85 between iRBD patients and controls.
This could be associated with the fact that all PD
patients were on stable dopaminergic therapy, which
has been shown to ameliorate several speech manifesta-
tions in the early stages of the disease.’' Furthermore,
we were unable to recruit enough older PD volunteers
with less than 5 years of disease duration, resulting in
the PD group being on average 10 years younger than
the iRBD and control groups. The inclusion of an older
control group likely also negatively affected the
reported accuracy of PD diagnostics.

Conclusion

This study has revealed that phone calls provide a
novel passive biomarker of prodromal and early
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parkinsonism and has established a pipeline for the cap-
ture of speech biomarkers in real-world settings.
Enhancing sensitivity through a combination with
active speech tasks amplifies its potential. To roll out
the developed technique in a multicenter, clinical, thera-
peutic trial, the sensitivity of speech features should be
validated by a longitudinal design, tested across various
smartphone models and different languages, and ideally
implemented directly to smartphones to eliminate the
need for transferring speech content. If proven successful,
our tool might be broadly applied in neuroprotective tri-
als, neurodegeneration screening, deep brain stimulation
optimization, neuropsychiatry, speech therapy, popula-
tion screening, and beyond. @

ILLNER

Data Availability Statement

The data that support the findings of this study are
available on request from the corresponding author.
The data are not publicly available due to privacy or
ethical restrictions.
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