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Abstract: Identification of drug targets and biochemical investigations on mechanisms of action are
major issues in modern drug development. The present article is a critical review of the classical “one
drug”—“one target” paradigm. In fact, novel methods for target deconvolution and for investigation
of resistant strains based on protein mass spectrometry have shown that multiple gene products and
adaptation mechanisms are involved in the responses of pathogens to xenobiotics rather than one
single gene or gene product. Resistance to drugs may be linked to differential expression of other
proteins than those interacting with the drug in protein binding studies and result in complex cell
physiological adaptation. Consequently, the unraveling of mechanisms of action needs approaches
beyond proteomics. This review is focused on protozoan pathogens. The conclusions can, however,
be extended to chemotherapies against other pathogens or cancer.

Keywords: adaptation; mass spectrometry; model system; mode of action; resistance; target

1. Introduction

Modern therapeutic strategies require more than mere empirical evidence of document-
ing efficacy, namely insight into the macromolecular targets and the mechanisms of action
related to these targets. In this respect, the fundamental paradigm “one compound—one
target” issuing from simpler enzymological or receptor models still prevails [1,2]. This
model predicts that an active compound interacts with one specific micromolar target, most
likely a protein, thereby interfering with its biological function. Consequently, resistance
to this compound should be linked to modifications of this target or to inactivation of the
compound by protective mechanisms.

Evidence for the validity of this model seems to be legion, particularly in neurology
and in infectiology in the case of viruses or bacteria. But, more recently acquired evi-
dence has shown that this model is flawed. First, there is no therapy without side effects,
meaning that secondary targets must be involved. Second, there are domains where the
mechanisms of pathogenicity involve several interlinked biological processes, such as in
cancer and infections with other eukaryotes—such as protozoan parasites—with a complex
cellular organization similar to that of their hosts. Exposition to drugs may thus be coun-
tered by various strategies, including modifications of the cellular envelope, expression
of transporters and detoxification mechanisms, deregulation of energy and intermediate
metabolism, shift to a dormant state, and others. Prolonged exposition to drugs may result
in drug adaptation or resistance, “fixing” successful strategies in an inheritable manner.

The rapid improvement of the methodology used to unravel the mechanisms of action
of drugs has also caused doubts about the “one compound—one target” paradigm. During
the last two decades, the analysis of genomes, transcriptomes, and proteomes has not only
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opened new doors to drug target discovery as anticipated in a seminal review article [3]
but also made several quantum leaps with respect to sensitivity and the amount of data
that can be handled within a decent time frame [4]. As we see it now, “the target” is part of
a complex dataset rather than a defined “enzyme x” or “receptor y”.

Comparing proteomic investigations of antiprotozoal chemotherapies, we present two
main strategies of target deconvolution, namely (i) the investigation of proteins binding to
compounds of interest or “chemoproteomics” [5] and (ii) the determination of whole-cell
proteomes of drug-resistant strains by shotgun mass spectrometry. We discuss the potential
and the limitations of these strategies, concluding that they constitute only one element
within a more holistic approach including physiological and morphological investigations.
Based on our personal experience, this review will be focused on the diplomonad Giardia
lamblia, a causative agent of persistent diarrhea [6], and on the apicomplexan parasite
Toxoplasma gondii, responsible for abortions and neuronal disorders in humans and many
animal species [7]. Both are zoonotic pathogens transmitted to humans mainly by ingestion
of water or food contaminated by dormant stages: cysts in the case of G. lamblia [6,8] and
oocysts or bradyzoites in the case of T. gondii [9]. Parallels to other species, in particular
to Neospora caninum, which is closely related to T. gondii and responsible for abortions in
cattle [10,11], and to Plasmodium sp., which is the causative agent of malaria, the most
prominent disease caused by protozoans [12], will be drawn whenever helpful.

For this review, we have searched Pubmed (pubmed.ncbi.nlm.nih.gov) and Web of
Science (webofscience.com) using the keywords adaptation, mass spectrometry, model
system, mode of action, resistance, and target (accessed on 1 May 2024).

2. Proteomic Tools
2.1. General Remarks

The results of any empirical investigation are a function of the methodology employed
for this investigation. With respect to investigations of biostructures, we all know that
the term “higher resolution” indicates that more details can be visualized; thus, electron
microscopy provides more structural information than light microscopy. In terms of
proteins, “high resolution” means high sensitivity with respect to the correct identification
of primary polypeptide sequences in solutions containing an increasing number of such
polypeptides (i.e., low type II error) combined with high specificity (i.e., low type I error).
As for all empirical tests, both errors cannot be reduced to zero. Consequently, false or
non-reproducible results cannot be excluded [13].

2.2. From Protein Sequencing to Proteomics

In the case of enzymes, proteins can be identified and quantified by functional assays
such as phosphatase, dehydrogenase, glucoside dehydrogenase, and others. Yet, “phos-
phatase activity” may occur due to a single protein species or to hundreds of different
proteins. Consequently, the identification of proteins of interest is needed. The first method
allowing the investigations of proteomes was thus the sequence determination of single,
purified polypeptides (primary structure) by stepwise degradation from C- or N-terminal
ends [14], facilitated by the development of liquid chromatography and one- and two-
dimensional polyacrylamide gel electrophoresis post-1970 as highlighted elsewhere [15]. A
large booster in terms of sensitivity and amount of generated data was the development
of mass spectrometry (MS)-based methods. MS is the separation of charged particles in
an electric field as a function of their mass-to-charge ratio (m/z). The first methodology
applicable to a mixture of proteins—developed in the 1980s—is based on the indirect ion-
ization of proteins embedded in a solid matrix via laser, the so-called matrix-assisted laser
desorption ionization (MALDI). The energy transferred from laser via matrix on proteins
ionizes them. The resulting ions are then separated according to their time of flight (TOF),
lighter ions being faster than heavier ions, and their m/z is determined based on time used
to arrive at the detector [16]. MALDI-TOF-MS is still used today, e.g., for the analysis of
immunoprecipitated proteins [17], for protein profiling of food products [18], to identify
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causative agents of diseases such as bacteria [19], fungi [20], viruses [21,22], or for in situ
proteomics in embedded tissues [23].

Peptides in liquid phase obtained after proteolytic digestion of a protein mixture,
e.g., for whole-cell-shotgun analysis, are separated by liquid chromatography (“peptide
fingerprinting” [24]), ionized by a convenient method, e.g., electrospray ionization (ESI),
and injected into the MS. Within currently used MS, fragmented peptides undergo a second
m/z determination. The procedure is therefore referred to as MS/MS. Instruments are
constantly optimized with respect to resolution, scanning speed, sensitivity, and amount
of data to be handled [25–27]. Ion mobility TOF, where ions are separated according to
their collisional cross-section in the gas phase [28], is commercialized as timsTOF (Bruker,
Bremen, Germany) and is one of the leading technologies to date (mid-2024). More detailed
information can be found in specific reviews, such as, e.g., [29,30]. A simplified typical
workflow is depicted in Figure 1.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 3 of 25 
 

 

assisted laser desorption ionization (MALDI). The energy transferred from laser via ma-

trix on proteins ionizes them. The resulting ions are then separated according to their time 

of flight (TOF), lighter ions being faster than heavier ions, and their m/z is determined 

based on time used to arrive at the detector [16]. MALDI-TOF-MS is still used today, e.g., 

for the analysis of immunoprecipitated proteins [17], for protein profiling of food prod-

ucts [18], to identify causative agents of diseases such as bacteria [19], fungi [20], viruses 

[21,22], or for in situ proteomics in embedded tissues [23]. 

Peptides in liquid phase obtained after proteolytic digestion of a protein mixture, e.g., 

for whole-cell-shotgun analysis, are separated by liquid chromatography (“peptide fin-

gerprinting” [24]), ionized by a convenient method, e.g., electrospray ionization (ESI), and 

injected into the MS. Within currently used MS, fragmented peptides undergo a second 

m/z determination. The procedure is therefore referred to as MS/MS. Instruments are con-

stantly optimized with respect to resolution, scanning speed, sensitivity, and amount of 

data to be handled [25–27]. Ion mobility TOF, where ions are separated according to their 

collisional cross-section in the gas phase [28], is commercialized as timsTOF (Bruker, Bre-

men, Germany) and is one of the leading technologies to date (mid-2024). More detailed 

information can be found in specific reviews, such as, e.g., [29,30]. A simplified typical 

workflow is depicted in Figure 1. 

 

Figure 1. Simplified workflow of protein LC-MS/MS. 

Last but not least, it is noteworthy to mention recent achievements comprising pro-

teomic analysis of single cells [31] and nanopore-based protein sequencing [32–34] even 

of single polypeptides [35]. Moreover, post-translational modifications can be 

Figure 1. Simplified workflow of protein LC-MS/MS.

Last but not least, it is noteworthy to mention recent achievements comprising pro-
teomic analysis of single cells [31] and nanopore-based protein sequencing [32–34] even of
single polypeptides [35]. Moreover, post-translational modifications can be investigated by
LC-MS/MS. A good example is protein phosphorylation [36], as exemplified by studies on
cancer cells treated with kinase inhibitors [37,38].

2.3. From Mass Spectra to Protein Data

As mentioned, the “raw” data of any MS-based analysis are the signal intensities as a
function of the m/z ratios of the ionized peptides and/or their fragments. The identification
and quantification of mass spectrometry data are routinely handled by complete software
suites that return validated lists of quantified peptides and inferred proteins filtered to
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a false discovery rate (FDR) of 1%. Widely used examples of such software suites are
Spectronaut (Biognosis, Schlieren, Switzerland; version 19), Fragpipe (most recent version
22) [39], and MaxQuant (v.2.6.2.0) [40]. A typical workflow consists of searching the MS2
spectra against theoretical spectra generated by digesting in silico protein sequences from a
relevant protein database (e.g., Uniprot; www.uniprot.org; accessed on 1 May 2024). Candi-
date peptides of the correct mass are then scored by matching theoretical and experimental
spectrum peaks, each software suite using different algorithms. The top scorer of each
spectrum is retained as a potential match. Since even good matches may happen by chance,
especially if the search space is large (large database, large number of post-translational
modifications, etc.), many of these top scorers will be false identifications. Presently, the
most widely used method to estimate the score distribution of false identifications is to
concatenate the original target database with a set of decoy sequences, typically the reverse
sequences of the original [41]. The decoys, which are always false identifications, are
then used to model the false identification distributions of a number of measures such as
scores, mass differences, retention time, spectral or chromatographic features, etc., which
can be combined together to form a so-called discriminant score. An FDR can then be
estimated per discriminant score threshold, and a selection of MS2 identifications filtered
at 1% FDR returned. Note that due to the multiplicity of MS2 spectra mapping to the same
peptide and peptide degeneracy (multiple proteins claiming the same peptide), the FDR
must be re-calculated and controlled at all the levels (MS2 identification, peptide, protein)
required by the experiment. Software suites will each use different procedures to return
FDR-controlled lists of peptides and protein groups. While the latter will always be inferred
from peptides based on Occam’s parsimony principle, its interpretation in practice can lead
to potentially different protein group reporting [30].

Efforts are continuously made to boost the number of validated peptides and proteins
by including further features in the estimation of FDR [42] and rescoring in specific appli-
cation contexts [43]. Since correct proteins are often identified by multiple peptides and
incorrect proteins by one random match only, a good practice is to require at least two
unique peptides to consider protein X as “identified” [44].

Note that adding or removing samples from an experiment may alter the list of
accepted peptides and proteins from a given sample since most tools will use the ion
features and identifications of other samples to reinforce or weaken the probability of
presence in a sample. Protein inference will also be evaluated differently based on the
evidence from different sets of samples.

Actual quantification of the abundance of ions is performed in different manners
depending on software and, crucially, on instrument acquisition mode and can be based
on integrating MS1 peaks over time, counting corresponding MS2 spectra, or integrating
corresponding fragment peaks. How to reconstitute protein intensities from constituent
ions is usually considered at the same time as normalization, the latter being an essential
condition of label-free quantification. A selection of some of the most frequently used
measures of protein abundance are directly compared elsewhere [45]. For instance, the
iBAQ (intensity-based absolute quantification) values are the sum of the peptide intensities
divided by the number of theoretically observable tryptic peptides; iBAQ values have
been shown to correlate with molar content and are normalized so that the intensity of
one protein can be compared to that of another in the same sample. To compare the
abundance of a given protein across different samples, normalization is usually done at
the peptide level, under the assumption that most peptides have an unchanged abundance
across samples. A popular measure of protein abundance, the Top3 value, sums up the
normalized intensities of the three most abundant peptides of each protein. Considering
for each protein only a limited number of peptides mitigates the problem that long proteins
inevitably produce more peptides than short ones, which could bias the total intensity
calculation. A widely used measure of protein intensity that is normalized for comparisons
across samples is the LFQ (label-free quantification) value [39,40]. LFQ combines multiple
peptide ratios and aims at stabilizing protein ratios between pairs of samples.

www.uniprot.org
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While normalization in label-free (LF) quantification aims at reducing various biases
such as protein size, stability, varying total amounts between samples, and so on, more
accurate quantification may be needed, in which case labeling approaches may be preferred.
One common method established in the 1990s consists of feeding amino acids containing
13C instead of 12C or 15N instead of 14N to cell cultures (stable isotope labeling by amino
acids in cell cultures, SILAC). The labeled proteins are extracted and mixed with unlabeled
proteins of another culture. By analyzing the m/z shifts of labeled vs. unlabeled peptides,
the amounts of the corresponding proteins in both cultures can be compared [46]. Another
methodology is isobaric chemical labeling of soluble proteins or peptides using tags such as
tandem mass tags (TMTs) or isobaric tags for relative and absolute quantification (ITRAQs)
with defined m/z ratios upon ionization [47]. A direct comparison of LF with SILAC and
TMT-based quantification reveals the best coverage for LF and the lowest performance for
TMT [48].

The quantitative data may then be statistically analyzed using a suitable platform such
as, e.g., Perseus [49]. To facilitate statistical analysis of protein quantities between samples,
e.g., for differential expression studies, missing peptide values may be imputed. This can
be done at peptide and/or at protein levels (see, e.g., [49]). Imputation procedures are
based either on the assumption that a missing value is missing “not at random” (i.e., it has
missed a detection threshold and can be assumed to be of small intensity) or “completely
at random” (i.e., its original intensity can be low or high and its level of intensity is not
known a priori). In the former case, the missing value is usually replaced by drawing a
random number located near the lower left of the sample intensity distribution. In the
latter case, the missing value could be replaced by calculating the maximum likelihood
value from all other values. Imputing has the advantage of simulating natural variance
and delivering log fold changes with a statistical measure even when a peptide or protein
is absent from one condition. This approach may, however, be a source of errors, e.g., when
missing peptides are imputed in knock-out compared to wildtype strains, or when strains
expressing or not a transgene are compared (see, e.g., [50]). A good practice for setting
significance criteria imposes a minimum log2 fold change of ≥1, a low value of the type I
error after adjustment for the multiplicity, and, in general, lower than 0.05. Repeating the
imputation several times and recording significance is a means to mitigate the stochasticity
introduced by it, as detailed elsewhere [51]. Where two different normalized parameters
are used for quantification of differentially expressed proteins (e.g., LFQ and Top3), belief
in the data can be enhanced by considering only proteins with significantly different levels
by both parameters. In any case, both the identification and the relative quantification of
proteins by LC-MS/MS are probabilistic.

3. Affinity-Based Target Deconvolution
3.1. Functional and Binding Assays Using Isolated Proteins

Certainly, the most straightforward strategy to investigate the interactions between
anti-infective compounds and their targets is based on functional or binding assays in the
presence of isolated—in most cases recombinant—enzymes or receptors. In vitro functional
assays allow identifying and optimizing ligands. This strategy has had some success in
human vascular diseases [52], and high-throughput screening systems are available [53].
Another popular example of this strategy is the fight against HIV, where high-throughput
screenings for inhibitors of essential steps of viral entry and proliferation are ongoing [54,55].
Well-known examples are the mandatory screening of drug candidates for interactions with
the human ether-a-go-go K+ channel 1 (hERG1) in order to reduce the risk of potential side
effects [56,57] or screening for compounds binding to acetylcholine receptors [58].

In the case of antiprotozoal compounds, the proteins of interest should be essential
for the pathogen and irrelevant for the host. The first antiprotozoal compounds were
discovered by trial-and-error testing of the available pharmacopeia or just by serendipity.
A good example is the discovery of artemisinin antimalarials [59,60]. Modern target-
based antiprotozoal drug development is based on the identification of a suitable target
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essential for the pathogen but absent from the host by genome mining, often combined
with in silico modeling. Recombinant target proteins are produced in a suitable system,
and functional assays are performed in order to determine and optimize the binding and
inhibition constants of drug candidates. Of course, this method can also be applied to
targets of existing drugs empirically identified, such as, for instance, anti-folates in the case
of toxoplasmosis [61]. Ideally, the target is validated by overexpression and/or knock-out
studies in a suitable model. Figure 2 represents this workflow.
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If functional assays cannot be performed, ligand binding may be investigated using
temperature shift assays. In fact, proteins with bound ligands are more resistant to chemical or
thermic denaturation. Consequently, they remain in solution/soluble under conditions where
proteins without ligands aggregate and can be precipitated by centrifugation [62]. Receptor
and transporter antagonists are screened in whole-cell systems (e.g., human embryonic kidney
cells 293T) expressing the respective recombinant target proteins [63,64]. Table 1 gives an
overview of selected recent studies of inhibitor screenings in protozoal parasites.

Table 1. Overview of studies presenting in vitro assays with selected target proteins.

Protein Target for Inhibitor Screenings Pathogen Methodology Reference

Protein biosynthesis P. falciparum Luciferase assay [65]

Calcium-dependent protein kinase 1 T. gondii Kinase assay
Cocrystallization [66,67]

Dihydrofolate reductase thymidylate
synthase T. gondii Functional assay [68]

Dihydrofolate reductase P. vivax Heterologous expression in yeast
Growth assay [69]

Acetyl-CoA carboxylase T. gondii Functional assay [70]
Glyoxalase 1 T. gondii Functional assay [71]
Type-II NADH dehydrogenase T. gondii Functional assay [72]
Nucleoside triphosphate hydrolase N. caninum, T. gondii Chemoluminescence assay [73]
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Table 1. Cont.

Protein Target for Inhibitor Screenings Pathogen Methodology Reference

Mitochondrial ADP/ATP P. falciparum Heterologous expression in E. coli
Radioactive uptake assay [74]

Importin alpha binding to nuclear
localization signal P. falciparum Alpha screen binding assay [75]

Phenylalanyl t-RNA synthetase T. gondii Functional assay [76]

Aspartate transcarbamoylase P. falciparum Functional assay, protein interference
assay [77,78]

As illustrated by this table, enzymes are elegant tools to identify suitable inhibitors via
medium- to high-throughput screenings. This strategy has, however, its pitfalls, particularly
if the target has been identified by mere genome mining. An example of such a pitfall
is a phosphodiesterase (PDE) homolog identified in the genome of Giardia lamblia [79].
The recombinant catalytic domain of this homolog expressed in yeast is inhibited by a
series of inhibitors, some of which also inhibit the proliferation of Giardia trophozoites in
culture, suggesting that this enzyme may be a potential drug target against giardiasis [80].
The detail overlooked by the authors is that the protein encoded by the corresponding
open reading frame is not present in trophozoites cultured under the same conditions
as in the drug screenings (see the supplementary data in [81]). The fact that only PDE
inhibitors with nitro groups inhibit proliferation [82] further reduces belief in PDE as a
potential anti-giardial drug target. In fact, organic compounds containing nitro groups
such as metronidazole or nitazoxanide commonly inhibit Giardia and other anaerobic
organisms [83].

3.2. Affinity Chromatography

The main disadvantage of the strategy described above is that it is biased by the hypoth-
esis concerning the mode of action and, thereby, the target of a class of compounds of interest.
Therefore, in order to identify unknown targets, unbiased strategies are required. These chemo-
proteomic strategies exploit the binding affinities of proteins within the entire proteome of the
pathogen as well as of the host in cases where side effects are investigated [84]. The oldest
and best-known method is certainly affinity chromatography on a low- or medium-pressure
liquid chromatography system. For this approach, the compound of interest is coupled
onto an agarose or sepharose (trademark by Pharmacia, now Cytiva, Marlborough, MA,
USA) column matrix via active groups such as epoxy, cyanogen bromide [85], carbomethyl,
N-hydroxy-succinimide, [86] or others attached via a spacer [87], thus allowing free access by
binding proteins. Cell-free crude extracts are then passed through the column. After abundant
washes, binding proteins are eluted by ligands in solution via pH shift or increasing ionic
strength. The eluted proteins are polished, e.g., by gel electrophoresis followed by subsequent
sequencing of the most prominent bands, or can be directly identified by LC-MS/MS. A
classic example of drug-binding proteins of pathogens identified by affinity chromatography
and confirmed via binding and mutant studies are penicillin-binding proteins in Escherichia
coli [88–90]. To enhance belief in the identified binding proteins as potential targets, controls
minimizing false-positive results due to unspecific binding are paramount. This is valid for
each methodology presented here.

Given the socio-economic importance of malaria, it is not surprising that a large
number of chemoproteomic studies have been performed with a mind to identify targets of
either well-established or novel antimalarials, as reviewed elsewhere [84]. A selection of
studies based on affinity chromatography is listed in Table 2.
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Table 2. Overview of affinity chromatography studies identifying antimalarial binding proteins.
AC, affinity chromatography; BP, binding protein; DAC, differential affinity chromatography; FA,
functional assay.

Antimalarial Methodology Remarks Reference

Kinase inhibitors

Cell-free extracts from various cell types
and organisms. DAC with active and
inactive purines. SDS-PAGE followed by
digestion of binding proteins and
microsequencing of the peptides.

Detection of known kinases by Western
blotting. Some of the peptide sequences
match to other kinases and
other proteins.

[91]

Quinolines

Cell-free extracts of infected human
erythrocytes. DAC with ATP as a control,
elution with various quinoline
antimalarials, SDS-PAGE followed by
Edman mixed peptide sequencing.

Human aldehyde dehydrogenase 1 and
quinone reductase 2 major BP. Validated
as potential target by FA.

[92]

Endoperoxides
P. falciparum trophozoite lysates. AC with
an artemisinin analog, followed by 2-D
SDS-PAGE and MALDI-TOF MS.

Identification of 9 P. falciparum BPs. Major
BP is a calcium-binding protein. [93]

A schematic representation of the workflow of the studies listed in Table 2 is given in
Figure 3.
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Identification of 9 P. falciparum BPs. Major 

BP is a calcium-binding protein. 
[93] 
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During the last two decades, we have performed several target deconvolution studies
in protozoal pathogens. In order to minimize the number of unspecific binding proteins
identified due to the increased sensitivity of proteomic techniques, we perform differential
affinity chromatography (DAC), where identical cell-free extracts are passed through a
mock-coated column followed by a column coated either with the effective compound or
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with a ligand with high structural similarity but ineffective against the pathogen [61]. The
workflow of DAC is illustrated in Figure 4.

The datasets of the studies obtained with entire eluates are much larger than those
based on bands or spots excised from polyacrylamide gels (see also Table 3). This suggests
that the concept of “one drug—one target” may be too simplistic or at least very optimistic.
The fact that—where analyzed—a good number of host cell proteins are identified within
the affinoproteomes of antiparasitic drugs throws a shadow on the claims of “specificity”
of the respective compounds. A list of these studies is given in Table 3.

Table 3. Overview of affinity chromatography (AC) and differential affinity chromatography (DAC)
studies performed in protozoal pathogens and host cells. All studies were performed using epoxy-
activated sepharose. BP, binding protein; FA, functional assay; GST, glutathione-S-transferase.

Organism Ligand Methodology Remarks Reference

G. lamblia Thiazolide
AC, elution with ligand,
SDS-PAGE followed by
LC-MS/MS.

Nitroreductase NR1 major
BP. Validated as a potential
target by FA and in
subsequent studies.

[94–96]

H. sapiens
Caco2 Thiazolide

AC, elution with ligand,
SDS-PAGE followed by
LC-MS/MS.

Human GSTP1 major BP.
Validated as a potential
target by FA and in
subsequent studies.

[97,98]

H. sapiens
Fibroblasts Thiazolide

AC, elution with ligand,
SDS-PAGE followed by
LC-MS/MS.

Human quinone reductase 1
major BP in N. caninum
infected cells. Validation
by FA.

[99]

T. gondii Ruthenium complex
DAC with mock column only;
elution by pH shift; SDS-PAGE
followed by LC-MS/MS.

Translation elongation factor
1 alpha and two ribosomal
proteins identified as binding
proteins.

[100]

T. gondii
T. brucei Ruthenium complex

Comparative DAC with two
ineffective complexes in two
pathogens, elution with pH
shift, LC-MS/MS on entire
eluates.

128 specific T. gondii BPs and
46 specific T. brucei BPs.
Major T. brucei BP
mitochondrial ATP synthase
subunit validated by FA.

[101]

T. gondii
M. musculus
splenocytes

Antimicrobial peptide

Comparative DAC with
ineffective peptide, elution
with pH shift, LC-MS/MS on
entire eluates.

Several hundred BPs in
eluates from both organisms,
suggesting common modes
of action.

[102]

N. caninum
D. rerio

Bumped kinase
inhibitor with
quinoline core

Comparative DAC with
quinine, elution with pH shift,
LC-MS/MS on entire eluates.

12 specific N. caninum BPs
and 13 specific D. rerio BPs.
Many BPs in both organisms
in quinine eluates, as well.
Majority involved in RNA
binding or modification.

[103]

C. parvum
H. sapiens
HCT-8 cells

Bumped kinase
inhibitor with
quinoline core

Comparative DAC with
quinine, elution with pH shift,
LC-MS/MS on entire eluates.

No specific binding proteins
in C. parvum, 25 specific BPs
in host cells; 29 C. parvum
and 224 host cell BPs also in
quinine eluates. Common
targets in RNA binding or
modification.

[104]
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3.3. In Situ Binding

A main objection to affinity chromatography as a suitable method of target identifica-
tion is that the interaction of compounds and binding proteins occurs in cell-free extracts on
columns and not under physiological conditions. Consequently, chemoproteomic strategies
have been developed, which circumvent this inconvenience via intracellular, thus in situ or
“bio-orthogonal”, interactions of compounds with binding proteins. In one approach, the
compounds of interest are conjugated to a suitable linker, such as trans-cyclooctene [105]
or biotin [106], and incubated with the cells of interest. After convenient time periods,
the cells are lysed, and the cell lysates are incubated with magnetic beads coated with a
suitable linker (tetrazin-streptavidin [105] or streptavidin [106]), followed by pull-down
and identification of the binding proteins by LC-MS/MS. Another approach uses ferric
gold nanoparticles coated with the compound of interest [107]. In a different strategy,
compounds of interest are conjugated to fluorophores and in situ UV-cross-linked to their
binding protein partners. The cell lysates are then separated via SDS-PAGE. The fluorescent
bands are isolated and the proteins identified by LC-MS/MS [108]. Bio-orthogonal studies
using photoactive derivatives have identified binding proteins of various antimalarials,
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such as albitiazolium [109], artemisinin [110], diaminoquinazoline [111], or, more recently,
probes for tagging plasmepsins [112].

3.4. Protein Stability-Based Methods

The methodologies described above have the disadvantage that modified compounds
are used to identify binding proteins and not the original compound of interest. Rather,
proteins binding to the original compound in situ, thus under native conditions, should
be identified. This is possible by taking advantage of the biophysical property of proteins
in which they have a higher resistance to proteolytic digestion and to chemical or thermal
denaturation when bound to ligands [113].

Resistance to proteolytic digestion is exploited by a method called “limited proteolysis
small molecule mapping” (LiPSMap). Mixtures of native proteins with ligands or control
compounds are exposed to a protease with broad cleavage specificity, such as, e.g., pro-
teinase K, prior to denaturation and tryptic cleavage to generate peptides for LC-MS/MS
analysis. Ideally, protein domains binding to the ligands of interest but not in the controls
are protected from the first digestion, and the corresponding peptides are identified [114].
This method can not only be used to identify proteins binding to endogenous metabolites
but also to xenobiotics such as drugs, as exemplified elsewhere [115].

Moreover, proteins with ligands tend to denature and thus precipitate at higher
temperatures than the same proteins without ligands, as illustrated by interaction with a
simple fluorescent probe binding to hydrophobic residues of proteins [116]. This thermal
proteome profiling (TPP) is performed using various experimental setups. In cellular
thermal shift assays (CETSAs) [117], cells are incubated with the compounds to be tested,
then lysed, and then the lysates are incubated for a given time period in a thermal cycler
at various temperatures, starting at 37 ◦C [118]. Precipitated proteins are removed by
centrifugation, and the supernatants are subjected to suitable functional assays [118], to
one- or two-dimensional gel electrophoresis [119], or to LC-MS/MS [120,121]. Classical
CETSA-MS is performed by incubating cells or lysates with the compounds to be tested
or with a solvent control at ten different temperatures, followed by centrifugation of
the precipitates, trypsinization and labeling of the soluble proteins with commercially
available TMTs [122], or alternative labeling agents [123] and LC-MS analysis of the ten
combined compound and control samples [124]. Given the large number of samples to
be analyzed, this protocol is, however, limited by the manpower needed for running
the system and subsequent data analysis. Consequently, simplified protocols have been
developed that minimize the amounts of samples and time. One of these protocols is the
isothermal shift assay (iTSA), performing thermal denaturation at a single temperature
preselected for the proteome of interest [125]. Another protocol is the single tube-TPP with
uniform progression (STTPP-UP). Here, incremental heating of a single sample is applied,
thereby saving time and material [126]. Generally, TPP is well suited for soluble proteins.
After biotinylation-based enrichment of cell surface proteins, this method can, however,
be applied to surface proteins such as receptors as well [127]. Resistance to chemical
denaturation, e.g., by solvents, constitutes an alternative to thermal denaturation [128].
In each experimental setup, binding proteins are identified based on their significantly
increased amounts in samples with ligand vs. samples without ligand under conditions
that denature the protein in the absence of ligands. In the studies quoted above, TPP has
been applied on mammalian cells. During the last decade, a couple of studies using TPP
have been performed with a mind to target identification in protozoal parasites. These
studies are summarized in Table 4.
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Table 4. Overview of thermal proteome profiling-based target deconvolution studies performed in
protozoal pathogens. CETSA, cellular thermal shift assay; MS, mass spectrometry.

Organism Methodology Remarks Reference

Leishmania donovani
Classical CETSA-MS on
promastigotes with an inhibitor of
sterol biosynthesis.

Oxidosqualene cyclase identified as a
target of this inhibitor. [129,130]

L. infantum

Classical CETSA-MS on cell-free
extracts of amphotericin B, antimony,
or miltefosine susceptible and
resistant lines incubated with the
respective drugs.

Up to several hundred proteins with
altered melting profiles depending on
the compound. Sb tends to stabilize
ribosomal proteins.

[131]

P. falciparum

Comparison of classical and
isothermal CETSA on
intraerythrocytic stages using
pyrimethamine as a proof of concept.

Conceptual study. No data on novel
binding proteins directly available. [132]

T. gondii Classical CETSA-MS with calcium
egress inhibitor ENH1 as ligand.

82 proteins with enhanced thermal
stability identified, including
calcium-dependent protein kinase 1.

[133]

When evaluating thermal shift-based methodologies with respect to drug target decon-
volution, one must bear in mind that the thermal stability of some proteins is also affected
by binding to natural ligands such as nucleic acids and is subjected to intrinsic variation,
e.g., during the cell cycle [134]. Consequently, it is imaginable that proteins binding to
nucleic acids, such as ribosomal proteins, for instance, may lose their natural target upon
interactions with xenobiotics and, therefore, show up in the precipitated rather than the
soluble fractions of TPP assays. Moreover, compounds such as transition metal ions may
stabilize proteins in solution, thereby generating false-positive results (see, e.g., [131]). A
summary of affinity-based methods is given in Table 5.

Table 5. Summary of affinity-based methods identifying drug-interacting proteomes. AC, affinity
chromatography; DAC, differential affinity chromatography; TPP, thermal protein profiling.

Methodology Advantages Inconveniences

AC—elution with ligand Well established. Does not need sophisticated
equipment. Fast.

Modification of original ligand necessary
to create column matrix. Identification of
major binding proteins after PAGE,
resulting in low yields and bias. Cell-free
extracts.

DAC—unspecific elution See above. LC-MS/MS if elution with
compatible solvent.

Needs an ineffective control compound
with similar structure. Cell-free extracts.

Affinity labeling Interaction occurs intracellularly, therefore,
under physiological conditions. Fast.

Modification of original ligand necessary
to create compound for affinity labeling.
Polishing of labeled proteins by PAGE,
therefore, low yields and bias. Label may
interfere with subsequent MS.

TPP

Flexible, since interaction of proteomes and
ligands is investigated under physiological
conditions or in cell-free extracts. Unmodified
compounds may be used.

Time and cost intensive. Use of isobaric
labels. Large data volumes need
appropriate bioinformatic tools.

4. Analysis of Resistant Strains
4.1. General Considerations

A complementary strategy for determining the mode of action of antiparasitic com-
pounds is the analysis of resistant strains. Before going into detail, we have to define what
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we mean by “resistance” to a given compound. The operational definition of resistance
depends on the determination of drug efficacy. One way to determine drug efficacy is to
expose the organism of interest to increasing concentrations of the compounds of interest
and to measure the proliferation using appropriate tools such as reporter strains (see, e.g.,
ref. [135] for a detailed review on T. gondii drug screening). Based on the proliferation data,
the concentration corresponding to half of the proliferation obtained in the absence of the
compound (“the inhibitory concentration 50%” or IC50 or other ICs, e.g., IC90) is then calcu-
lated by appropriate algorithms [135]. These values are compared to corresponding data
obtained with suitable host cell lines (often referred to as “effective concentration” or EC50).
The higher the EC50/IC50 ratio, the more “promising” the compound seems to be, and the
more effort will be spent on subsequent investigations, such as in vivo studies including
this compound. These IC50s are, however, only one part of the story. Another parameter of
similar importance is the “minimal inhibitory” concentration (MIC), i.e., the concentration
at which proliferation does not occur anymore (in other words, the IC100). Unlike other
ICs, this IC100 or the MIC cannot be calculated by extrapolation from growth assay data
by suitable algorithms [136]. It has to be determined by visual investigation of individual
in vitro cultures exposed to increasing concentrations of the compound of interest. Another,
perhaps more elegant, way is to remove the drug pressure after a convenient time period
and screen for regrowth of the pathogen. Obviously, in the case of intracellular parasites,
long-term exposure to the compound of interest must not harm the host cells. There is no
other way to determine the MIC. Resistance to a given compound can now be defined by
higher IC50s and higher MICs in resistant as compared to susceptible strains [137]. If only
the IC50 is increased, but not the MIC, the corresponding strains tolerate the compound or
have adapted to it but are not resistant (see, e.g., [138] or [139] for examples). Moreover, to
allow robust investigation of the resistant strains, including the preparation of single clones,
the resistance must not be lost in the absence of drug pressure. Due to their metabolic
plasticity, eukaryotic cells (including protozoal parasites) may simply escape drug pressure
by switching to a dormant stage, as observed in the case of Plasmodium sp. exposed to
artemisinin [140]. In this case, the terms “resilience” or “tolerance” are more adequate than
“resistance” [141]. Another example of resilience is given by intracellular T. gondii or N.
caninum exposed to calcium-dependent kinase inhibitors. Whereas the infection of cell
cultures is inhibited by these compounds at sub-micromolar concentrations, treatment of
infected cells, even by one magnitude higher concentrations, does not lead to parasite death
but to inhibition of egress. Subsequently, the intracellular parasites generate multinucleated
complexes (see, e.g., [142]) characterized by a downregulation of more than 50% of the iden-
tified unique proteins and upregulation of a few proteins typical for dormant stages [143].
This observation cannot be generalized to all apicomplexans. C. parvum, for instance, is
killed very efficiently by calcium-dependent kinase inhibitor treatments, even when applied
post-infection [104]. This illustrates that (ultra)structural investigation of organisms treated
with a given compound is paramount for correctly appreciating its effects.

4.2. Resistance of Transgenic Strains

The most straightforward strategy to validate potential drug targets (see Figure 3) is
to perform knock-out or knock-in studies using appropriate reverse genetic tools. Over-
expressing genes of interest using integrative or episomal plasmids is certainly the oldest
of these methods and is well established for G. lamblia [144], Plasmodium sp. [145,146], T.
gondii [147], and related protozoans [148]. Knock-down or silencing of genes of interest
is less straightforward. RNA interference by the degradation of double-stranded RNA
occurs in the excavata G. lamblia, Leishmania sp., and Trypanosoma brucei, as well as in the
apicomplexa Plasmodium sp. and T. gondii [149], but has been supplanted as a major tool
by gene editing using the CRISPR/Cas9 system in T. gondii [150,151], where a genome-
wide screening using this method has allowed for distinguishing between essential and
non-essential genes [152].
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If the target catabolizes the compound of interest, overexpressors are more resistant
than wildtype strains. A textbook example of such “resistance markers” are enzymes inac-
tivating antibiotics such as beta-lactamases or neomycin phosphotransferases. Encoded by
resistance plasmids (R plasmids or R factors), they spread through microbial communities
and are considered a major health problem [153].

If the target protein activates the compound, overexpressors are more susceptible
than wildtype strains. A good example is nitroreductases from microaerophilic or anaer-
obic pathogens such as, e.g., G. lamblia [154]. The Giardia genome contains open reading
frames (ORFs) encoding at least four multifunctional quinone reductases with the ability
to transfer electrons not only to quinones but also to nitro compounds, thereby recycling
NAD or NADP cofactors [95,96,155]. The nitroreductases encoded by ORF 22677 and ORF
15307 increase the susceptibility to the nitro compound nitazoxanide when overexpressed
in G. lamblia trophozoites and to metronidazole when overexpressed in E. coli [96]. In
the same direction goes the overexpression of gain-of-function genes. The widely used
overexpression of dihydrofolate reductase (DHFR) as a resistance marker in plasmids or in
CRISPR/Cas9 gene editing constructs is such an example. The antimalarial pyrimethamine
inhibits the bifunctional wildtype DHFR-thymidylate synthases of Plasmodium sp. and
other protozoans such as T. gondii [68]. Overexpressors of mutated enzymes are more
resistant to pyrimethamine and can be selected for on pyrimethamine-containing media.

Moreover, overexpression of potential drug targets may elicit “compensatory reactions”
conferring drug adaptation or resistance, as shown for several, but, of course, not all
antibiotics [156]. When analyzing data obtained with transgenic strains, one should keep
in mind that these strains underwent a challenging selection for resistance against drugs
effective against this parasite. Therefore, it is not surprising to observe an alteration of
proteome patterns that may affect metabolism when comparing transgenic strains with
wildtypes. For instance, a Giardia line overexpressing E. coli glucuronidase A differs by
nearly 10% of the detected unique proteins from the corresponding wildtype with a major
focus on altered patterns of surface proteins, referred to as “antigenic variation” [50].
Moreover, T. gondii knock-out clones of the surface antigen SAG1 created by gene editing
show distinct strain-specific proteome patterns besides the intended knock-down [157].

4.3. Differential Analysis of the Proteomes of Susceptible vs. Resistant Strains

An alternative to the analysis of engineered stains overexpressing or silencing defined
target proteins is the comparison of susceptible strains to strains resistant to a compound
of interest. This strategy does not hold only for resistant pathogens but also for the analysis
of chemotherapy-resistant cancer cell lines [158]. This type of study can be performed
on clinical isolates [159] of a given pathogen or on resistant laboratory strains created by
increasing drug concentrations in the culture medium or by chemical mutagenesis. Clearly,
the analysis of clinical isolates corresponds more to “reality”, but the creation of resistant
strains under laboratory conditions offers the following advantages: (i) Resistant clinical
isolates can only be obtained for established drugs, not for experimental compounds. (ii)
Resistance can be induced using a reference strain with well-established molecular genetic
tools. (iii) The process of resistance formation can be monitored. (iv) The corresponding
wildtype strain can be maintained and cultivated under the same standardized conditions
as the resistant strains (except for the absence of drug in the culture medium).

The fundamental paradigm of this strategy is the investigation of Plasmodium strains
resistant to antimalarials widely applied for prophylaxis and treatment. Fostered by
genome sequencing efforts more than two decades ago [160], genomic and transcriptomic
investigations have led to the identification of several gene products associated with
resistance. The take-home message from these studies is that—concerning resistance to
artemisinin in particular—there is no single gene or marker associated with resistance.
Rather, several genes show differences with respect to point mutations or differential
expression between susceptible and resistant strains, as highlighted by seminal review
articles [161–164].
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This view is fostered by analyses of resistant G. lamblia strains induced under labo-
ratory conditions. Prima vista, the analysis of resistant patient isolates, would be closer
to reality, but depending on the genotypes, the isolates are difficult to maintain in culture.
Moreover, resistance may be lost after en- and excystation [165], thereby precluding the
isolation of resistant strains from cyst-containing feces. Resistance to nitro drugs such as
metronidazole and nitazoxanide can easily be induced by increasing drug concentrations
in trophozoite culture medium, followed by cloning and characterization of the resistant
clones [166,167]. Our knowledge about the anaerobic metabolism of Giardia and other
anaerobic organisms suggests three strategies for nitro drug resistance, namely, restriction
of electrons available for nitro reduction by downregulation of glycolysis, by downreg-
ulation of enzymes reducing nitro compounds (nitroreductases), or by upregulation of
enzymes scavenging radicals issuing from nitro reduction [154,168]. When comparing the
proteome patterns of nitro drug-resistant clones from different origins, it is striking that
all three strategies are found, depending on the resistant strains and the nitro compounds
used for selection [169]. The results only partially match previously published results on
differential transcriptomics [170]. A summary of selected studies illustrating this strategy
is given in Table 6.

Table 6. Overview of selected studies comparing whole-cell proteomes of resistant vs. susceptible
strains. DIGE, differential gel electrophoresis; LC, liquid chromatography; MS, mass spectrometry;
SELDI, surface-enhanced laser desorption/ionization; TOF, time of flight.

Organism Drug Methodology Remarks Reference

G. lamblia Metronidazole

Comparison of three resistant cell
lines created by increasing drug
concentrations plus UV irradiation
with susceptible parental strains.
Analysis of proteomes and
post-translational modifications by
broad panel of proteome analytical
methods.

265, 171, and 76 differentially
expressed proteins depending
on the strains. High
isolate-dependent variability
of adaptation mechanisms.

[171]

G. lamblia Nitazoxanide
Metronidazole

Comparison of a strain generated by
increasing nitazoxanide
concentrations and two
metronidazole-resistant strains from
study quoted above with their
corresponding wildtypes. All resistant
strains were resistant to both drugs
and were grown in the presence of
either drug prior to analysis by
shotgun LC/MS-MS.

225, 248, and 304 differentially
expressed proteins in the
presence of nitazoxanide, 510,
287, and 216 in the presence of
metronidazole. No common
markers for nitro resistance.
Common pattern of antigenic
variation in all
metronidazole-resistant vs.
susceptible strains. Strategies
of coping with nitro reduction
strain and drug dependence.

[169]

P. falciparum Chloroquine
Comparison of two clinical isolates
resistant to chloroquine with two
susceptible isolates using SELDI-TOF.

Study focused on the
methodology. One of the
susceptible strains and both
resistant strains are resistant to
pyrimethamine, and one
resistant strain is resistant to
quinine and sulfadoxine; 10
“marker proteins” identified.

[172]
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Table 6. Cont.

Organism Drug Methodology Remarks Reference

T. gondii Sulfadizine
Resistant clinical isolates, susceptible
reference strains. Comparison of
proteomes by DIGE-MS.

31 unique differential proteins
were identified. [173]

T. gondii Artemisone
Artemiside

Generation of resistant strains by
treating the reference strain ME49
with increasing concentrations.
Whole-cell-shotgun LC/MS-MS.

215 proteins downregulated in
the artemisone-resistant strain,
8 proteins in the
artemiside-resistant strain.

[139]

As in the case of the target deconvolution studies, the overview of studies of differen-
tially expressed proteins in resistant vs. susceptible strains presented in Table 6 reveals a
large number of differentials of candidate proteins involved in the mode of action of the
respective drugs.

5. Combining Evidence from Chemoproteomics and Whole-Cell Proteomics

So far, research designs for drug target identification that combine proteomic, in
silico, and genetic approaches are gaining popularity. Is there an added value in merging
outcomes of more than one proteomic approach? In other words, is it possible to combine
the two strategies discussed in this review, namely, target deconvolution studies and whole-
cell proteomes of resistant or resilient strains by mass spectrometry? A combination of
both approaches within one model system could enhance belief in a mode of action or
in the targets identified. Such studies are, however, rare. One approach is to compare
the affinoproteomes of drug-susceptible and -resistant strains by a convenient method
such as TPP. A first step is the analysis of thermal shifts of a favored target in susceptible
and resistant strains, as exemplified by T. gondii susceptible or resistant to bumped kinase
inhibitors and their kinase target [174]. This approach is, however, confirmative rather
than explorative since the kinase target—shown by previous kinetic studies—is confirmed
by another method, and other, more systemic effects of the compound are neglected. The
study comparing the affinoproteomes of L. infantum susceptible or resistant to various
antileishmanials [131] is an example of an explorative study. As mentioned in Table 4,
the analysis of the affinoproteomes by TPP has revealed differentials in a good number
of various proteins previously not suspected as potential targets. What would the output
of a study comparing drug-binding proteins and differentially expressed proteins in the
same model system look like? If drug metabolizers are the only binding proteins, one
would expect to find them amongst the differentials as well. However, if components of
the cellular machinery essential for survival and therefore tolerating only minor changes
in expression are the main binding proteins, one would not expect them amongst the
differentials. Rather, drug metabolizers or transporters [175] would be expected here.

6. Conclusions

Nowadays, there is a steadily increasing number of scientific articles claiming drug
targets merely based on computer simulations of interactions between a single target and a
single molecule. The articles reviewed above show that the identification of drug targets
and, therefore, the development of reason-based chemotherapies is more complicated. It is
not surprising to find multiple proteins as drug interaction partners in protozoan parasites,
suggesting that the drug kills the parasite by “. . .disrupting its biological landscape. . .”
as stated in a review on artemisinin-binding proteins in P. falciparum [176]. Indeed, the
examples of studies mentioned above suggest that multiple targets interact with antipro-
tozoal compounds, not only the usual suspects such as specific enzymes investigated via
functional assays but also components of general cellular maintenance such as cytoskeletal
and ribosomal proteins or proteins involved in replication and transcription. This suggests
that multigenic adaptation or resistance mechanisms get going upon exposure to these



Int. J. Mol. Sci. 2024, 25, 6903 17 of 24

compounds and may even be part of developmental programs established during evo-
lution as countermeasures to exposure to xenobiotics affecting fitness. The formation of
multinucleated complexes in intracellular apicomplexans upon exposure to bumped kinase
inhibitors may follow such a program [142].

During evolution, protozoan pathogens have learned to cope with hostile environ-
ments generated by innate or acquired host immunity, as reviewed elsewhere [177]. The on-
set of antigenic variation in Giardia [178] as a response to both drug [169] and immune [179]
pressure is a good example and is worth being further exploited as a model system.

Although chemoproteomics using affinity chromatography has the potential to display
a large set of drug-binding proteins, the question of how to distinguish “true” targets from
drug-binding proteins remains. Certainly, experimental validation based on knockdown,
knock-out, or overexpression of the target gene is feasible. Now, taking into consideration,
on the one hand, the off-target molecular effects (see, e.g., [157]) and, on the other hand,
the untrustworthy concept of the one drug-for one target-for one disease approach, the
experimental validation of drug targets using genetic tools may ultimately leave more
questions than answers.

Consequently, state-of-the-art proteomics plays an essential but not unique role in un-
raveling these mechanisms. More complex approaches involving, e.g., ultrastructural and
metabolomic investigations of drug-treated vs. untreated and of resistant vs. susceptible
strains are important to draw a more complete picture. Metabolomic investigations may
even be performed on intact cells by 1H-NMR, as shown for Giardia, which again reveals its
suitability as a model system to study resistance formation in protozoans [180]. This brings
us to the final statement that the key to progress in studying drug-target interactions and
resistance formation in protozoans, in particular, and in any empirical science, in general, is
the choice of standardized model systems, well-suited for the application of state-of-the-art
laboratory scale methodology.
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