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Abstract: Background: Despite being the most commonly performed valvular intervention, risk
prediction for aortic valve replacement in patients with severe aortic stenosis by currently used risk
scores remains challenging. The study aim was to develop a biomarker-based risk score by means
of a neuronal network. Methods: In this multicenter study, 3595 patients were divided into test
and validation cohorts (70% to 30%) by random allocation. Input variables to develop the ABC-AS
score were age, the cardiac biomarker high-sensitivity troponin T, and a patient history of cardiac
decompensation. The validation cohort was used to verify the scores’ value and for comparison
with the Society of Thoracic Surgery Predictive Risk of Operative Mortality score. Results: Receiver
operating curves demonstrated an improvement in prediction by using the ABC-AS score compared
to the Society of Thoracic Surgery Predictive Risk of Operative Mortality (STS prom) score. Although
the difference in predicting cardiovascular mortality was most notable at 30-day follow-up (area under
the curve of 0.922 versus 0.678), ABC-AS also performed better in overall follow-up (0.839 versus
0.699). Furthermore, univariate analysis of ABC-AS tertiles yielded highly significant differences for
all-cause (p < 0.0001) and cardiovascular mortality (p < 0.0001). Head-to-head comparison between
both risk scores in a multivariable cox regression model underlined the potential of the ABC-AS
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score (HR per z-unit 2.633 (95% CI 2.156–3.216), p < 0.0001), while the STS prom score failed to
reach statistical significance (p = 0.226). Conclusions: The newly developed ABC-AS score is an
improved risk stratification tool to predict cardiovascular outcomes for patients undergoing aortic
valve intervention.

Keywords: biomarker; risk score; artificial intelligence; risk prediction model; aortic valve; aortic
stenosis; aortic valve replacement; transcatheter aortic valve replacement; transcatheter aortic
valve implantation

1. Introduction

Aortic stenosis (AS) represents the most common type of valvular heart disease
in high-income countries [1]. For patients with severe, symptomatic AS, the therapy
of choice remains valve intervention, either by transcatheter aortic valve implantation
(TAVI) or conventional surgical aortic valve replacement (SAVR) [2]. Accordingly, there
is a high demand for precise risk stratification tools to predict procedural success and
postoperative mortality.

Currently, the most commonly applied risk scores for the prediction of postoperative
mortality are the Society of Thoracic Surgery Predictive Risk of Operative Mortality (STS
prom) and the European System for Cardiac Operative Risk Evaluation II (EuroSCORE
II), an updated form of the logistic EuroSCORE, which was first described in 2012 [3–5].
Both scores have been primarily developed to predict perioperative mortality, yet they
have also been proposed to prognosticate long-term survival [6,7]. While most comparative
trials report an equivalence of the EuroSCORE II and the STS prom score, their ability
to accurately predict clinical outcomes is modest [8–10]. In daily clinical practice, the
STS prom is most widely used, as it was used to inform about patient risk in all three
PARTNER trials, which compared TAVI to standard medical therapy in patients with
severe aortic stenosis [11–13]. The calculation of the STS prom risk score, though, remains
bothersome due to the vast amounts of parameters included. Simpler and more accurate
risk stratification tools, similar to the recently proposed ABC (age, biomarkers, and clinical
history) score for the prediction of stroke and death in atrial fibrillation [14–16], are required
to help direct treatment pathways in patients with severe AS requiring valve intervention.
Recent investigations have suggested a role for well-established and readily available
cardiac biomarkers, such as high-sensitivity troponin T (hsTnT) and N-terminal pro-brain
natriuretic peptide (NT-proBNP), to predict clinical outcomes in patients with severe
AS irrespective of the interventional therapy chosen. Although cardiac biomarkers, a
centerpiece in personalized medicine, have shown these promising results, they have yet to
be included in stratification tools [3–5,17–22]. Furthermore, artificial intelligence, such as
deep learning algorithms, may help in improving the accuracy of risk prediction modeling,
which is particularly crucial for cardiovascular disease management [23,24]. Using this
technology, we developed a cardiac-biomarker-based risk score, consisting of hsTnT, age,
and patient history of cardiac decompensation. The aim of the current study was to evaluate
the potential of the ABC-AS score to accurately predict perioperative and clinical outcomes
in patients with severe AS undergoing aortic valve intervention.

2. Materials and Methods
2.1. Study Design

The investigation represents a post hoc analysis of the Tyrolean Aortic Stenosis Study-2
(TASS-2), a retrospective study initiated to evaluate the predictive value of hsTnT to predict
postprocedural survival. The collaboration was established at the Medical University of
Innsbruck (MUI) in 2013 and included three other major Austrian university hospitals
[Medical University Graz (MUG), Johannes Kepler University Linz (KUK), and Paracelsus
Medical University Salzburg (PMU)]. All patients diagnosed with severe AS undergoing
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valve intervention between 2007 and 2017 were screened for study inclusion. Data col-
lection was performed in accordance with regulations set forth by institutional review
boards and was limited to TAVI patients at the MUG and PMU. The trial was approved by
institutional review boards/independent ethics committees and registered at ClinicalTri-
als.gov (NCT02448485). This study followed the TRIPOD Statement for development and
reporting of our predictive model [25].

2.2. Study Population

Consecutive patients referred for evaluation of aortic valve intervention were screened
for study participation. The only inclusion criterion was the presence of severe AS accord-
ing to current guidelines [2], requiring aortic valve intervention by either SAVR or TAVI,
respectively. Previous endocarditis and/or aortic valve replacement due to non-severe
AS, redo aortic valve intervention, Ross procedure surgery, sub-valvular severe AS, acute
coronary syndrome or cardiopulmonary resuscitation within two months prior to valve
intervention, conversion of TAVI to SAVR during the procedure, balloon aortic valvulo-
plasty for bridging, unknown coronary anatomy, and other valve pathologies considered
as the main clinical problem were the predefined exclusion criteria [17,18,26]. Patients with
missing variables to calculate the ABC-AS score were excluded.

2.3. Data Collection

Clinical data, including the STS prom score, were collected from electronic patient
records at participating institutions. Age (in years) was calculated by using the date of
procedure, while only a single preprocedural measurement of hsTnT was taken into ac-
count (either at admission or referral from another hospital). Cardiac decompensation was
defined as history of at least one episode of acute worsening of heart failure symptoms
requiring hospitalization or emergency department visits due to acute heart failure requir-
ing intravenous diuretics (binary). Clinical outcome data (cardiovascular and all-cause
mortality) were provided by Statistik Austria, the national statistical office, in the form
of ICD-10 codes. If the cause of death was uncertain, patients were excluded from the
cardiovascular mortality analysis.

2.4. Artificial Intelligence Model

A labeled dataset and their corresponding desired outputs and target values were
prepared. Patients were divided into training and validation cohorts by random allocation
and by applying a 70% to 30% rule. The type and structure of the neural network was
chosen based on the problem at hand. The network’s weights and biases were initialized
randomly. The computed output was compared to the desired output for each input sample,
and an error metric (loss function) was calculated (MSE). For adjusting weights, the error
was propagated backwards through the network in order to minimize the overall error.
The model was iterated and stopped at convergence criterion. The predictive model was
trained by using overall all-cause mortality as the endpoint. For parameterization, a logistic
function was used, as a rectified linear unit was less successful in training our overall
model. The maximum number of iteration steps, in case the system did not converge,
was set to 10 × 107 steps. The model consisted of 4 input channels and 1 output channel,
while 3 hidden channels were used, holding 5 neurons at each level. All tested models
underwent a validation process for model integrity. Different settings were investigated
but did not improve the results or overall behavior. The output variable was the probability
of occurrence of an event (herein, all-cause mortality reported values between 0 and 1 to
display probability). With this approach, which is widely used in the artificial intelligence
community, a good setting for our described problem was found [27–32].

2.5. Statistics

Continuous variables are displayed as median (interquartile range), whereas categori-
cal variables are presented as number of patients (percentage). Distribution of continuous
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variables was assessed by inspection of histograms and the Shapiro–Wilk test. Calculated
ABC-AS scores were separated into three tertiles for univariable survival analyses, which
were assessed by Kaplan–Meier curves and applying the log-rank test. Significance of differ-
ences between continuous variables was assessed either by t-tests and analysis of variances
(ANOVA) or Mann–Whitney U and Kruskal–Wallis tests, according to their distribution.
Differences between categorical variables were calculated by the Chi square test. Receiver
operating curves (ROC) with their respective area under the curve (AUC) were used to
estimate the predictive value of the ABC-AS and STS prom score. Both variables were
subsequently used in a cox proportional hazards regression model after z-standardization
to allow direct comparison. Statistics were performed with R Studio version 4.2.2 (R Studio
Inc., Boston, MA, USA) and IBM SPSS version 24 (IBM Corporation, Armonk, NY, USA),
and graphics were designed using GraphPad PRISM, version 5 (GraphPad Software, Inc.,
La Jolla, CA, USA). The nnet package, version 4.2.1, was used to establish the neuronal
network in R Studio. Two-sided p-values of ≤0.05 were considered significant.

3. Results
3.1. Study Population

Overall, 4516 patients referred for aortic valve intervention were screened (Figure 1).
Nine hundred and twenty-one patients (20.4%) were excluded by predefined criteria.
Accordingly, 3595 patients were enrolled into the study (MUI: 1624 patients, KUK: 1091
patients, MUG: 556 patients, and PMU: 324 patients). Five hundred and sixteen patients
(14.4%) were excluded due to missing variables to calculate the ABC-AS score (Figure 1).
Remaining patients (n = 3079) were divided into a training (n = 2157) and a validation
cohort (n = 922, Figure 1). Considering the uncertainty about the cause of death in a single
patient, he was excluded from the analysis of cardiovascular mortality.
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3.2. Baseline Characteristics

Baseline characteristics of the training and validation cohort are described in Table 1.
The validating database, which was also used for further analysis, displayed a median
follow-up of 1.5 years (interquartile range: 0.5–3.0). SAVR was performed in 543 (58.9%)
patients, and TAVI in 379 (41.1%). Median STS prom score was 2.54% (1.57–3.80). Overall,
all-cause mortality occurred in 166 (18.0%) patients, out of which 87 (9.4%) were due to
cardiovascular causes. Thirty-day all-cause mortality was observed in 28 (3.0%) patients,
while the number increased steadily (90-day mortality: 47, 5.1%; 365-day mortality: 66,
7.2%) throughout extension of follow-up. Cardiovascular mortality increased in a similar
manner (30-day cardiovascular mortality: 18, 2.0%; 90-day mortality: 30, 3.3%; 365-day
mortality: 42, 4.6%). Overall, comparison of baseline characteristics between the training
and validation cohorts showed that the validation cohort more frequently suffered from
comorbidities. In particular, patients were more often found to have a history of cardiac de-
compensation (p = 0.002), arterial hypertension (p < 0.001), hypercholesterolemia (p < 0.001),
chronic obstructive pulmonary disease (p = 0.003), carotid stenosis (p = 0.001), and obstruc-
tive coronary artery disease (p = 0.001). On the other hand, patients of the training cohort
displayed higher aortic valve mean gradients (p < 0.001) and a lower stroke volume in-
dex (p < 0.001). There were no significant differences regarding hsTnT, NT-proBNP, renal
function, left ventricular ejection fraction, prescription of heart failure medication, and the
procedure conducted (TAVI or SAVR).

Table 1. Baseline characteristics of the training and validation cohorts.

Variable Training Cohort
(n = 2157)

Validation Cohort
(n = 922) p-Value

Age (years) 76 (70–82) 77 (70–82) n.s.

Gender (female), n (%) 1036 (48.0%) 436 (47.3%) n.s.

Height (cm) 168 (160–174) 168 (162–174) n.s.

Weight (kg) 75 (65–85) 75 (65–85) n.s.

Body surface area (DuBois, m2) 1.84 (1.69–1.98) 1.84 (1.71–2.00) n.s.

History of cardiac decompensation, n (%) 319 (18.3) 215 (23.3) 0.002

Stable heart failure symptoms, n (%) 1681 (80.2) 528 (57.8) <0.001

Stable angina pectoris, n (%) 804 (38.4) 305 (33.4) 0.009

History of syncope, n (%) 204 (11.7) 125 (13.7) n.s.

Asymptomatic, n (%) 60 (3.4) 29 (3.1) n.s.

Arterial hypertension, n (%) 1693 (78.6) 798 (86.6) <0.001

Diabetes mellitus, n (%) 515 (23.9) 218 (23.6) n.s.

Hypercholesterolemia, n (%) 939 (53.2) 609 (66.1) <0.001

Nicotine n.s.

Active smoker, n (%) 127 (7.3) 68 (8.4)

Former smoker, n (%) 274 (15.7) 122 (15.1)

History of stroke, n (%) 196 (9.1) 89 (9.7) n.s.

Atrial fibrillation n.s.

Paroxysmal, n (%) 255 (11.8) 99 (10.7)

Persistent/permanent, n (%) 351 (16.3) 148 (16.1)

Chronic obstructive pulmonary disease, n (%) 304 (14.1) 168 (18.3) 0.003

Carotid stenosis (≥50%), n (%) 115 (5.3) 88 (9.7) <0.001
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Table 1. Cont.

Variable Training Cohort
(n = 2157)

Validation Cohort
(n = 922) p-Value

Coronary artery disease 0.001

No significant coronary artery disease, n (%) 1374 (63.7) 535 (58.1)

1-vessel disease, n (%) 343 (15.9) 183 (19.9)

2-vessel disease, n (%) 189 (8.8) 94 (10.2)

3-vessel disease, n (%) 173 (8.0) 91 (9.9)

Left main disease, n (%) 78 (3.6) 18 (2.0)

Left ventricular ejection fraction n.s.

>50%, n (%) 1558 (75.3) 701 (77.9)

35–50%, n (%) 430 (20.8) 171 (19.0)

<35%, n (%) 80 (3.9) 28 (3.1)

Aortic valve mean pressure gradient (mmHg) 50 (41–60) 46 (40–57) <0.001

Aortic valve area (cm2) 0.70 (0.55–0.80) 0.70 (0.55–0.80) n.s.

Indexed aortic valve area (DuBois, cm2/m2) 0.37 (0.30–0.44) 0.36 (0.30–0.44) n.s.

Stroke volume index (DuBois, mL/m2) 29.0 (24.0–34.0) 33.0 (27.0–40.0) <0.001

Total cholesterol (mg/dL) 174 (142–207) 174 (142–203) n.s.

LDL cholesterol (mg/dL) 102 (79–129) 96 (71–124) <0.001

HDL cholesterol (mg/dL) 54 (43–66) 56 (45–70) <0.001

Triglycerides (mg/dL) 99 (71–139) 104 (80–141) 0.001

High-sensitivity troponin T (ng/L) 18.0 (11.0–33.4) 17.8 (10.7–30.0) n.s.

N-terminal pro-brain natriuretic peptide (ng/L) 1284 (512–3005) 1345 (458–3443) n.s.

Creatinine (mg/dL) 1.00 (0.80–1.20) 1.00 (0.85–1.20) 0.004

Estimated glomerular filtration rate (mL/min/1.73 m2) 81.0 (66.9–92.9) 80.9 (62.5–91.9) n.s.

STS Predicted Risk of Mortality (%) 2.56 (1.61–4.01) 2.54 (1.57–3.80) n.s.

Medication

Betablocker, n (%) 1064 (50.6) 487 (53.2) n.s.

Calcium channel blocker, n (%) 349 (19.8) 195 (21.4) n.s.

ACE inhibitor/ARB/ARNI, n (%) 1266 (60.2) 564 (61.6) n.s.

Acetyl salycilyc acid, n (%) 1149 (57.1) 580 (63.3) 0.001

P2Y12 antagonists, n (%) 375 (17.8) 90 (9.8) <0.001

Vitamin K antagonist, n (%) 369 (17.5) 130 (14.2) 0.023

Direct oral anticoagulants, n (%) 119 (5.9) 86 (9.4) 0.001

Hydrochlorothiazide, n (%) 499 (28.4) 234 (25.6) n.s.

Loop diuretic, n (%) 768 (38.1) 390 (42.6) 0.021

Statin, n (%) 1085 (53.9) 552 (60.3) 0.001

Aldosterone antagonist, n (%) 260 (12.4) 93 (10.2) n.s.

Insulin, n (%) 77 (4.4) 48 (5.3) n.s.

Numbers are presented as median (interquartile range) or number of patients (percentage). Abbreviations:
ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin
inhibitor; STS, Society of Thoracic Surgeons.

Based on obtained values of the ABC-AS score, the validating dataset was separated
into three tertiles. Their baseline characteristics are displayed in Table 2. Patients in the
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third tertile were older (1st: 69 years (61–75), 2nd: 78 (73–81), 3rd: 82 (77–85)), yielded the
highest preprocedural hsTnT plasma levels (1st: 9.7 (6.0–14.9), 2nd: 19.0 (13.0–26.7), 3rd:
31.0 (20.0–53.0)), and more often presented with a history of cardiac decompensation (1st:
20 (6.5%), 2nd: 64 (20.8%), 3rd: 131 (42.7%)). The third tertile was also found to have a
smaller aortic valve area (1st: 0.70 cm2 (0.60–0.88), 2nd: 0.70 (0.55–0.80), 3rd: 0.60 (0.50–0.80),
p < 0.0001), which did not change after indexation with body surface area by the DuBois
formula (p < 0.0001). Furthermore, patients in the third tertile suffered more frequently from
significant coronary artery disease (p < 0.0001), left ventricular ejection fraction impairment
(p < 0.0001), atrial fibrillation (p < 0.0001), and arterial hypertension (p = 0.029), and were
less likely to be asymptomatic (p < 0.0001). NT-proBNP plasma levels (p < 0.0001) as well
as the STS prom score (p < 0.0001) increased, whereas estimated glomerular filtration rate
(p < 0.0001) decreased throughout the tertiles. Similarly, the proportion of TAVI as the
procedure of choice rose from the first to the third tertile (1st: 34 (11.0%), 2nd: 141 (45.9%),
3rd: 204 (66.4%)).

Table 2. Baseline characteristics of the validation cohort separated into ABC-AS tertiles.

Variable 1st Tertile (n = 308) 2nd Tertile (n = 307) 3rd Tertile (n = 307)

Age (years) 69 (61–75) 78 (73–81) 82 (77–85)

Gender (female), n (%) 140 (45.5%) 160 (52.1%) 136 (44.3%)

Height (cm) 168 (162–175) 168 (162–173) 168 (160–174)

Weight (kg) 78 (68–88) 75 (65–85) 71 (63–83)

Body surface area (DuBois, m2) 1.88 (1.76–2.03) 1.85 (1.71–1.99) 1.79 (1.68–1.96)

History of cardiac decompensation, n (%) 20 (6.5) 64 (20.8) 131 (42.7)

Stable heart failure symptoms, n (%) 198 (64.3) 191 (62.2) 139 (45.3)

Stable angina pectoris, n (%) 127 (41.2) 94 (30.6) 84 (27.4)

History of syncope, n (%) 39 (12.7) 46 (15.0) 40 (13.0)

Asymptomatic, n (%) 21 (6.8) 5 (1.6) 3 (1.0)

Arterial hypertension, n (%) 254 (82.5) 270 (87.9) 274 (89.3)

Diabetes mellitus, n (%) 58 (18.8) 80 (26.1) 80 (26.1)

Hypercholesterolemia, n (%) 224 (72.7) 205 (66.8) 180 (58.6)

Nicotine

Active smoker, n (%) 24 (7.8) 22 (7.2) 22 (7.2)

Former smoker, n (%) 63 (20.5) 33 (10.7) 26 (8.5)

History of stroke, n (%) 22 (7.1) 32 (10.4) 35 (11.4)

Atrial fibrillation

Paroxysmal, n (%) 24 (7.8) 33 (10.7) 42 (13.7)

Persistent/permanent, n (%) 27 (8.7) 46 (15.0) 75 (24.5)

Chronic obstructive pulmonary disease, n (%) 45 (14.6) 60 (19.5) 63 (20.5)

Carotid stenosis (≥50%), n (%) 22 (7.2) 28 (9.4) 38 (12.6)

Coronary artery disease

No significant coronary artery disease, n (%) 197 (64.0) 194 (63.2) 144 (46.9)

1-vessel disease, n (%) 53 (17.2) 60 (19.5) 70 (22.8)

2-vessel disease, n (%) 26 (8.4) 28 (9.1) 40 (13.0)

3-vessel disease, n (%) 27 (8.8) 23 (7.5) 41 (13.4)

Left main disease, n (%) 5 (1.6) 2 (0.7) 11 (3.6)
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Table 2. Cont.

Variable 1st Tertile (n = 308) 2nd Tertile (n = 307) 3rd Tertile (n = 307)

Left ventricular ejection fraction

>50%, n (%) 268 (87.0) 233 (75.9) 200 (65.1)

35–50%, n (%) 34 (11.0) 61 (19.9) 76 (24.8)

<35%, n (%) 2 (0.6) 7 (2.3) 19 (6.2)

Aortic valve mean pressure gradient (mmHg) 45 (40–57) 47 (41–58) 46 (40–58)

Aortic valve area (cm2) 0.70 (0.60–0.88) 0.70 (0.55–0.80) 0.60 (0.50–0.80)

Indexed aortic valve area (DuBois, cm2/m2) 0.38 (0.32–0.45) 0.36 (0.30–0.43) 0.35 (0.28–0.42)

Stroke volume index (DuBois, mL/m2) 33.0 (27.0–40.0) 35.0 (26.0–42.0) 31.0 (25.0–38.3)

Total cholesterol (mg/dL) 180 (148–213) 171 (140–197) 171 (135–198)

LDL cholesterol (mg/dL) 108 (84–135) 93 (69–118) 88 (63–115)

HDL cholesterol (mg/dL) 56 (48–69) 56 (47–70) 56 (43–70)

Triglycerides (mg/dL) 106 (81–145) 106 (78–144) 101 (79–134)

High-sensitivity troponin T (ng/L) 9.7 (6.0–14.9) 19.0 (13.0–26.7) 31.0 (20.0–53.0)

N-terminal pro-brain natriuretic peptide (ng/L) 449 (215–1270) 1517 (667–3239) 2827 (1213–6015)

Creatinine (mg/dL) 0.93 (0.80–1.05) 1.00 (0.84–1.20) 1.16 (0.96–1.51)

Estimated glomerular filtration rate (mL/min/1.73 m2) 90.4 (81.9–101.9) 78.3 (61.9–87.9) 66.9 (48.7–82.1)

STS Predicted Risk of Mortality (%) 1.50 (0.95–2.26) 2.46 (1.79–3.51) 3.70 (2.84–5.30)

Medication

Betablocker, n (%) 147 (47.7) 167 (54.4) 173 (56.4)

Calcium channel blocker, n (%) 63 (20.5) 68 (22.1) 64 (20.8)

ACE inhibitor/ARB/ARNI, n (%) 187 (60.7) 190 (61.9) 187 (60.9)

Acetyl salycilyc acid, n (%) 195 (63.3) 197 (64.2) 188 (61.2)

P2Y12 antagonists, n (%) 16 (5.2) 29 (9.4) 45 (14.7)

Vitamin K antagonist, n (%) 28 (9.1) 41(13.4) 61 (19.9)

Direct oral anticoagulants, n (%) 15 (4.9) 31 (10.1) 40 (13.0)

Hydrochlorothiazide, n (%) 79 (25.6) 84 (27.4) 71 (23.1)

Loop diuretic, n (%) 57 (18.5) 140 (45.6) 193 (62.9)

Statin, n (%) 194 (63.0) 192 (62.5) 166 (54.1)

Aldosterone antagonist, n (%) 14 (4.5) 33 (10.7) 46 (15.0)

Insulin, n (%) 11 (3.6) 17 (5.5) 20 (6.5)

Numbers are presented as median (interquartile range) or number of patients (percentage). Abbreviations:
ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; ARNI, angiotensin receptor neprilysin
inhibitor; STS, Society of Thoracic Surgeons.

3.3. Receiver Operating Curves to Evaluate the Predictive Value

The assessment of both scores and their corresponding predictive values is shown
by ROC curves (Figures 2 and 3). Especially during short-term follow-up (Figure 2), the
ABC-AS score was able to outperform the predictability of the STS prom score. For 30-day
all-cause mortality, the AUC of the ABC-AS score (AUC: 0.905 (95% confidence interval
(CI): 0.820–0.989)) showed an improved predictability compared to the STS prom score
(0.703 (0.633–0.774)). Similar results were obtained when comparing the ROC curves of
30-day cardiovascular mortality (0.922 (0.825–1.000) versus 0.678 (0.581–0.775)), 90-day all-
cause mortality (0.925 (0.872–0.978) versus 0.717 (0.656–0.778)), and 90-day cardiovascular
mortality (0.935 (0.876–0.995) versus 0.707 (0.628–0.787)).
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mortality (B), as well as long-term all-cause (C) and cardiovascular mortality (D). Area under the
curve (AUC) is presented for the ABC-AS and Society of Thoracic Surgery Predictive Risk of Operative
Mortality (STS prom) score.
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The predictability of the ABC-AS score continued to outperform the STS prom score
for 365-day all-cause (0.920 (0.880–0.961) versus 0.692 (0.636–0.748)) and cardiovascular
mortality (0.924 (0.878–0.970)) versus (0.689 (0.620–0.759)). The difference between both
scores was still present while utilizing complete follow-up, yet the margin was found to be
smaller (all-cause mortality: 0.828 (0.794–0.862) versus 0.709 (0.669–0.749); cardiovascular
mortality: 0.839 (0.798–0.881) versus 0.699 (0.649–0.749)), respectively (Figure 3).

3.4. Univariate Analysis with Kaplan–Meier Curves

Prevalence of cardiovascular and all-cause mortality, separated by the ABC-AS tertiles,
is displayed in Figure 4. Univariate analysis (Figure 5) of ABC-AS score tertiles by using
the Kaplan–Meier method yielded highly significant differences for all-cause (p < 0.0001)
and cardiovascular mortality (p < 0.0001). Subgroup analysis by stratification for type of
procedure yielded similar results. In patients undergoing TAVI, the log-rank test remained
highly statistically significant for both all-cause (p < 0.0001) and cardiovascular mortal-
ity (p < 0.0001). Furthermore, ABC-AS score tertiles were also able to predict all-cause
(p < 0.0001) and cardiovascular mortality (p < 0.0001) in the surgical subgroup.
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3.5. Multivariate Analysis for Direct Comparison

Direct comparison of the ABC-AS and STS prom scores was conducted by calculating
cox proportional hazards regression models after standardization. Regarding all-cause
mortality, the ABC-AS score remained highly statistically significant (hazard ratio (HR) per
z-unit 3.085 (95% CI 2.533–3.757), p < 0.0001), whereas the STS prom score was unable to
reach significance (HR per z-unit 1.144 (95% CI 0.952–1.376), p = 0.151). Similar results were
obtained in the second model on cardiovascular mortality. The ABC-AS score remained
statistically significant (HR per z-unit 2.633 (95% CI 2.156–3.216), p < 0.0001), while the STS
prom score failed to reach the significance margin (HR per z-unit 1.144 (95% CI 0.920–1.423),
p = 0.226).

4. Discussion

Using the established predictive value of routinely available biomarkers, this study
proposed a novel artificial-intelligence-based risk score to prognosticate postoperative
mortality in patients undergoing valve intervention due to AS. The ABC-AS score, a compo-
sition of age, biomarker (hsTnT), and cardiovascular history (prior cardiac decompensation),
is the first biomarker-based risk score and consistently outperformed the guidelines rec-
ommended by the STS prom score in the presented analysis. It was also able to maintain
its predictive value irrespective of the procedure chosen (TAVI or SAVR), as indicated by
subgroup analysis. Furthermore, the ABC-AS score limits the shortcomings of the currently
used risk scores, which are mostly meant to predict short-term postoperative outcomes.
This may also be of importance for future trials assessing long-term differences. A valid
risk score, which reliably predicts short-, mid-, and long-term survival, would allow more
definitive results in comparative trials between TAVI and SAVR, and ensure that long-term
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survival is not affected by preoperative differences not displayed in the currently used
risk scores.

The centerpiece of our score is the utilization of hsTnT. Besides its well-known role in
predicting critical ischemia following the kinetics of an acute-phase marker (“rise and fall”
due to necrosis), it is also regularly released due to turnover by secretory autophagy to
maintain homeostasis [33–35]. This phenomenon may be upregulated due to cell wounding
by increased pre- or after-load, such as, for example, in the presence of severe AS, causing
myocardial strain, hence leading to a stable increase in hsTnT serum plasma levels [36].
Recently, a study by Perry et al. showed the strong association between myocardial strain,
assessed by echocardiography, and hsTnT [37]. While the increase shows the sheer stress
to the myocardium, elimination of these steadily increased hsTnT plasma levels seems to
play an important role in the predictive value as well. Although previous studies have
demonstrated that both the hepatic and renal systems are responsible for hsTnT clearance,
higher concentrations of hsTnT are still mainly eliminated by the hepatic system. At lower
levels, though, the renal system’s contribution to the elimination increases [38,39]. Chronic
kidney diseases, on the other hand, reduce the continuous elimination of hsTnT, which
then increases plasma levels and, therefore, reflects the disease in its own way.

Apart from myocardial strain and renal function, hsTnT plasma levels are also strongly
influenced by the presence of cardiac amyloidosis and, therefore, also reflect the indepen-
dent risk of morbidity and mortality of a disease currently not covered by risk scores [40].
Especially, the subtype of transthyretin amyloidosis is an underdiagnosed comorbidity
found in up to 15% in the overall cohort of AS, and in up to 30% of patients with low-flow,
low-gradient AS [41].

Overall, many factors and comorbidities are reflected by hsTnT. This of course also
holds true for the proposed ABC-AS score, which showed an increase in morbidity from
tertile to tertile. Implementation of biomarkers in already available risk scores would also
seem reasonable. However, another increase in variables would further complicate these
scores. Instead, an easy to remember and, namely, in-line risk stratification tool, seems
rather appropriate. It requires less parameters and may, therefore, be calculated quickly in
daily clinical routine.

Comparing our results in c-statistics for the STS prom to available data in the litera-
ture, similar predictive values were observed, thus underlining the data quality and the
potential of our ABC-AS score. Internal and external validation datasets reported an AUC
ranging from 0.67 to 0.78 for 30-day mortality and 0.73 to 0.77 for mid- to longer-term
mortality [4,6,9,10]. Results for the EUROSCORE II were comparable, achieving an AUC
ranging from 0.65 to 0.81 for 30-day mortality and 0.73 to 0.77 for mid- to longer-term
mortality [5,7,9,10].

A definitive strength of our analysis, which is often found to be a weakness for repro-
ducibility of neuronal networks, was the relatively small risk for data quality bias. Measure-
ments of hsTnT were routinely conducted at hospital admission, while age is easily assessed
by calculation. Endpoints were provided by the Austrian National Statistics department,
assuring high data quality. An online calculator is available at: https://surviral.at.

5. Limitations

A major limitation is the retrospective data collection, as well as the cohort study
design with its respective flaws and bias. Considering the retrospective design, a unified
definition of cardiac decompensation was impossible and was mainly based on physicians’
discretion. Differences in baseline characteristics between the training and validation co-
horts were mainly due to taking samples, as random allocation was utilized. The proposed
ABC-AS score is currently only validated by an internal dataset and requires external
validation before its use should be recommended in daily clinical routine. Furthermore,
the dataset used for training of the neuronal network can be considered as rather small in
the world of artificial intelligence. Lastly, there is no mathematical method to define the
optimal settings for the development of a neuronal network. Nonetheless, all efforts were

https://surviral.at
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made to comply with the recently published guidelines and quality criteria for artificial-
intelligence-based prediction models. Generally, there are various metrics for evaluating
the performance of an AI model, depending on the type of problem. Examples are accuracy,
precision, recall, and F1-score for classification tasks, RMSE (root mean squared error)
and MAE (mean absolute error) for regression tasks, and AUC-ROC. The ROC curve was
mainly used in our approach, as it provides a clear representation of the performance of
the presented AI model [27–32].
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