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cell transplantation: clinical significance of two interactive
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Hematopoietic stem cell transplantation (HCT) represents a curative treatment option for certain malignant and nonmalignant
hematological diseases. Conditioning regimens before HCT, the development of graft-versus-host disease (GVHD) in the allogeneic
setting, and delayed immune reconstitution contribute to early and late complications by inducing tissue damage or humoral
alterations. Hemostasis and/or the complement system are biological regulatory defense systems involving humoral and cellular
reactions and are variably involved in these complications after allogeneic HCT. The hemostasis and complement systems have
multiple interactions, which have been described both under physiological and pathological conditions. They share common tissue
targets, such as the endothelium, which suggests interactions in the pathogenesis of several serious complications in the early or
late phase after HCT. Complications in which both systems interfere with each other and thus contribute to disease pathogenesis
include transplant-associated thrombotic microangiopathy (HSCT-TMA), sinusoidal obstruction syndrome/veno-occlusive disease
(SOS/VOD), and GVHD. Here, we review the current knowledge on changes in hemostasis and complement after allogeneic HCT
and how these changes may define clinical impact.
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INTRODUCTION
Hematopoietic stem cell transplantation (HCT) currently
serves as a primary curative option for selected malignant
and nonmalignant hematological diseases [1–3]. The condition-
ing regimens applied before HCT, the development of graft-
versus-host disease (GVHD) in the allogeneic setting, and
delayed immune reconstitution contribute to a wide array of
early and late complications resulting from tissue or
humoral damage [4]. Biological regulatory defense systems,
encompassing humoral and cellular reactions such as hemos-
tasis or the complement system, are variably involved in these
complications. Traditionally described separately as distinct
entities, their likely parallel evolutionary development [5], along
with common targets shared in their defense reactions,
associates them with each other [6–9]. The endothelium, which
suffers from HCT complications, has emerged as a common
target of both systems, placing them inevitably side by side
whenever endothelial cells are damaged and inflammation
occurs [7, 10, 11]. Here, we review the incidence, pathophysiol-
ogy and management of complications after allogeneic HCT,
which are related to hemostasis and/or complement system
dysregulation, with a specific focus on how these complications
interconnect and mediate major clinical impacts early and late
after HCT.

HEMOSTASIS AND COMPLEMENT AS INTERCONNECTED
SYSTEMS
Hemostasis, described as a network of proteases and cellular
components, aims to stop bleeding through clot formation
[12, 13]. It involves primary mechanisms related to the vessel
wall, endothelium, and platelets, as well as secondary activation of
coagulation enzymes, leading to thrombin generation and clot
formation. Both mechanisms require a ground of phospholipids,
usually consisting of cell membranes (e.g. endothelium, extra-
vascular tissue, or platelets), at the site of tissue injury upon which
they interplay (Fig. 1).
Complement, a complex system of proteases, undergoes chain

reactions to activate enzymes, aiming to destroy pathogenic cells
through cell lysis. The complement system demonstrates self-
regulatory capacity and is activated locally by regulatory enzymes,
driving its action to a focused destruction of target cells [14–16].
Complement activation occurs through three main pathways, the
classical pathway, the lectin pathway, and the alternative pathway,
converging to a common final pathway where C3 convertase
produces anaphylatoxins C3a and C5a, as well as the membrane
attack complex (MAC). These products play a central role in the
generation of inflammation, creating transmembrane channels
that induce lysis and cell death in pathogenic cells. The
complement system mainly exerts biological effects through cell
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lysis, the inflammatory response, pathogen opsonization, and
immune complex removal (Fig. 1) [14–16].
It has been postulated that hemostasis and complement, as

defense systems, share parallel evolutionary origins dating
millions of years ago [16, 17]. While complement and hemostasis
in their current evolutionary state seem to function independently
(Fig. 1), numerous mutual interactions between them have been
described under both normal and pathological conditions (Fig. 2)
[7, 9, 18–20] and their interconnections have become evident in
several settings:

I. Immediate activation upon tissue damage. One common
feature of hemostasis and complement systems is their
“front line” position in response to any type of tissue wound;
these systems are integral components of the immediate
reaction to tissue damage and crucial factors in natural
immunity. The induction of a wound is promptly followed
by a cascade of enzymatic reactions resulting in the
formation of fibrin and the activation of the immune system
to respond to the specific site of injury. Specifically, local
inflammatory mechanisms triggered at the site of vascular
injury are enhanced by factors from the hemostatic and
complement systems. Both hemostasis and complement
unfold on a bed of damaged cells, often the endothelium.
Following an endothelial lesion, an immediate hemostatic
reaction is to locally activate platelets. In addition to forming
a platelet thrombus, activated platelets express p-selectin on

their surface and release soluble p-selectin. P-selectin binds
noncovalently to complement factor C3 activation frag-
ments, thereby enhancing the mechanisms that cause local
inflammation in vascular lesions [7, 21, 22]. Moreover,
megakaryocytes and platelets were found to contain C3,
which is released upon platelet activation at the site of local
injury [23]. Conversely, interactions have also been
described in which complement activation enhances
primary hemostasis through the binding of C1q to von
Willebrand factor, a major adhesion molecule at the site of
tissue damage, which mediates platelet adhesion and
aggregation [19].

II. Common triggers and functional inhibitors. Several studies
have shown that the hemostatic and complement systems
share common triggers and regulators and that they interact
with each other on several levels. It has been shown in vivo
in a murine model deficient in complement component C3
that C5a can be generated by proteolytic activation of C5 by
thrombin, a central hemostasis enzyme [7]. Activated
coagulation enzymes, such as FIXa, FXa, and FXIa, can
proteolytically activate C3 and C5, thus triggering the
common pathway of complement activation. Coagulation
factor XIIa mediates the activation of C1, thus initiating the
classical pathway of complement activation. Fibrinogen and
fibrin can enhance the initiation of the lectin pathway on
the surface of pathogens [24, 25]. Conversely, complement
components can enhance hemostasis [9]. Activation
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Fig. 1 Simplified scheme of the coagulation (left panel) and complement (right panel) cascades active on a fictitious endothelial lesion. A
dotted line separates the illustration of the two biological systems only for better understanding. The endothelial bed as a common ground
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depending on the nature or the intensity of the triggering event. LEFT PANEL: Va, Xa, VII, IX, XI, XII: coagulation enzymes, PreK: precallikrein, TF:
tissue factor, Ca++: calcium ions, green arrows: activation of the extrinsic pathway of coagulation, red arrow: activation of the intrinsic
pathway of coagulation, bluish arrows: activation of the common pathway. RIGHT PANEL: Activation of the complement system over three
distinct pathways going over to a common amplification loop and thus triggering humoral and/or cellular innate immunity reactions [7, 16].

D.A. Tsakiris et al.

2

Bone Marrow Transplantation



products of the lectin pathway, such as MASP-2, can
promote thrombin generation. C5a can induce the release
of tissue factor from endothelial cells and neutrophils. C1q,
an initiator of the classical pathway, can enhance primary
hemostasis by interacting with von Willebrand factor, a
major adhesion molecule between platelets and the
endothelium [19].

III. Interaction with neutrophil extracellular traps (NETs). The
hemostasis and complement systems are known to interact
with neutrophil extracellular traps (NETs), which function as
major bacterial defense mechanisms [26, 27]. The process of
NETosis is a form of neutrophil cell death, with NETs
representing sticky ‘nets’ composed of modified chromatin
from neutrophils harboring pieces of destroyed pathogens.
NETs can function as a trigger for clot formation by carrying
tissue factor and generating thrombin, depending on the
stimulus that initiates them, but they can also activate
coagulation enzymes by acting as negatively charged
surfaces. Complement, on the other hand, may also induce
NET formation or could be activated by existing NETs, thus
forming an enhancing feedback loop with coagulation [26].

IV. Disease states with simultaneous involvement of complement
and hemostasis. It is becoming increasingly evident that the
hemostatic and complement systems functionally interact in
multiple pathologic conditions with a major clinical impact.
The functional intercalation and mutual enhancement of
hemostatic and complement activation have been reported
in transplant-associated thrombotic microangiopathy (HSCT-

TMA) [28–30], sinusoidal obstruction syndrome/veno-occlu-
sive disease (SOS/VOD) [31, 32] and graft-versus-host
disease (GVHD) [30, 33, 34] in the posttransplantation
setting. Similar interconnections have also been described
independent of allogeneic HCT, such as paroxysmal
nocturnal hemoglobinuria (PNH)[35, 36], atypical hemolytic
uremic syndrome-induced microangiopathy (aHUS) [37, 38],
C3 glomerulopathy [39, 40], autoimmune and alloimmune
hemolytic anemia [41, 42] and antiphospholipid syndrome
(APS) [43]. Overall, it is becoming clear that understanding
the multiple interactions of the two systems provides novel
insights, including insights into molecular targets, as a basis
for new therapeutic interventions.

CLINICAL IMPACT OF HEMOSTASIS AND COMPLEMENT
ALTERATIONS ON HCT
Hemostasis in the peri-transplant setting has been extensively
studied since changes in hemostatic function are involved in
several types of transplant complications. While early studies
primarily referring to HCT with bone marrow as a hematopoietic
cell source cannot be easily extrapolated to the current practice of
HCT with peripheral blood-derived hematopoietic stem cells
[44–46], recent studies have focused mostly on biomarkers of
hemostasis and endothelial cell activation given their central
involvement in serious complications, such as HSCT-TMA or GVHD
[10, 11, 47–50].
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Macro-thrombotic events and HCT
In the early phase of HCT, bleeding events are the most common
hemostatic complications, particularly when myeloablative con-
ditioning regimens are used [51]. Overall, the incidence of
clinically symptomatic bleeding in the peri-transplant period is
estimated to be 15–27% [46, 50–52]. Thrombosis can occur early
in the first weeks or late up to some years after HCT and involves
various vascular regions [46, 50, 51, 53–56]. It has been reported
with variable frequencies, ranging between 0.5 and 23.5% [57].
Zahid et al. [57] published a meta-analysis of 23 included studies
published between 1993 and 2014 and reporting thrombotic
events after HCT. The overall incidence of thromboembolic events,
incl. deep vein thrombosis and pulmonary embolism in the first
year after HCT was estimated to be approximately 5% (4–7%) with
no differences between allogeneic and autologous setting. If acute
GvHD was present the incidence increased to 47% and with
chronic GvHD to 35% respectively. In other studies, the incidence
of catheter-related thrombosis was found to be between 2.5 and
7.8% reported at one month or one year after HCT [52, 54, 58].
Arterial thrombosis was also reported with a cumulative incidence
of 6% over 15 years [52]. Risk factors associated with thrombosis in
HCT patients are prolonged hospitalization, cancer-related throm-
botic risk, myeloablative conditioning, immunomodulatory agents,
severe infections and active GvHD. However, the heterogeneity of
the patient cohorts in the studies does not easily allow for a
precise cross-comparison and analysis of the existing data [50, 57].
Overall, endothelial damage resulting in endothelial dysfunction
represents a common feature in the context of GvHD. Features like
intensive cell trafficking in periods of severe cytopenia and
infections, as well as subsequent stress myelopoiesis contribute to
imbalances in hemostatic function, leading to both bleeding and
thrombosis [59–61].
Additional pathogenetic mechanisms associated to clonal

hematologic diseases might emerge as contributing factors to
thrombosis. Clonal hematopoiesis of indeterminate potential
(CHIP) is a recognized entity in the evolution of hematologic
malignancies [62]. Intriguingly, CHIP is associated with higher
overall mortality and has been linked to the development of
cardiovascular and/or thrombotic diseases, including myocardial
infarction, cerebrovascular thrombosis, and deep vein thrombosis
[63, 64]. A mechanistic explanation for these thrombotic events is
not entirely clear yet, but they might be linked to mechanisms
triggering local inflammation, driven by the respective clonal
mutations. CHIP is age-related and becomes a relevant concern in
the context of HCT, as candidate patients undergoing this
procedure are increasingly older in recent decades [62, 65]. CHIP
can manifest in three ways in patients receiving HCT: it may exist
pre-transplant in clones that survive conditioning and the graft vs.
leukemia effect, it may be acquired through donor hemopoiesis,
or it may appear as a post-transplant complication in the new
hemopoietic environment [62, 65–67]. CHIP has been associated
with a higher risk for GvHD, as well as accelerated epigenetic
aging [66, 68]. Future studies might examine if CHIP is involved in
the interplay between hemostasis and complement.

Diagnosis and treatment of macro-thrombotic events
The diagnosis of thrombotic events in HCT patients is challenging,
as clinical signs are often unspecific and overlap with other
complications. The use of biomarkers such as D-dimer and
prothrombin fragment 1+ 2 is hampered by very low specificity
and sensitivity and can be affected by other factors, such as
inflammation, infection, and liver dysfunction. Other common
prediction scores for venous thromboembolism (VTE), such as the
Vienna prediction score [69] or the DASH score [70], cannot be
applied in the context of HCT because of the substantial changes
in cellularity and low specificity of biomarkers. In addition,
quantitative changes in coagulation enzymes and natural
inhibitors cannot fully explain the occurrence of peri-transplant

thrombosis. However, the simultaneous occurrence of multiple
concomitant risk factors seems to be relevant. Prevention and
treatment of thrombotic events in HCT settings are based on
benefit–risk considerations of anticoagulation therapy. Prophylac-
tic anticoagulation with heparins can reduce the incidence of VTE
in HCT but may also increase the risk of bleeding, especially in
patients with thrombocytopenia, mucositis, or liver dysfunction
[52, 71]. The use of fully dosed anticoagulation at therapeutic
levels with warfarin, direct oral anticoagulants, or heparins can
provide treatment for evident thrombotic events in HCT but may
be complicated by drug interactions, adverse effects, and
monitoring challenges in these patients. The optimal duration,
dose, and type of anticoagulation in the peri-transplant setting are
not well established and remain a matter of discussion relating to
individual risk–benefit assessment and clinical responses.

FOCUS ON MICROANGIOPATHIC THROMBOSIS AS A
DYSREGULATION OF HEMOSTASIS AND COMPLEMENT
The complement system plays a crucial role in HCT, as it may be
involved in beneficial and detrimental effects on transplant
outcomes [72, 73]. On the one hand, the complement system
can facilitate the engraftment of donor stem cells, promote graft-
versus-leukemia effect, and contribute to protection against
infections [72, 74–77]. On the other hand, the complement
system can also be involved in the development of HCT-related
complications in patients [72] and mouse models, such as GvHD
[78, 79], transplant-associated thrombotic microangiopathy (HSCT-
TMA) [29], sinusoidal obstruction syndrome/veno-occlusive dis-
ease (SOS/VOD), and infectious complications [72]. Due to
dysregulated complement and hemostasis, endothelial activation
and endothelial cell injury play important roles in the pathogen-
esis of these life-threatening complications after allogeneic HCT.
HSCT-TMA is characterized by microangiopathic hemolytic

anemia, thrombocytopenia, and renal or neurologic complications
in a post-HCT setting [80–83] and is more prevalent in patients
undergoing allogeneic HCT. However, it has also been described
in autologous HCT, mainly in pediatric patients [84]. Reported
incidences of TMA after HCT are variable, ranging from 5.6–44.0%.
Cytopenias and organ dysfunction, common events in HSCT
recipients, impede the prompt diagnosis of the syndrome, and
alternative causes for renal and neurologic dysfunction post-HCT
might be at play [85, 86]. HSCT-TMA has been recognized as an
actual “endothelial injury syndrome”. Several factors, including the
toxicity of conditioning, the administration of calcineurin inhibi-
tors, alloreactivity, bacterial products, and GvHD play a role in the
development of a prothrombotic state that may contribute to the
pathogenesis of thrombotic events in the microvasculature [87].
Thus, thrombosis in patients with HSCT-TMA often results from the
interaction of complement, the coagulation cascade, and neu-
trophils [88]. In contrast to thrombotic thrombocytopenic purpura
(TTP), ADAMTS 13 is not deficient in this syndrome and is
considered inadequate as a disease marker [89, 90] consistent
with plasma exchange not being convincingly effective for the
management of HSCT-TMA in several cohorts [91]. Complement
activation might play an important role in HSCT-TMA [92, 93]. In
vitro activation of the complement system has been shown in
small studies of pediatric patients with HSCT-TMA. Mezö et al.
introduced soluble C5b-9 as a predictive marker of the later
development of TMA in allogeneic HCT recipients [94]. Rotz et al.
reported increased complement activation in a small cohort of
HCT-TMA patients, using the modified Ham (mHAM) test, which
was originally described for atypical hemolytic uremic syndrome
[95]. Jodele et al. first described mutations in complement-related
genes in pediatric patients after HCT [93], as well as an adverse
prognostic effect of mutations in the alternative pathway of
complement (APC)-related genes [96]. Data about genetic
susceptibility at the complement factor and ADAMTS13 levels
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have also been reported in adult transplant settings. Like in aHUS,
a two-hit pathogenesis might also play a role in HSCT-TMA. The
first hit involves the genetic susceptibility of complement
activation in these patients, while as a second hit, clinical factors
may be implicated, such as donor type, age, conditioning,
calcineurin or mTOR inhibitors, GVHD, or infections. Moreover,
thrombin generation in patients receiving anti-thymocyte globu-
lins (ATG) has also been associated with excess complement
activation.
Various diagnostic criteria are available for HSCT-TMA. The Blood

and Marrow Transplant Clinical Trials Network (BMT-CTN) and
International Working Group (IWG) criteria have been widely used.
In comparison to the BMT-CTN criteria, in the IWG criteria for the
diagnosis of HSCT-TMA, organ damage is not needed, while a wider
spectrum of patients with microangiopathic hemolytic anemia that
may not be a result of complement system activation are included
[97]. The diagnostic criteria of the TMA Harmonization Panel are the
most up-to-date criteria proposed for the diagnosis of HSCT-TMA,
including both biopsy-proven disease from the kidney or gastro-
intestinal system and clinical criteria [98]. Increased serum levels of
neutrophil extracellular traps (NETs) have been recognized as
predictors of HSCT-TMA onset in adult and pediatric populations
[88, 99]. Despite substantial efforts to define soluble biomarkers of
endothelial activation after HCT as predictors for TMA, no such
biomarkers have been established [49, 100, 101].
GVHD is the main cause of mortality after allogeneic HCT in the

absence of relapse or secondary malignancy [33, 34, 102].
Complement dysregulation has been implicated in GVHD in
murine systems and humans [30, 103]. Inhibition of the alternative
pathway (APC) by compstatin, a C3-targeted complement
inhibitor, has led to reduced proliferation of T cells and Th1/
Th17 polarization, as shown in human cutaneous tissues [77, 104].
Recently, the C5a/C5aR IL-17A axis was implicated in the
development of chronic GVHD in an in vitro study [105]. Levels
of C3 have been correlated with sclerotic cutaneous GVHD, while
patients with these lesions have abnormalities in complement
factor H and APC functional assays [72, 106]. In addition, findings
on intracellular components of the complement system acting in
parallel to the humoral model might provide insights into the
pathogenesis of endothelial injury in GVHD [16]. One might
speculate that T cells containing C3 may mediate complement
activation and inflammation on and/or underneath the endothe-
lial cell layer after migration, thus promoting endothelial injury as
a component of GVHD pathogenesis [16, 107]. Markers of
endothelial dysfunction, such as endothelial microvesicles, are
increased 2-3 weeks after allogeneic HSCT and in patients with
acute GVHD [108, 109]. Treatment of GVHD with complement
inhibitors is still under investigation. One prospective phase 2a
study has examined the role of complement inhibition on adult
patients with acute GVHD (aGVHD) and involvement of the lower
gastrointestinal tract [77]. The researchers examined the efficacy
of ALXN1007 (C5a inhibitor) administration in combination with
corticosteroids in a cohort of 25 patients. The overall response rate
28 days post-treatment initiation was 58%.
SOS/VOD is considered a rare but severe complication of

allogeneic HCT [31] with increased risk upon application of
gemtuzumab or inotuzumab prior to HCT or in preexisting liver
damage [110, 111]. SOS/VOD pathogenesis is correlated with
damage to sinusoidal endothelial cells and hepatocytes that
contributes to venular occlusion, and modifiable vs. persistent risk
factors for SOS/VOD have been described in detail [31]. Little is
known about changes in complement parameters during SOS/
VOD. Since SOS/VOD is related to endothelial damage, comple-
ment activation might find a suitable substrate to develop, in
analogy to the development of HELLP-type microangiopathies
during pregnancy [112–114]. Various biomarkers have been
reported as predictive tools, but none have been reliably
established for routine clinical application [31, 49].

TREATMENT APPROACHES FOR HSCT-TMA ADDRESSING
DYSREGULATED HEMOSTASIS AND COMPLEMENT
Increasing insights into the underlying mechanisms of HSCT-TMA
have revolutionized the management of affected patients.
Complement inhibition constitutes a cornerstone in the thera-
peutic approach to HSCT-TMA and has proven effective for
patients with other TMAs, such as atypical hemolytic uremic
syndrome [115, 116]. Eculizumab, a C5 inhibitor, inhibits the
terminal pathway of the complement system and has been widely
used in HSCT-TMA [117, 118]. Real-world data have shown that
early administration of eculizumab in patients with increased
activation of the complement system, as assessed by measure-
ment of C5b-9 levels, close monitoring of treatment response, and
dose modification, when necessary, results in better outcomes
[119]. Before the era of therapeutic complement inhibition, the
management of HSCT-TMA included supportive treatment,
calcineurin or mammalian target of rapamycin (mTOR) inhibitors,
and corticosteroids. Moreover, plasma exchange or infusions of
rituximab were also used, according to each center’s policy.
Eculizumab has revolutionized the management of both pediatric
and adult patients with HSCT-TMA [117–119]. In some studies, the
response rate to eculizumab reached 93%. However, the overall
survival of patients with HSCT-TMA remains low at approximately
30% [118], while Jodele et al. reported higher 1-year survival rates
of 66% in a cohort of pediatric eculizumab-treated patients vs.
17% in a historical control group [119]. Table 1 illustrates the
published studies on the use of complement inhibitors in HSCT-
TMA [117, 119–127]. These agents have not yet been officially
approved for use in these patients.
Next-generation complement inhibitors are currently under

investigation for the treatment of adult and pediatric patients with
HSCT-TMA. A phase 2 single-arm, open-label study of narsoplimab
(a MASP-2 inhibitor) in 19 HSCT-TMA patients reported a greater
median OS than in a historical control group [124]. This drug is
currently under priority review by the FDA. Ravulizumab, a C5
inhibitor approved for the treatment of paroxysmal nocturnal
hemoglobinuria, aHUS, generalized myasthenia gravis, and
neuromyelitis optica spectrum disorder, is being investigated in
a phase 3 trial in adults (NCT04543591) and children
(NCT04557735). Coversin or nomacopan, a C5 inhibitor that blocks
leukotriene B4, is under investigation in a two-part phase 3 trial of
pediatric HSCT-TMA (NCT04784455). Complement inhibitors in use
or under study as therapeutics for the management of HSCT-TMA
are presented in Table 2 and Fig. 3 [16].
Since inflammation is a common denominator for thrombotic

events, triggered by hemostasis and/or complement activation,
interventions that reduce or restrict inflammation might prove
beneficial [128]. Newly developed targeted coagulation factor XI
inhibitors, used as antithrombotics, have demonstrated clear
anti-inflammatory activity as a surrogate effect in humans and in
experimental studies [129, 130]. Currently, they are being tested
as anticoagulants only in phase II and III trials in patients with
stroke and in patients with atrial fibrillation as protection against
stroke [131, 132]. One might speculate that factor XI inhibitors
might prove more efficient than their competitors if given as
thromboprophylaxis in patients with HCT [133, 134]. From the
physiology point of view activation of the contact phase of
coagulation can trigger hemostasis but dispense unexpected
thrombus formation [132]. They seem promising in patients with
severe kidney disease or cancer-associated thrombosis, an area
where other established direct oral anticoagulants are excluded.
The anti-inflammatory action of FXI-inhibitors might prove
beneficial against complement activation, or they might act
synergistically with complement activation inhibitors [24]. Major
drawbacks for their use, though, might be their known
potentially unfavorable drug-drug interactions and, until pre-
sent, the lack of direct antidotes for the case of a bleeding
complication [135].
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FUTURE RESEARCH AND CLINICAL PROSPECTS
Thrombotic events are increasingly recognized as a distinct
clinical complication in the context of HCT. Investigating
the pathophysiology of thrombosis becomes more complex as
the function and interplay of multiple effectors, such
as Hemostasis and Complement, are further elucidated. Adverse
reactions of mechanisms of the innate immunity resulting
in thrombotic events were only recently described as the concept
of Immunothrombosis [136–138]. They involve the role
and interaction of various components, such as innate immune
cells, platelets and coagulation factors, in an effort to clear
local infections. The immune system in both its humoral and
cellular dimension is strongly challenged and affected during
the process of HCT. Thrombotic events have a variable impact
on the immune system triggering inflammatory responses,
an observation known as thromboinflammation [136]. Under-
standing thromboinflammation and immunothrombosis,
through the dual role of Hemostasis and Complement as
biological defense systems, helps explain micro- or macro-
thrombotic complications in HCT and design better treatment
approaches. Iatrogenic interventions during the process of HCT
could also be added to the list of triggering mechanisms for
thrombotic events, as the catheter related thrombosis clearly
demonstrates.

Given the high mortality and morbidity that patients with HSCT-
TMA experience, identification of novel biomarkers aiming for
early diagnosis of this severe disease entity is crucial for better
outcomes for our patients. Future research efforts should focus on
the role of next-generation complement therapeutics in the
management of this distinct type of TMA, examining not only their
impact on the overall survival but also on the quality of life of the
patients. Genetic and functional data regarding complement
activation in patients with GVHD are crucial, while research should
investigate the role of alternative and lectin pathways in the
pathogenesis of this syndrome. Moreover, multi-center collabora-
tion can be helpful for the examination of the safety and efficacy
of complement inhibitors in aGVHD. SOS/VOD constitutes a rare
but fatal HSCT complication. The genetic background of SOS/VOD
should also be investigated, contributing to the development of
targeted therapies.
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