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malignancies, but may be intricately linked to hematological side effects such as anemia,
lymphopenia or thrombocytopenia. The safety and efficacy of novel theranostic agents, tar-
geting increasingly complex targets, can be well served by comprehensive dosimetry. How-
ever, optimization in patient management and patient selection based on risk-factors
predicting adverse events and built upon reliable dose-response relations is still an open
demand. In this context, artificial intelligence methods, especially machine learning and
deep learning algorithms, may play a crucial role. This review provides an overview of
upcoming opportunities for integrating artificial intelligence methods into the field of dosim-
etry in nuclear medicine by improving bone marrow and blood dosimetry accuracy, enabling
early identification of potential hematological risk-factors, and allowing for adaptive treat-
ment planning. It will further exemplify inspirational success stories from neighboring disci-
plines that may be translated to nuclear medicine practices, and will provide conceptual
suggestions for future directions. In the future, we expect artificial intelligence-assisted
(predictive) dosimetry combined with clinical parameters to pave the way towards truly per-
sonalized theranostics in radioligand therapy.
Semin Nucl Med 00:1-10 © 2024 The Author(s). Published by Elsevier Inc. This is an open
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Introduction

Radipharmaceutical therapy (RPT) is a treatment modality
in nuclear medicine that utilizes radiopharmaceuticals to

selectively irradiate specific target tissues. The cytotoxic radi-
ation from b- or a-particles is delivered directly to the cancer
cell or the tumor microenvironment via vehicles that bind
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endogenously or via physiological accumulation mechanisms
characteristic in neoplasia, and which allow for targeted ther-
apeutic approaches. RLT is an effective option in the treat-
ment of a variety of cancers, including thyroid cancer,
neuroendocrine tumors, and prostate cancer.1

In extensively treated patients, however, hematotoxicity
is considered a relevant dose limiting morbidity. The Net-
ter I trial reported lymphopenia of grade �3 according to
Common Terminology Criteria of Adverse Events in 10/
111 patients with advanced, progressive, somatostatin-
receptor-positive neuroendocrine tumors treated with
[177Lu]Lu-DOTATATE.2 In the VISION-trial, the largest
prospective trial investigating [177Lu]Lu-PSMA-617 in cas-
tration resistant metastatic prostate cancer patients in con-
junction to standard of care treatment, the most frequent
adverse event of grade �3 was anemia occurring in
12.9% of patients.3 In patients with hormone refractory
1
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prostate cancer with skeletal metastases treated with the
a-emitter 223Ra-dichloride, grade �3 anemia was reported
in 13%, thrombocytopenia in 6%, and neutropenia in 3%
of patients (ALSYMPCA trial).4 These marketing approval
leading phase III trials highlight the intrinsic nature of
hematotoxic responses to RLT. Therefore, one of the
upcoming obligations of the nuclear medicine community
will lie on optimization in patient management based on
predictive risk-factors. Careful patient selection will
potentially reduce the number of adverse effects and
broaden the applicability of theranostic treatment options.
Dosimetry of blood and bone marrow (BM) is essential in

RLT for predicting hematological and BM toxicity, such as
myelosuppression. This is due to its intricately linked dose-
response relationship that has been extensively studied for
various radiopharmaceuticals in the past decades.5-9 In the
era of precision medicine, there are, however, several factors
including segmentation accuracy, computational capacities,
the presence of skeletal metastases and total tumor burden,
as well as specific binding of unlabeled nuclides to the BM or
daughter migration in unbound a-particles that may affect
the accuracy of dosimetry calculations, potentially restricting
their predictive value.
Advances in artificial intelligence (AI) methods that are

increasingly applied in the field of nuclear medicine10 hold
promise to overcome today’s challenges to enable more accu-
rate assessment of absorbed doses to blood and BM. In this
context, leveraging machine learning (ML) and deep learning
(DL) algorithms, may play a crucial role by heightening
dosimetry accuracy, enabling early identification of potential
hematological risk-factors, and paving the way for personal-
ized and adaptive treatment optimization. This review delves
into the literature available by now on AI in BM and blood
dosimetry, exemplifies inspirational success stories from
neighboring disciplines that may be translated to nuclear
medicine practices, and provides conceptual suggestions for
future directions.
What About It
Internal Dosimetry
Internal dosimetry is the science that focuses on the measure-
ment and calculation of energy imparted to matter from
radionuclides within both organs and tissues. The study of
internal dosimetry also takes into account the spatial and
temporal distributions, which are sampled with gamma-cam-
eras and other detectors used in conventional and PET
nuclear medicine. Dosimetry provides the fundamental
quantities needed for occupational exposures in radiation
protection, waste and environmental exposures, risk assess-
ment and treatment planning. Most relevant for the practice
of nuclear medicine is that for the approval of new radiophar-
maceuticals, the regulatory agencies for medicine, such as
European Medicines Agency (EMA) or the US Food and
Drug Administration (FDA) require that dosimetric evalua-
tions are performed in human subjects.11
The classical models used for radiopharmaceutical dosime-
try Medical Internal Radiation Dosimetry (MIRD) or Interna-
tional Commission for Radiation Protection (ICRP) are
computational methodologies that facilitate absorbed dose
calculations to target organs based on the number of radioac-
tive decays that occur in source organs. The general formula-
tion D = eA£ S, reflects the organ-specific kinetics combined
in the time-integrated activity (eA) and the spatial radiation
transport combined in the S-value (S). The S-values are
radionuclide� and anatomic model�specific.12 In this for-
mulation, most organs are source and target organ simulta-
neously, with an absorbed fraction depending on the target
mass, gamma-radiation yield per decay and beta-radiation
energy distribution. The remaining energy that is imparted
outside of the source region is summed up as cross radiation
and contributes to the exposure of neighboring organs and
tissues. When considering organs that have a particularly
wide extension in the body, such as the blood and bone mar-
row, it is necessary to consider the different contributors to
the total absorbed dose.13

Current developments in imaging modalities such as Psi-
tron Emission Tomography (PET) / Computed Tomography
(CT) and Single Photon Emission Computed Tomography
(SPECT) / Computed Tomography (CT) allow for accurate
assessment of absorbed doses in small volume elements.
Voxel-based dosimetry presents an alternative to the classical
dosimetry models. These are based on the calculation of a
voxel S-value by simulating the radionuclide corresponding
monochromatic photon and electron sources in different
homogeneous tissues.14 The voxel S-value is then convoluted
with the activity distribution, which can be worked out to
display a dose�volume histogram of the volume of interest.
AI in Medicine
In recent years, AI has emerged as an essential tool in medical
applications, revolutionizing various aspects of healthcare
through advanced computational techniques. First, the
breakthrough of AI methods in computer vision was enabled
by large, preannotated datasets like ImageNET15 and
COCO,16 where different machine learning models were
tested, validated, and compared. In addition, the introduc-
tion of convolutional neural networks that could indepen-
dently learn the patterns from raw data partially eliminated
the need for human programmers to elaborately design imag-
ing features.17 For the medical image segmentation tasks,
especially U-Net18 and self-configuring nnU-Net19 have been
successfully trained and validated on various imaging modal-
ities and tasks.

Medical AI research commonly follows a similar pattern.
The studies typically employ supervised training methods
and rely on limited labeled datasets due to privacy concerns
associated with real medical data and the need for annotation
from domain experts. While these models perform remark-
ably well on specialized tasks, they often struggle to general-
ize beyond their specific training data. This limitation
highlights the need for more versatile AI approaches to han-
dle diverse medical challenges.20,21
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The emergence of foundation models marks a notable shift in
AI development. Unlike traditional supervised models, founda-
tional models utilize self-supervised learning, enabling them to
train on large, heterogeneous data without or with very little
need for expert annotation.22 This approach allows founda-
tional models to attain high accuracy across various medical
tasks, particularly when adapted for specific applications.
In the coming years, we anticipate the emergence of several

foundational models tailored to the medical field, which can
seamlessly process data from multiple data modalities, quickly
learn new tasks, and use medical domain knowledge.22 Given
these advancements, we propose using supervised models as an
initial proof-of-concept to validate the feasibility and efficacy of
AI solutions for medical tasks. Subsequently, the focus should
shift towards collecting large, diverse, multicentric, multina-
tional harmonize datasets versus data sets and fine-tuning and
adapting medical foundation models. This dual approach
would combine the advantages of the AI models, such as acces-
sibility, easier validation of supervised models, and better gener-
alization of foundation models.
Integrating AI in BoneMarrow
Dosimetry
In dosimetry, data collection and calculations are labor-inten-
sive and complex procedures that require medical physics
expertise and proper dosimetry software tools. One of the
focus-areas within the current research landscape has been
the optimization of the time-consuming data acquisition pro-
cess from serial imaging as well as multiple blood and urine
sampling measurements. Several approaches for minimizing
sampling time points via inclusion of population-based bio-
kinetic data (single time-point dosimetry) have been intro-
duced.23-25 These simplifications provide access to routinely
feasible and moderately accurate organ dosimetry in individ-
uals encompassing similar excretion kinetics as the popula-
tion used for respective model development. However, with
the rapid development of DL algorithms, leveraging the cal-
culation speed and automation capabilities of various dosim-
etry steps has become increasingly attractive by prioritizing
accuracy of dosimetry calculations at clinically feasible
computational effort.26 In the following, the specific chal-
lenges of BM dosimetry will be addressed as well as the possi-
bility to overcome these challenges with AI methodologies, in
order to facilitate segmentation, fitting procedures, and radia-
tion transport and energy deposition calculations.
Bone Marrow Segmentation
BM segmentation “in bone metastatic diseases” or similar. Oth-
erwise, no malignant cells poses a unique challenge in nuclear
medicine due to the presence of healthy and malignant cells.
Therefore, delineation of metastatically affected BM tissue is not
straightforward. Its complexity differentiates it from other
organs-at-risk like kidneys, where the focus is solely on protect-
ing healthy tissue from radiation.27 In BM, the primary goal of
RPTs or RLTs is often to eliminate the metastases while preserv-
ing or allowing for regeneration of healthy tissue. Typical meth-
ods have made use of surrogate radiopharmaceuticals to
specifically target active BM. Delker et al.28 used 99mTc-anti-
granulocyte antibody SPECT/CT for active BM segmentation in
[177Lu]Lu-PSMA-617 therapy. Peterson et al.29 presented a
methodology to calculate the absorbed dose to hematopoieti-
cally active cells using 99mTc-sulfur colloid imaging for red mar-
row localization and quantification. Dalvand et al.30 conducted
a study to calculate the BM absorbed dose of [141Ce]Ce-EDTMP
complex and compared it with that of 89Sr-dichloride using
Monte Carlo simulations.

In recent years, DL models have been increasingly used for
automated segmentation of organs and tumors from medical
images, such as CT or PET/CT scans, with ever-increasing
speed and accuracy.31-35 DL network architectures most com-
monly used for image segmentation are fundamentally similar,
and according to their backbone, can be classified into U-Net-
based networks and vision transformer-based networks.18,36

Importantly, the accessibility of freely available segmentation
networks, such as TotalSegmentator, has led to a wide adop-
tion of such tools in the field of clinical research37 and increas-
ingly in commercial tools38 In the field of BM dosimetry, this
will probably significantly reduce the time and effort required
for manual or semi-automatic segmentation of bone sites or
even the spongiosa, which is a crucial step in imaging-based
dosimetry calculations and is particularly extensive for BM due
to its distribution throughout the body.39,40

A simple way of dealing with intra- and inter-individual
tumor burden in close vicinity to the BM could be the separa-
tion of macroscopic ligand-specific tumor sites from the total
BM volume. In external beam radiotherapy, numerous studies
have reported on DL methods for clinical target volume seg-
mentation in different cancers, such as prostate cancer,37,41

non-small cell lung cancer,42 breast cancer,43 rectal cancer44 cer-
vical cancer,45 head and neck cancer,46 pancreatic cancer,47 and
stomach cancer.48 These DL tools also hold significant promise
for application in RLT. For example, Zhao et al.49 proposed an
automated prostate cancer lesion characterization method with
DL to determine tumor burden on [68Ga]Ga-PSMA-11 PET/CT
in PSMA-directed RLT. Li et al.50 developed an automated DL-
based framework that segments and classifies uptake on PSMA-
PET/CT to automate quantification of whole-body tumor bur-
den. Another multicenter study demonstrated strong perfor-
mance and generalizability of a multiple 3D U-Net approach for
total tumor volume segmentation from FDG-PET/CTs in lym-
phoma.116 A recent review conducted by Brosch-Lenz et al.51

discussed established and emerging segmentation techniques,
along with their potential utilization in RLT.

Interestingly, in histopathological analyses, DL models
with a 3-layer hierarchical framework were previously used
in whole-slide BM images to detect BM cells and cellular trails
and to identify the right cell-type.52,53 In addition, a multi-
step ML approach with individual DL-models was reported
to accurately distinguish between acute myeloid leukemia
and healthy tissue.54,55 Although single cell-based disease
status prediction was not reliable, these efforts illustrate how
beneficial DL models may become in differentiating



Figure 1 Conceptual illustration of potential use-cases for implementing AI methodologies in BM dosimetry protocols.
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malignant from healthy BM tissue and should inspire the
nuclear medicine community to dare exploration of such
novel methodologies for dosimetry purposes.
Bone Marrow Dosimetry Workflow
The complex structure and spatial distribution of BM within
the body, coupled with the generally low uptake of radio-
pharmaceuticals in this region, present a number of chal-
lenges to the current methodology of BM dosimetry. These
limitations preclude its broader clinical implementation.13

One potential solution could be the integration of AI into the
methodology of BM dosimetry. This could, for example,
facilitate data acquisition (e.g., accelerated image acquisi-
tions) or enhance the accuracy of dosimetry calculations and
their comparability between different sites. Another potential
avenue for exploration lies in the integration of AI methodol-
ogies into the BM dosimetry workflow, particularly in dosim-
etry software platforms. This could improve access to the
methodology, and make it more suitable for routine clinical
practice. Besides segmentation, which was addressed earlier,
a number of steps in the dosimetry workflow, including
image registration, curve fitting, and dose calculation, could
be simplified or even automated. Examples for potential
ways of AI-integration in BM dosimetry are shown in
Figure 1. The aspects with the highest potential are listed
and briefly outlined below:
Enhancement of imaging: the low uptake of most radiophar-
maceuticals in the BM results in very low count rates during
imaging, which in turn leads to a high noise level. Similar to tra-
ditional signal processing techniques, artificial intelligence
methods could be employed to reduce the noise level of the
images before (e.g., in the projection domain) or after recon-
struction.56-58 Alternatively, convolutional neural networks
have been employed to reduce scan time while preserving
image quality.59 This has been achieved, for instance, by gener-
ating synthetic projections that have never been recorded.
Recently, deep learning approaches have also been used to cor-
rect for the partial volume effect, which strongly deteriorates the
quality of SPECT/CT images by blurring the activity between
bone sites, which can lead to errors in quantification, especially
for therapeutic radionuclides such as 177Lu and 131I.60,61

Time-activity curve fitting: AI techniques can be employed
to fit time-activity curves (e.g., those derived from quantitative
imaging data), which represents a pivotal step in the estimation
of time-integrated activity coefficients (formerly: residence
times) and, thus, in the calculation of absorbed doses. Particu-
larly in instances of complex biodistribution kinetics or when
incorporating population-based models, AI approaches could
enhance conventional analytical methodologies.39,62

Monte Carlo radiation transport simulation: AI can be
employed to expedite radiation transport simulations, which
are typically conducted using Monte Carlo simulations that
serve as the foundation for calculating patient-specific dose
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distributions. For instance, post-injection image data can be uti-
lized to inform Monte Carlo simulations of dose distributions.
Convolutional neural networks can be trained in a supervised
manner to accelerate Monte Carlo simulations of dose distribu-
tions or even replace them entirely, thereby reducing the
computational effort required to perform full Monte Carlo sim-
ulations. This can be achieved, for example, by the time-efficient
estimation of tissue-specific convolutional kernels.26,63-65 An
example for the architecture of a convolutional neural network
used for organ dosimetry is shown in Figure 2. This algorithm
was applied on serial [68Ga]Ga-NOTA-RGD-PET/CT data and
revealed mean absorbed dose errors at organ level of less than
1.5% at almost 4000 times faster computational time compared
to the reference Monte Carlo simulation. In addition, hybrid
approaches combining DL algorithms with multiple voxel-S-
value have recently allowed for voxel-wise absorbed dose map-
ping considering heterogeneous uptake patterns in a Monte-
Carlo wise manner.66,67 Mansouri et al.67 employed a U-Net
Transformer model combined with multiple voxel-S-value to
evaluate organ- and voxel-wise absorbed dose errors in [177Lu]
Lu-DOTATATE therapy and reported less than 1% mean error
for tumors and most investigated organs at risk including kid-
neys, liver and spleen. In this approach, processing time was
only around 3 seconds per single-bed SPECT/CT. In BM dosim-
etry in particular, the microdistribution of the volume fractions
of trabecular bone, fat and hematopoietic tissue plays a major
role. AI might be used here to estimate these volume fractions
from other imaging modalities and derive a corresponding com-
position-dependent dose prediction.
Direct estimation of bone marrow dose: the type of BM

uptake of a radiopharmaceutical (specific or nonspecific in
the context of blood flow) plays an important role in BM
dose calculation, as does the activity concentration in the
blood. In the future, image-based AI algorithms may be
employed to estimate the dose absorbed to the BM directly
Figure 2 Example of a U-Net architecture for internal dose calc
volutional neural network to estimate voxel dose rate values
The matrix dimensions of each feature map (box) are indica
based dose rate maps served as reference. Re-printed from.115
from the imaging data, potentially obviating the necessity for
blood sampling or the use of surrogate organs such as the
whole body (which is often employed in planar whole-body
images) or the lumbar spine (which is typically utilized in 3D
imaging).40,63

Workflow automation: as previously stated, the integration
of AI into dosimetry software platforms could facilitate the
automation of various steps within a dosimetry workflow.
This could, in turn, enhance the efficiency and accuracy of the
BM dosimetry workflow, potentially eliminating the necessity
for the majority of manual steps. This would, in turn, reduce
the time and effort required for dosimetry, thereby facilitating
wider clinical adoption.
Enhanced Biodosimetry
Peripheral blood mononuclear cells can be used to determine
radiation damage in patients or to investigate differences in
radiosensitivity between patients by biological methods.
There are numerous cytogenetic studies on blood samples
from patients undergoing nuclear medicine therapy, e.g. on
dicentric chromosomes,68-72 on translocations,73 or on
micronuclei.74-76 A summary of the most important studies
on this topic can be found in a review by Schumann et al.77

An advantage of these cytogenetic methods is that they can
detect radiation-induced effects of therapies at the cellular
level. However, the disadvantage of all these methods is their
low sensitivity in the range of absorbed doses below 100
mGy. This is an absorbed dose to the blood delivered during
many radionuclide therapies, especially in the first few hours
after the start of therapy.77 By combining the absorbed dose
determination in the blood with specific biomarkers, possible
dose-effect relationships can be generated. However, most of
the studies mentioned before, did not directly determine the
ulation. The Deep-dose algorithm/method applies a con-
(output) from quantitative hybrid imaging data (input).
ted below the respective map. Monte Carlo simulation-



ARTICLE IN PRESS

6 A. Moraitis et al.
absorbed dose in the blood, so there is little data available to
determine dose-effect relationships.
For absorbed doses in the low-dose range below 100 mGy

the biomarkers g-H2AX and 53BP1 are frequently used as a
surrogate measure of DNA double strand breaks (DSBs).78,79

Using this assay several studies have shown that there is a lin-
ear correlation between the absorbed dose to the blood and
the number of radiation-induced g-H2AX and 53BP1 DSB
foci in the first hours after radiopharmaceutical administra-
tion.80-83 At time points >24 h, the number of radiation-
induced DSB foci decreases, even though the absorbed dose
increases, most likely because DNA DSB repair competes with
ongoing foci induction (>24 h) due to the non-negligible
absorbed dose rate of residual activity in the body. These data
may be indicative of what happens in normal tissues exposed
to internal radiotherapy, and of tumor response in patients
with neuroendocrine tumors84 and prostate cancer.85

In most cases foci numbers from images obtained by
confocal microscopy are manually counted in 100 cells.
However, due to the low numbers of events in the
absorbed dose range below 100 mGy, it would be advan-
tageous to analyse a higher number of cell nuclei in order
to minimise statistical uncertainties. This could be
achieved by using special automated programmes for
image analysis. A further advantage of an automated anal-
ysis is that the uniform counting method, independent of
the observer, would also allow larger and multicentre
studies, as well as simple routine analyses. This image
analysis could be further improved by applying AI meth-
ods for automated image analysis. However, no auto-
mated programme has yet delivered reliable results in the
range of low absorbed doses expected in the blood dur-
ing radionuclide therapies. Most programmes were ini-
tially developed for higher absorbed doses (e.g. >1 Gy)
and a correspondingly larger number of foci. In recent
years, however, there have been publications on auto-
mated programmes that, according to the authors, are
also suitable for the low absorbed dose range, such as
AutoFoci86 or use promising new methods, such as
FocAn87 or Foci-Xpress.88 FociRad89 applies methods for
deep learning to these images, however, it was optimised
for absorbed doses of more than 1 Gy.
To further enhance the potential of biodosimetry and to

describe patient-specific absorbed-dose dependent DNA dam-
age response in peripheral blood mononuclear cells a linear
one-compartment model was developed using data from
patients with differentiated thyroid carcinoma receiving their
first radioiodine therapy.90 This model could be extended to
other therapies to significantly reduce the number of blood sam-
ples required to describe the in vivo induction and repair of
DSBs. It is expected that this model could also be used for retro-
spective dosimetry of other radionuclides in radiation accidents.
Another step in linking biodosimetry data obtained from

experiments is to use them to validate Monte Carlo simula-
tions of radiation damage to DNA, e.g. with “Geant4-
DNA”.91-94 These results in combination with experimental
data could be used to further improve dosimetry and to estab-
lish dose-response relationships in radionuclide therapies.
Adaptive Treatment Planning
Most RLTs use fixed administered activities and treatment
cycles � a historically driven approach. However, given the
interindividual variability of tumor uptake patterns, and the
generally low toxicity profile observed so far, it has been sug-
gested that many if not most patients are being undertreated
at this empiric regime.95 This, in turn, has led to the develop-
ment of dose escalation strategies following two basic princi-
ples: a) extend the number of treatment cycles to obtain a
fixed cumulative administered activity and b) increase the
administered activity per cycle based on individual dosimetry
of organs at risk to obtain a fixed cumulative organ absorbed
dose (toxicity threshold dose). The first concept was recently
successfully applied in PSMA-targeted RLT therapy,96,97 as
well as 177Lu- and/or 90Y-based peptide receptor radiother-
apy.98 The feasibility of latter principle was demonstrated in
the P-PRRT trial95,99 and a combination of both approaches
was used in the Uppsala observational study.100 Interest-
ingly, both studies used kidney dosimetry to individually tai-
lor the cumulated activity per patient/cycle, and obtained
grade three kidney toxicity in �0.5% of patients, while at
least grade three subacute hematological/BM toxicity was
observed in 5.8% (leukopenia and thrombocytopenia) and
15% (BM) of patients, respectively. In patients with healthy
kidney function, individualized treatment planning based on
blood and BM dosimetry could, therefore, become a key
component for optimizing patient management in RLT.

Foremost among relevant parameters for individualized
RLT is the determination of reliable dose-effect rela-
tions.7,101-104 The development and increasing accessibility
of DL architectures may further increase predictive accuracy
by incorporating clinical- and patient-specific data to achieve
satisfactory generalizability of training models. Such novel
approaches have not yet been used in nuclear medicine, but
the concept of DL-enhanced adaptive treatment planning is
already known from external radiotherapy. In here, DL
approaches have been utilized for adaptive radiation therapy
by modifying treatment parameters based on up-to-date
patient anatomy and treatment response. For example, task-
and patient-specific adaptive radiation therapy has been
implemented by overfitting DL models to patient-specific
data and which resulted in more accurate autocontouring in
CT used for treatment re-planning.105 Dose adaptation with
DL methods has been demonstrated for various entities,
including lung cancer,106,107 and prostate cancer.108

Although the application of DL in adaptive RLT has yet not
been explored, it could be a promising tool to, for example,
automatically adjust the activity and the time between cycles
by considering potential changes in the physiological biodistri-
bution, tumor volume, and uptake patterns, as well as time-
dependent cellular repair mechanisms after initial treatment.
Clinical Perspectives
In the era of personalized medicine, nuclear medicine has
evolved from offering standardized RLT to customizing
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treatments based on individual factors such as tumor hetero-
geneity and therapeutic responses.109,110 Broader application
of RLT presents significant potential; however, it is crucial to
monitor potential severe hematotoxic or nephrotoxic side
effects. Although serious adverse events are infrequent and
most of them are well manageable, identifying at-risk patients
is essential. For example, in patients responding to PSMA-tar-
geted therapy for mCRPC or PRRT for neuroendocrine
tumors, extended treatment cycles require monitoring of
cumulative doses due to potential bone marrow
depletion.97,98,111 This risk is heightened in patients previ-
ously treated with chemotherapy, as their hematopoietic
recovery capacity can be compromised, increasing the likeli-
hood of severe adverse events. Here, dosimetry can play a
vital role. Dosimetry of tumor lesions and safety organs facili-
tates the customization of RLT through tailored regimens that
aim to minimize toxicity and enhance tumor responses.112

Specifically, correlation of the absorbed dose to the BM with
a reduction in platelet count and decrease in hemoglobin levels
has been observed.7 Additionally, it is crucial to consider the
absorbed dose in the spleen, as it is the most irradiated organ
during PRRT and serves as a significant reservoir of blood
cells.113,114 It is also recognized that treatment response varies
among patients with similar clinical conditions who receive
identical activities, which is largely attributed to differences in
the absorbed doses to target lesions. With regards to dosimetry,
several aspects could be significantly enhanced and streamlined
by applying AI methods. The application of AI methods in BM
dosimetry is particularly noteworthy for its clinical implications.
The reduced time requirements can lead to broader implemen-
tation in clinical practice and greater availability and applicabil-
ity in larger patient cohorts. This advancement may bring
dosimetry offerings closer to routine clinical use. Furthermore,
AI can facilitate the linkage between macrodosimetry and
microdosimetry, ultimately enabling the generation of a com-
prehensive dose profile for individual patients.15 Additionally,
higher standardization can enhance the reliability of dose-
response relationships, thereby strengthening clinical confi-
dence in dosimetry results and further promoting wider adop-
tion. It is also likely that user dependency will decrease, which
results in improved comparability of dosimetry methods and
results across different centers, and which facilitates multicenter
studies, contributing to further generation of evidence.
Conclusion
This review was designed to inspire and motivate the nuclear
medicine research community on the opportunities for inte-
grating artificial intelligence methodologies in blood and
bone marrow dosimetry-guided RLT. Leveraging machine
learning and deep learning algorithms are expected to play a
crucial role in internal dosimetry by heightening accuracy
and standardization at low computational effort, and
enabling early identification of potential hematological risk-
factors. In the future, we expect artificial intelligence-assisted
(predictive) dosimetry combined with clinical parameters to
pave the way towards truly personalized theranostics in RLT.
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