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Abstract

This study investigates the complex interplay of wake flow structures, particle shape,

and falling behavior of snowflakes through advanced flow analysis. We employ Proper

Orthogonal Decomposition and Dynamic Mode Decomposition to analyze the wake flow

patterns of three distinct snowflake geometries at Reynolds number of 1500: a dendrite

crystal, a columnar crystal, and a rosette-like particle. Proper Orthogonal Decomposi-

tion reveals that spatial resolution significantly impacts the capture of flow structures,

particularly for particles with with more intricate wake flow structure, corresponding to

unstable falling motion. Dynamic Mode Decomposition demonstrates high sensitivity

to temporal resolution, with data of the forces exerted on the snowflake incorporated

in the matrix prior to the decomposition mitigating information loss at lower sampling

rates. We establish a linear relationship between snowflake shape porosity and mini-

mum and maximum Dynamic Mode Decomposition eigenfrequencies, absolute decay or

growth rates, and wavenumbers of the most energetic mode, linking particle geometry

to wake flow characteristics. Higher porosity corresponds to more stable, small-scale
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flow structures and steady falling motion, while lower porosity promotes larger, unsta-

ble structures and falling trajectories with random particle orientations. These findings

reveal the interdependence of snowflake geometry, wake flow configuration, and falling

behavior and highlight the importance of considering both spatial and temporal reso-

lutions when dealing with modal analysis. This research contributes to improved pre-

dictions of snowflake falling behavior, with potential applications in meteorology and

climate science.

Keywords: Aerodynamics, Modal Analysis, Snowflake Falling Behavior, Wake Flow

Features.
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1 Introduction1

In weather prediction, the orientation of snow crystals during free-fall plays a pivotal role2

(Geier and Arienti, 2014). Together with snowflake fall speed, it impacts snowfall and the3

subsequent distribution of snow on the ground (Aguirre et al., 2018; Bender et al., 2020;4

Li et al., 2021). In nature, snowflakes exhibit a wide range of geometries and sizes (Bailey5

and Hallett, 2009; Kikuchi et al., 2013). For large snow particles (Dmax & 100 µm), their6

particle Reynolds number (Re = utDmax/ν ≫ 1, where Dmax represents the particle’s max-7

imum extension orthogonal to the flow direction [m], ut is the snowflake’s terminal velocity8

magnitude [m/s], and ν is the kinematic viscosity of air [m2/s]) deviates from the Stokesian9

regime (Re≪ 1) (Libbrecht, 2005; Westbrook, 2008). This, together with snowflake irregular10

shapes, gives rise to complex falling motion with intricate trajectories (Gunn and Marshall,11

1957; Nemes et al., 2017; McCorquodale and Westbrook, 2020b).12

Understanding the elaborate free-falling dynamics of snowflakes necessitates a compre-13

hensive exploration of the interplay between wake flow, snowflake shape, and particle aero-14

dynamics. Particle wake flow exerts a substantial influence on its drag and overall falling15

behavior (Adrian, 1991; Giles and Cummings, 1999; Auguste et al., 2013; Singh et al., 2023).16

Previous research has extensively studied the wake flow structures behind simple particle17

geometries such as spheres (Uhlmann and Dusek, 2014; Emadzadeh and Chiew, 2020), cylin-18

ders (Toupoint et al., 2019), disks (Field et al., 1997; Kim et al., 2018), planar polygons19

(Esteban et al., 2019), and polyhedra (Trunk et al., 2021; Gai and Wachs, 2024). Only a20

few studies have ventured into investigating the wake flow behind complex-shaped objects21

and the effect of shape features, such as shape porosity and sphericity, on drag and particle22

falling behavior (Nediç et al., 2015; Cummins et al., 2018; McCorquodale and Westbrook,23

2020b). Our past work (Tagliavini, 2022) delved into the interplay between wake flow fea-24

tures, drag coefficient, and falling behavior of realistic snow particles using Delayed-Detached25

Eddy Simulations (DDES) on fixed snowflakes subjected to airflow. This approach, validated26

for the prediction of the particles’ drag coefficients and fall speeds (Tagliavini et al., 2021a)27

against experimental data of 3D-printed snowflake analogs falling in a vertical water tank28

(McCorquodale and Westbrook, 2020b), was further extended by Tagliavini et al. (2021b)29

through a comprehensive analysis of wake flow organization, momentum flux decomposition,30

and their relation with the drag acting on the snow particles. While the analysis highlighted31
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vortex dynamics in the wake flow of complex-shaped snow particles, the question regarding32

the dominant flow structures in the particle wake, as well as their impact on the particle33

falling behavior, remained open.34

To address the challenges posed by intricate flow patterns and high-order dynamics, such35

as those present in the wake flow of complex-shaped particles, it has become established to36

simplify such flows using modal decomposition techniques (Cherubini et al., 2021; Huang37

et al., 2022; Yu and Durgesh, 2022). These data-driven methodologies, including Proper Or-38

thogonal Decomposition (POD) (Lumley, 1967) and Dynamic Mode Decomposition (DMD)39

(Schmid, 2010), are effective in capturing energetically and dynamically significant features40

of a given flow field, primarily velocity or vorticity fields (Menon and Mittal, 2020; Corso41

et al., 2021). These techniques yield spatial flow features, called modes, accompanied by42

characteristic values indicative of energy content, decay or growth rates, and frequencies (Tu43

et al., 2014). However, to the best of our knowledge, these techniques have not yet been44

applied to explore the wake flow of complex-shaped snow particles.45

In the present study, we first aim to evaluate the impact of spatial and temporal filtering46

of flow data sets on the accuracy of POD and DMD results. To achieve this, the streamwise47

velocity ux is taken into account due to its capability of capturing the primary flow dynam-48

ics, such as flow separation and coherent structures within the wake flow, which are critical49

for understanding drag and lift forces. Furthermore, the choice of one velocity component50

makes the calculation less computationally demanding. We perform Proper Orthogonal De-51

composition on two distinct numerical data sets: the streamwise velocity field in the wake52

from simulations of fixed, complex-shaped snow particles at Re = 1500 (spatial resolution of53

approximately 10−4 m), and the same wake velocity field at the same Re spatially resampled54

to match the resolution of experimental flow data (spatial resolution of approximately 0.00255

m (McCorquodale and Westbrook, 2020a)). Subsequently, Dynamic Mode Decomposition56

is performed on the computational streamwise velocity field and on the same field with the57

forces acting on the snow particle added to the snapshot matrix. By including both stream-58

wise velocity and force data, it is possible to assess the imprint of forces exerted on the59

particle onto the wake flow through the DMD analysis. This leads to a deeper understanding60

of the causal relationships at play in snow particle aerodynamics. In the final part of our61

study, a correspondence between the extracted temporal and spatial features from the DMD,62

the snowflake shape, and the snow particle falling behavior is established and discussed.63

This paper presents the following structure. In Section 2.1, we briefly describe the ex-64
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perimental set-up and observations that informed our numerical model, whose description65

follows in Section 2.2. The theory underlying Proper Orthogonal Decomposition and Dy-66

namic Mode Decomposition is explained in Section 2.3. Then, the type of data sets and the67

methods employed for the analysis of the data are presented in Section 2.4. We finally discuss68

the results in Section 3.69

2 Materials and methods70

In this section, a concise overview of experimental set-up and observations that informed71

and allowed to validate our numerical model is provided (Section 2.1). We then summarize72

the key aspects of the numerical model in Section 2.2, and we offer a brief exposition of73

the theory underlying Proper Orthogonal Decomposition and Dynamic Mode Decomposition74

(Section 2.3). Lastly, Section 2.4 examines the type of data and the methods employed to75

analyze the results.76

2.1 Particle orientations from 3D-printed snowflake analogs’ exper-77

iments78

The experiments involve the release of 3D-printed snowflake analogs in a vertical tank79

containing a viscous fluid. Measurements of instantaneous flow velocities are obtained using80

synchronized cameras and a dedicated algorithm (McCorquodale and Westbrook, 2020a).81

Precise tracking of falling analogues is achieved, allowing for the reconstruction of time-82

resolved trajectories and orientations (spatial resolution: ≈ 0.15 cm). From a variety of snow83

particle shapes examined (McCorquodale and Westbrook, 2020b), three distinctive shapes,84

among those employed in the experiments, are selected for this study: a plate-like dendrite85

crystal D1 (D1007), a capped-column CC (CC20Hex4), and rosette crystals MR (MR172).86

These three shapes are representative of realistic snowflake classes found in nature (Kikuchi87

et al., 2013).88

From the experimental data we obtain information about the inflow velocity and the89

particle orientation relative to the flow direction which are crucial for setting up the compu-90

tational model. Figure A1 in the Supplementary Material illustrates the final orientations91

of D1, CC, and MR (in black). These orientations are taken from the laboratory obser-92

vations after the particle has been falling for a certain amount of time and has reached a93
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quasi-stable motion. It is clear that, for particles with unsteady falling behavior, a quasi-94

stable falling condition is difficult to determine. As a consequence, alternative orientations95

are selected for particle CC and MR. In particular, we define two extreme orientations that96

represent two extreme positions that these geometries frequently adopt during free fall, as97

illustrated in Figure A1(b, c) (Tagliavini et al., 2021b). A full description of the wake flow98

and falling behavior of each snow particle is presented in Section 3.1 to assist the reader in99

fully understanding the results.100

2.2 Delayed-Detached Eddy Simulations101

The computational model of the 3D fixed snow particle is based on a hybrid RANS-LES102

approach known as Delayed-Detached Eddy Simulation (DDES) (Spalart et al., 2006). The103

DDES model employs the Spalart–Allmaras turbulence closure to evaluate the eddy viscosity104

ν̃ for the RANS calculation (Spalart and Allmaras, 1994). It is implemented in OpenFOAM105

4.1 (Open source Field Operation And Manipulation), a C++ software built upon the finite106

volume method (OpenFOAM, 2017). The transient, incompressible Navier-Stokes equations107

govern the airflow motion:108

∇ · u = 0,

ρ

(
∂u

∂t
+ (u ·∇)u

)

= −∇p+ µ∇2u+ ρf ,
(1)

where u is the flow velocity [m/s], ρ is the fluid density [kg/m3], p is the pressure [Pa], µ109

is the dynamic viscosity of the fluid [Pa·s], and f represents external forces per unit mass110

[N/kg]. The forces acting on the particle, with normal and tangential contributions, can be111

expressed as:112

F = Fp + Fν =

∫

S

pn dS +

∫

S

τ n dS, (2)

where n is the normal unit vector on the particle surface S, and τ denotes the viscous stress113

tensor [Pa]. At the inlet, a uniform air velocity is imposed and computed using:114

u∞ =
Re ν

Dmax

. (3)

Here, Re stands for the desired particle Reynolds number, Dmax represents the maximum115

dimension of the particle (i.e., the largest dimension of the snow particle normal to the flow116
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direction) [m], u∞ denotes the uniform inlet velocity [m/s], and ν represents the kinematic117

viscosity of air [m2/s]. The domain and grid size of the computational model are depicted in118

Figure A2. All simulations run at Re = 1500 and at least for five flow through times to ensure119

a fully developed wake flow behind the object (Durbin and Medic, 2007). For more details120

on the validation, the grid convergence study, the turbulence modeling, and the numerical121

schemes, the reader is referred to Tagliavini et al. (2021a).122

2.3 Modal analysis of the wake flow field123

Modal analysis techniques, such as Proper Orthogonal Decomposition (POD) and Dy-124

namic Mode Decomposition (DMD), are powerful tools extensively used in fluid dynamics125

to understand and extract dominant features from complex flow fields (Tu et al., 2014; Kutz126

et al., 2015; Cherubini et al., 2021; Huang et al., 2022). POD and DMD make use of a127

snapshot matrix. This matrix contains information about the investigated field at different128

time instants stored as column vectors in chronological order:129

X = [x(ζ, t1),x(ζ, t2), ...,x(ζ, tm)] ∈ R
n×m , (4)

where ζ denotes the spatial coordinate vector and x is a vector field (in our case the stream-130

wise velocity), while t1, ..., tm are the time instants sampled at an interval ∆t (see Section131

2.4). POD and DMD are based upon Singular Value Decomposition (SVD) of the snapshot132

matrix. SVD can be employed to obtain optimal low-rank matrix approximations and is133

formulated as follows. Let us consider a set of complex quantities vk ∈ C
n, A ∈ C

m×n, and134

qj ∈ C
m. We can write in matrix form:135

AV = QΣ , (5)

with V = [v1, ...,vn] ∈ C
n×n, Q = [q1, ..., qm] ∈ C

m×m, and Σ ∈ R
m×n a matrix with136

σ1 > σ2 > ... > σg > 0 along its diagonal (g = min(m,n)) and zero elsewhere. Isolating137

the A matrix, multiplying the right-hand side of Equation (5) by the conjugate transpose138

V ∗(= V −1), we obtain:139

A = QΣV∗ . (6)
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2.3.1 Proper Orthogonal Decomposition140

Proper Orthogonal Decomposition (POD) was first introduced by Lumley (1967). In fluid141

dynamics, it became a common technique to extract coherent flow structures to characterize142

turbulence-related phenomena (Leask and McDonell, 2019). POD provides the best approx-143

imation of the original data in the least-squares sense for any given number of modes r. This144

can be expressed mathematically as:145

min
φPOD
i

M∑

j=1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x(ζj, tj)−
r∑

i=1

αPOD
i (tj)φ

POD
i

︸ ︷︷ ︸

X(ζ,t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

, (7)

where M is the total number of time steps and X(ζ, t) is the approximated field, in which the146

time coefficients αPOD
i are obtained by projecting the original field onto the space spanned147

by the POD modes (αPOD
i (t) = (φPOD

i )Tx(t)), and φPOD
i are the POD modes that carry the148

spatial information. The minimization performed by POD ensures that for any truncation149

level r, the POD modes provide the most efficient representation of the data in terms of150

captured energy.151

We take into consideration the snapshot matrix X as defined in Equation 4 and apply152

an eigendecomposition to the correlation matrix R = XXT ∈ R
n×n. We then obtain153

the eigenvectors and eigenvalues φPOD
i and µPOD

i , respectively. Therefore, it is possible to154

formulate:155

RΦPOD = MPODΦPOD , (8)

with ΦPOD = [φPOD
1 , ...,φPOD

n ] and MPOD = [µPOD
1 , ..., µPOD

n ]. Each eigenvalue µPOD
i repre-156

sents how much the energy contained in each mode φPOD
i captures the energy of the original157

field. The error associated with the truncation to r modes can be quantified using the eigen-158

values:159

ǫr =

∑m

i=r+1 µ
POD
i

∑M

i=1 µ
POD
i

. (9)

This error measure allows to choose the number of modes that balance between model dimen-160

sionality reduction and accuracy. In fact, retaining only the most energetic modes, POD can161

significantly reduce the dimensionality of the problem while minimizing the loss of important162

flow features (Tu et al., 2014; Taira et al., 2017).163

8



2.3.2 Dynamic Mode Decomposition164

Dynamic Mode Decomposition (DMD) operates by decomposing time-resolved data to165

identify coherent spatio-temporal patterns, their growth rates, and their frequencies. Since166

its introduction by Schmid (2010), many different variations of the algorithm have been167

proposed (Belson et al., 2014; Vega and Le Clainche, 2017; Krake et al., 2019). As compared168

to POD, it provides additional information about the temporal behavior of the decomposed169

data considering the best-fitting linear operator A to approximate the dynamics of a system:170

∂x(t)

∂t
= Ax(t) , (10)

whose solution is:171

x(t) = eAx(t) x(0) , (11)

in which x(0) represent the solution of the system at t = 0 s. DMD approximates the172

snapshot matrix X (Equation (4)) with a set of eigenvectors and eigenvalues, which carry173

the spatial and temporal information of the system, respectively. To perform Dynamic Mode174

Decomposition, the matrix X is split in two matrices X1 and X2 which are the non-time-175

advanced and the time-advanced matrix, respectively. X1 incorporates the snapshots from176

t1 to tm−1, whereas X2 the snapshots from t2 to tm, where m is the number of time instants177

considered for the temporal sampling. Therefore, the dynamic system can be expressed as:178

X2 = AX1 ,

A = X2X
+
1 ,

(12)

with X+
1 , the Moore–Penrose pseudo-inverse of X1. First, the SVD is carried out on X1:179

X1 = QΣV∗ . (13)

Then, if we truncate the SVD by taking into account only the first r columns of Q and rows180

of V , and the first r rows and columns of Σ (i.e., Qr, Vr, and Σr), we get:181

Ã = QT
r X2VrΣ

−1
r , (14)

where Ã is the reduced-rank matrix of A. Through eigendecomposition we have:182
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ÃW = MDMDW , (15)

where MDMD is the diagonal matrix containing the DMD eigenvalues, µDMD
i , and the183

columns of W are the eigenvectors of the reduced-rank matrix Ã. To retrieve the DMD184

modes (eigenvectors) of matrix A, we use:185

ΦDMD = (MDMD)−1X2VrΣ
−1
r W . (16)

that is the matrix containing the DMD modes, which carry the spatial information of the186

linear operator characterizing the dynamical system. If we define the exponential eigenvalues187

as λDMD
i = log(µDMD

i )/(∆t), the reconstruction of the analyzed field from DMD eigenvectors188

and eigenvalues is given by:189

X(ζ, t) = ΦDMDe(Λ
DMD∆t)C , (17)

in which C = (ΦDMD)TX1 contains the modal amplitudes, which scale each DMD mode190

based on its initial contribution to the system (at time t = 0), i.e. the amplitudes indicates191

how strongly each mode influences the initial conditions. In Equation (17), ΛDMD is the192

diagonal matrix of the exponential eigenvalues λDMD
i . The introduction of the latter allows193

for establishing a correspondence between Equation (17) and Equation (11). The DMD194

eigenvalues come in conjugate pairs and are complex numbers defined as µDMD
i = ai + jbi195

(with ai and bi the real and the imaginary part, respectively, and j =
√
−1), and can be used196

to express:197

µDMD
i (t) = eℜ(λDMD

i
)∆t · ejℑ(λDMD

i
)∆t . (18)

Based on this definition we can derived the following quantities (De Schryver, 2016; Taira198

et al., 2017):199

- exponential eigenvalue: λDMD
i =

log(µDMD
i

)

∆t
;200

- modulus: |µDMD
i | = ρi =

√

a2i + b2i which defines the mode evolution in time (|µDMD
i | =201

1 for stationary behavior, |µDMD
i | < 1 in case of decay, and |µDMD

i | > 1 for a growing202

mode);203

- absolute decay or growth rate: σi = ℜ(λDMD
i );204
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- relative decay rate: ψi =
σi

ωi
;205

- angular frequency: ωi = ℑ(λDMD
i );206

- eigenfrequency: γi =
ωi

2π
.207

While both POD and DMD serve the purpose of extracting meaningful modes from flow208

data, they have distinct characteristics and applications. POD primarily focuses on spatial209

structures and energy content, providing a low-dimensional representation of the dominant210

flow patterns. In contrast, DMD lays emphasis on the temporal dynamics and frequency211

content of the flow field, enabling the analysis of transient behavior and the identification212

of oscillatory (growing or decaying) phenomena (De Schryver, 2016; Taira et al., 2017). In213

this work, the Python library modred 2.1.0 developed by Belson et al. (2014) is employed,214

which allows for parallel computation of both POD and DMD. The library is adapted to ac-215

commodate our needs regarding the data analysis without substantial changes to the original216

algorithm.217

2.4 Data sets, modal quantities, and particle shape descriptors218

In our work, different data sets are analyzed to investigate the influence of diverse types219

of data on the modal analysis output and to identify the underlying wake flow patterns past220

complex-shaped snow particles. The data include:221

• Data set S1 : streamwise velocity field (ux) from Delayed-Detached Eddy Simulation222

(DDES) of a fixed snowflake (D1, CC, and MR, see Section 2.1) at a Reynolds number223

of 1500. We collect the ux field within the wake using two different sampling rates: 1000224

Hz (∆t1) and 500 Hz (∆t2). The highest sampling rate comes from the saved time steps225

of our numerical model, while the second is taken as half of the first one.226

• Data set S2 : the previous velocity field ux is spatially resampled on a larger grid to227

mimic the experimental resolution of 2 mm (see Section 2.1), allowing us to assess the228

impact of the spatial resolution on the modal analysis output. For the resampled data,229

only ∆t1 is used as snapshot sampling frequency.230

• Data set S3 : for this third data set, the streamwise velocity field ux is combined with231

the forces acting on the snow particle in the x, y, and z direction, calculated from232
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the numerical simulations. These data offer a more complete collection of information233

concerning the snowflake wake flow structures that are indiscernible from the forces234

acting on the snow particle.235

To extract dominant coherent structures and assess the influence of spatial resolution, we236

apply Proper Orthogonal Decomposition to S1 and S2 . To better quantify the influence237

of spatial resolution, we perform a spatial Fast Fourier Transform using Welch’s algorithm238

(Welch, 1967), with 256 sample points per segment, 50% overlap between segments, and239

a Hann windowing. To perform the FFT on the first and second POD mode, their spatial240

signals (streamwise velocity field ux) are sampled along five lines within the particle wake with241

2000 sampling point each line, as illustrated by Figure A3 of the Supplementary Material.242

The POD mode signals at each point of the sampling line are then averaged, and the FFT243

is applied to the resulting spatially averaged signal. We obtain the spatial Power Spectral244

Density (PSD(κ)) estimation as:245

PSD(κ) =
1

Nζ Uζ

∣
∣
∣FFT

[

Φ
POD

i

]∣
∣
∣

2

, (19)

where Φ
POD

i represents the averaged signal from sampled POD modes spatially averaged over246

the five lines, κ denotes the wavenumber [1/m], and Nζ is the number of points per segment,247

and Uζ is the normalization factor related to the window function.248

In the second part of this study, Dynamic Mode Decomposition is performed on data249

S1 and S3 . The modes are ordered based on the energy criterion proposed by Tissot et al.250

(2014). This ordering criterion prioritizes the modes capturing the majority of the energy251

content EDMD
i within the snow particle wake, providing a more accurate representation of252

the dominant flow structures:253

EDMD
i = |ci|

e(2σi T ) − 1

2σi T
, (20)

in which |ci| is the magnitude of the modal amplitude of the i-th mode, taken from matrix254

C = (ΦDMD)TX1, σi is the absolute decay or growth rate, and T is the total sampling time255

[s] (in our case equal to 1 s). Equation (20) introduces a new method for selecting the most256

influential DMD modes based on a combination of their amplitude and their growth rate over257

a specified time period T . For the mode selection, we evaluate the normalized value of the258

energy as:259
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(EDMD
i )∗ =

Ei

max(Ei)
. (21)

After ordering the modes, the spatial and temporal signals from DMD are analyzed. Regard-260

ing the spatial signal, we employ the averaging operation over five lines (Figure A3 in the261

Supplementary Material) as for the POD, using Equation (19) and substituting Φ
POD

i with262

Φ
DMD

i to get the spatial FFTs of the first four DMD modes, ordered according to previously263

presented energy criterion. Subsequently, the temporal dynamics is also investigated. To do264

so, the temporal signal of the first 100 DMD modes is reconstructed as follows:265

XDMD
rec (t) =

100∑

i=1

ci e
σi ∆t · ej ωi ∆t , (22)

with ci, σi, and ωi defined in Section 2.3.2. The signal XDMD
rec (t) from Equation (22) is then266

incorporated in Welch’s algorithm to obtain the temporal power spectral density (PSD(f)):267

PSD(f) =
1

Nt Ut

∣
∣FFT

[
XDMD

rec (t)
]∣
∣
2
, (23)

where f denotes the frequency [1/s], Nt is the number of time points per segment, and Ut is268

the normalization factor related to the window function.269

To appraise the influence of the particle shape on the wake flow, the same geometrical270

features as in Tagliavini et al. (2021b), namely the particle’s shape porosity and Corey’s271

shape factor (Corey, 1949), are employed. Since only the porosity ǫ showed a consistent272

correlation to the quantities from the modal analysis, we report its definition here below:273

ǫ = 1− AR, (24)

where AR is defined as AR = Ap/Adisk, with Ap being the particle frontal area and Adisk the274

area of the enclosing disk [m2]. The shape porosity of the three investigated snow particles275

is 0.62, 0.51, and 0.14 for D1, CC, and MR, respectively.276

3 Results and discussion277

In this section, the results pertaining to Proper Orthogonal Decomposition and Dynamic278

Mode Decomposition on snow particle wake flow characteristics are presented and discussed.279

Initially, we focus on the POD analysis performed onto data sets S1 and S2 , sampled at280
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rate ∆t1. Subsequently, we explore the DMD results from data sets S1 and S3 , as explained281

in Section 2.4, using both sampling rates ∆t1 and ∆t2.282

3.1 Wake flow structures past snow particles283

To better understand and contextualize the results, we first describe the snow particle284

falling behavior, as observed during the experiments described in Section 2.1. The dendrite285

crystal D1 (Figure A1(a) in the Supplementary Material) displayed stable falling motion286

for the tested Reynolds number range (10 . Re . 1500), maintaining its largest projected287

area orthogonal to the falling direction (Figure A1(a)). MR’s stable falling persisted until288

Re ≈ 250. Beyond Re ≈ 250 a falling motion with randomly varying orientations (Figure289

A1(c)) was noted, which we will refer to as chaotic (McCorquodale and Westbrook, 2020b).290

CC exhibited stable falling for Re . 70, transitioning to a mildly spiraling trajectory for291

70 . Re . 400, and a spiraling trajectory with more abrupt changes in the orientation for292

Re & 400 (Figure A1(b)).293

In one of our former studies, we analyzed the wake flow configuration of the presented294

snowflake geometries (Tagliavini et al., 2021b) and we highlight below the main features in295

the wake flow for particle D1, CC, and MR at Re = 1500 to help in the comprehension296

of the results. D1’s wake flow field displays a small recirculation zone attached to the297

center of the particle and small vortices that originate from the branches of the dendrite.298

The recirculation zone and small vortices are sustained and symmetric, creating a stable299

descent, thus supporting a steady falling motion. CC, at the selected extreme orientation,300

features an asymmetric pair of vortices shed from the tips of the columnar crystal, which are301

associated with a marked spiraling fall of the particle. The rosette-like crystal (MR) has a302

more unorganized flow within its wake. This creates large and unstable structures that also303

influence the random orientations displayed by the particle during its descent.304

3.2 Spatial resolution sensitivity of Proper Orthogonal Decomposi-305

tion306

In the first part of our work, we investigate the effects of resampling the original streamwise307

velocity data (S1 ) onto a coarser spatial grid to mimic a less spatially resolved data set308

(S2 ), such as those collected during experiments (see Section 2.1). This analysis takes309

into consideration snow particle D1 (characterized by a steady falling motion), CC and310
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MR (exhibiting unsteady falling behavior), each inducing distinctive wake flow patterns311

(see Section 2.1). After performing Proper Orthogonal Decomposition on S1 and S2 , we312

removed the mode representing the averaged flow field from each data set to ensure that313

the remaining modes represent only the fluctuating part of ux. To begin with, we examine314

Figure 1, which illustrates the comparison between S1 and S2 with respect to the cumulative315

energy evaluated as:316

Energy(n)[%] =
Ec

Etot

× 100 =
Σn

i µ
POD
i

ΣN
i µ

POD
i

× 100 , (25)

where n is the n-th mode and N is the total number of modes. For snow particle D1, which317

exhibits a steady falling motion and induces less instabilities within the wake, the disparities318

between the mode energy content of the POD obtained from the original data and those from319

the resampled ones are negligible, having 92.35% of the energy represented by 20 modes for320

data set S1 against 91.52% for S2 . Conversely, for particles like CC and MR, which display321

unsteady falling trajectories and generate more unstable structures in their wakes, a lower322

spatial resolution produces a noticeable decrease in the energy content carried by each POD323

mode, from 76.04% (S1 ) to 73.51% (S2 ) of the energy carried by the first 20 modes for CC,324

and from 72.48% (S1 ) to 68.60% (S2 ) for MR.325

Thereupon, we turn our attention to the features depicted in Figure 2, 3, and 4, related326

to the visualization of iso-surface of the first and second POD modes and their spatial signal327

with regard to particles D1, CC, and MR. The first POD mode represents the most energetic328

mode and displays the dominant features of the flow, which are generally the largest and most329

energetic structures, while the second mode pertains to smaller and less energetic structures,330

which account for secondary flow motion within the wake. For the investigated snowflakes,331

the relative energy carried by the first and second mode is, respectively, 13.66% and 8.74%332

for D1, 7.31% and 6.08% for CC, and 8.23% and 6.42% for MR. The spatial signal of333

each mode is sampled along five lines of 2000 points each (Figure A3 in the Supplementary334

Material) and then averaged, as described in Section 2.4. With respect to particle D1335

(Figure 2), its branched shape introduces small-scale vortices that are sustained in time and336

space throughout the entire wake. This reflects in the qualitative representation of the first337

and second POD modes (Figure 2(a) and (b), respectively). Similarities emerge between338

structures’ shape in both the original (S1 ) and the spatially coarse data set (S2 ). However,339

the structures in S2 exhibit a greater distortion and bulkiness, in particular for the second340
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mode because smaller structures are more sensitive to spatial resolution. By looking closely341

to the signal, sampled over the previously mentioned lines (Section 2.4), of these two modes,342

the spatial PSD computed on the signal for the first mode displays higher amplitudes for343

S1 as compared to S2 , whereas the signal shape is preserved (Figure 2(c)). In contrast,344

Figure 2(d) shows that the signals of the second mode are in opposite phase. This phase345

disparity stresses the POD sensitivity to alterations in spatial resolution of the input data346

that might be noticed due to several factors, such as aliasing effect and resolution-induced347

phase shift (De Schryver, 2016). High wavenumbers in the spectra (Figure 2(c, d), right side)348

confirm the presence of small structures which are mildly smeared out by spatial resampling.349

Shifting our focus towards particle CC (Figure 3), the qualitative visualization of the POD350

modes sheds light upon the large, elongated structures rising from both sides of the particle,351

which are representative of the vortex street shed from the columnar crystal’s tips (Tagliavini352

et al., 2021b). For this geometry, both the qualitative visualization (Figure 3(a, b)) and the353

spatial spectral analysis (Figure 3(c, d)) show that for the resampled data S2 , POD tends354

to underestimate the spectral energy variations carried by smaller-scale wake flow structures,355

while exhibiting peaks in the spectra at high wavenumbers. In fact, the shape of the spectra356

for S1 and S2 is preserved, but PSD at lower wavenumbers are smeared out from S2 .357

Therefore, the information at lower scales is lost when decreasing the spatial resolution. A358

similar behavior is found for MR (Figure 4(a, b)), also characterized by an unsteady falling359

motion and strong wake flow instabilities (McCorquodale and Westbrook, 2020b; Tagliavini360

et al., 2021b). Even in this case, POD carried out on resampled data contains less details361

regarding the wake flow field. If we take a look at the spatial signals and their FFT (Figure362

4(c, d)), this is visible from the discrepancies at low wavenumbers, at which the PSD of S2363

is smeared out, as compared to S1 .364

The structures highlighted by the POD analysis corroborate the observations of the wake365

flow characteristics and falling behavior from both numerical simulations and experiments366

(McCorquodale and Westbrook, 2020b; Tagliavini et al., 2021b). Furthermore, the results367

stress the impact of spatial resolution on POD. In cases where the flow is characterized368

by small, uniformly distributed structures, as for D1, the impact of spatial resolution is369

limited. On the contrary, with flows where large structures are present (CC, MR), a lower370

spatial resolution can affect the information that the POD is able to capture. These findings371

are valuable when dealing with experiments characterized by low spatial resolution. They372

suggest that despite spatial limitations, essential flow features remain captured, when the373
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flow exhibits more organized patterns. However, in cases of stronger wake flow instabilities,374

it is essential to exercise caution when interpreting smaller scale structures, as these might375

be smeared out or distorted.376

3.3 Dynamic Mode Decomposition on flow data with and without377

force contribution378

With Dynamic Mode Decomposition, by considering the linearization of a non-linear379

system, we do not obtain modes representing the energetically dominant flow dynamics,380

as with Proper Orthogonal Decomposition, but we identify modes that evolve in time and381

space, and can therefore capture transient and non-periodic features of the flow field. The382

resulting eigenvalues are complex conjugate pairs that describe the temporal behavior, while383

the modes carry the information about the spatial features of the flow. For this purpose,384

the goal of this second part is to investigate the sensitivity of DMD to temporal resolution385

and to the inclusion of the information related to the forces acting on the particle into the386

snapshot matrix. In this view, both sampling rates ∆t1 (1000 Hz) and ∆t2 (500 Hz) are387

considered and the analysis is performed on two different snapshot matrices: the first one388

derived from the streamwise velocity field of the numerical model (S1 ) and the second one389

created by adding the forces exerted on each particle in the x, y, and z direction (S3 ) to390

the original snapshot matrix, as described in Section 2.4. Before performing the comparison,391

all the resulting modes are sorted according to the energy criterion from Equation (20). In392

this way, the modes are selected according to their energy content. Furthermore, the mode393

corresponding to the average ux field is removed from the DMD results to ensure that only394

transient features are considered.395

3.3.1 DMD temporal dynamics396

We initially focus on the temporal part of the signal, considering the first 100 DMD397

modes, as reconstructed from Equation (22). The PSD of XDMD
rec (t) is evaluated using398

Equation (23) for both data sets S1 and S3 , at two different sampling rates ∆t1 and ∆t2.399

This comparison is depicted in Figure 5 (left side: S1 , right side: S3 ), which also includes400

the power spectral densities from the temporal evolution of the forces acting on the snowflakes401

in x, y, and z directions, directly calculated from the numerical model. The forces spectra402

exhibit increasing fluctuation as we move from a steady falling motion (D1, Figure 5(a)) to403
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more convoluted fall trajectories (CC and MR, Figure 5(b, c)). By looking at the spectra404

of the reconstructed temporal signals, we notice that the sampling rate has a strong impact405

on the energy content, especially for the particles with strong wake instabilities (MR, CC).406

The use of the sampling rate ∆t2 seems to neglect important temporal features in both data407

sets and shows a lower energy content. This loss becomes more pronounced when stronger408

unsteadiness, such as vortex shedding (as observed by Tagliavini et al. (2021b)), comes into409

play (CC and MR). Therefore, the choice of the sampling frequency appears to be decisive410

for the accuracy of the temporal part in the DMD analysis of the wake flow. On the right-411

hand side of Figure 5, the reconstructed signals from data set S3 present a comparable412

trend to those of the forces exerted on the particles, meaning that the counting of the forces413

inside the snapshot matrix appears to have a mitigating effect on the loss of information for414

lower sampling rates (∆t2). This improvement can be seen from the high energy content of415

the orange and green curves on the right-hand side of Figure 5(c, d) for particle CC and416

MR, respectively, as compared to the plots on the left. The presence of a peak in the PSD417

for the lower sampling rate ∆t2 in the MR case (Figure 5(d), left-hand side, green curve)418

could be due to aliasing or insufficient resolution to capture the high-frequency dynamics419

correctly: unsteady motions involve a broad spectrum of frequencies, and a lower sampling420

rate might fail to resolve some of these frequencies, leading to artifacts or spurious peaks in421

the spectrum (De Schryver, 2016). The influence of temporal resolution and the inclusion of422

forces in the snapshot matrix is also visible from the exponential eigenvalues λDMD
i plotted423

onto the complex plane, as reported in Figure A4 and A5 of the Supplementary Material.424

The motivation for comparing the FFTs of reconstructed signals from the streamwise425

velocity field alone (S1 ) and combined with temporal force signals (S3 ) to the PSD of forces426

acting on the particle lies in understanding the complex interplay between flow dynamics and427

force dynamics. The first aspect to consider is the force-flow-snowflake motion interaction,428

wherein the forces acting on the particle are a direct manifestation of the underlying wake429

flow structures. By incorporating the force data into the snapshot matrix of the streamwise430

velocity, we are able to capture this forces- wake flow structures-snowflake falling motion431

interaction more effectively. In addition, forces often include high-frequency components,432

resulting from rapid changes in the flow around the unstably falling particle. Incorporating433

these into the DMD analysis helps in capturing these high-frequency dynamics that might434

be missed when using only the velocity field data.435
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3.3.2 DMD spatial dynamics436

We now look at the spatial characteristics of the DMD modes, particularly evaluating437

the spatial power spectral density derived through Fast Fourier Transform (Equation (19)).438

Employing only ∆t1 as the sampling rate, we concentrate on the first four DMD modes,439

selected according to the criterion given in Equation (20). We sample the streamwise velocity440

field ux in the wake along five distinct lines (Figure A3 in the Supplementary Material), as441

detailed in Section 2.4. After that, the signal along each of these sampling lines is averaged442

and the spatial FFT is then performed. Figures 6, 7, and 8 depict the results for the first two443

modes, for particle D1, CC, and MR, respectively, whereas the data related to the third444

and fourth mode can be found in Figure A6, A7, and A8 of the Supplementary Material.445

By looking at the visual representations of the iso-surfaces from the first two modes of D1446

(Figure 6(a, b)), we observe red and blue zones that indicate coherent structures of opposed447

directions, with slight variations in the shape and intensity in the case the particle forces are448

included (S3 ). The wake flow structures appear of small scale and are sustained through449

the entire length of the wake, which can be directly linked to the stable falling motion of the450

dendrite-like particle (Tagliavini et al., 2021b). Regarding particle CC (Figure 7(a, b)), both451

the first and the second DMD mode present more pronounced structures with marginally more452

intricate patterns for data set S3 . For both S1 and S3 , the flow tends to separate laterally453

at the column caps where structures of opposite directions (red and blue) are generated,454

indicating the presence of shed vortices (Tagliavini et al., 2021b) which influence the spiraling455

fall of the particle (McCorquodale and Westbrook, 2020b). The rosette-like snowflake (MR,456

Figure 8(a, b)) exhibits large, randomly distributed coherent structures. This disorganized457

distribution is consistent with the wake flow features and chaotic fall trajectories observed458

for the MR geometry in former studies (McCorquodale and Westbrook, 2020b; Tagliavini459

et al., 2021b).460

A more quantitative analysis can be found in Figure 6(c, d), in which the averaged spatial461

signal of the two modes and the respective wavenumber spectra are shown for the dendrite-462

like particle (D1). While the comparison between the power spectral densities of the first463

mode exhibit more distinct and higher spatial variations for S3 , the differences between such464

curves become less significant for the second mode. The inclusion of the forces provides465

additional information about the flow dynamics, by informing the linear operator A in the466

DMD of variations near the snowflake influencing the force distribution around it as well as467
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its falling motion. For particles characterized by small and non-persistent instabilities within468

the wake flow, such as the D1 case, this might result in a spectrum with higher energy469

content, when forces are included in the snapshot matrix, and more marked peaks at high470

wavenumbers. This phenomenon is less visible for particle CC and MR (Figure 7(c, d) and471

8(c, d), respectively). These two particle manifest larger structures in their wakes, which are472

less affected by the inclusion of the forces. When considering the spatial characteristics, other473

factors need to be taken into account. First of all, spatial averaging comes into play when474

the signal is sampled along the wake, effectively mitigating the influence of local fluctuations475

or noise in the data, resulting in a smoother spatial signal. This effect is less strong when476

the flow field exhibits small-scale and intermittent instabilities (D1) because of the presence477

of more compact, organized main flow structures. Besides, while temporal variations in flow478

data can be highly sensitive to transient effects of the forces acting on the particle (Figure479

5), spatial analysis focus on spatial coherence of the flow structures, making the inclusion of480

the forces less critical.481

To summarize, the differences in spatial signals between data sets S1 and S3 are more482

pronounced for particle D1, characterized by reduced unsteadiness within its wake flow, in483

contrast to MR and CC, which exhibit unorganized flow patterns, leading to a wide range484

of spatial scales.485

3.3.3 Wake flow characteristics and particle shape features486

In the final part of this work, we look at the relation between the snow particle shape487

descriptors, the spatial and the temporal information obtained from DMD. For this purpose,488

we focus on Figure 9 and 10 which relate the minimum and maximum DMD eigenfrequency,489

the maximum and minimum DMD absolute growth or decay rate, and the maximum and490

minimum wavenumber from the PSD of the line-averaged first DMD mode, respectively, to491

the shape porosity of each particle (Equation (24) in Section 2.4).492

As previously mentioned, Figure 9 shows the DMD eigenfrequencies (γDMD
min in Figure493

9(a), and γDMD
max in Figure 9(b)) for data sets S1 and S3 . These values are compared with494

the snowflake shape porosity ǫ. High values of ǫ imply small particle frontal area with respect495

to an enclosing disk, which promote the reduction of flow separation and vortex shedding, as496

observed by Cummins et al. (2018) and Tagliavini et al. (2021b). This is clear also from the497

eigenfrequency values of D1 which are the lowest for both S1 and S3 , indicating the presence498
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of less oscillating structures. As opposed to D1, CC and MR display higher γDMD
min and γDMD

max499

with MR exhibiting the highest values, in agreement with its increasing oscillations in the500

wake flow and its chaotic fall trajectory. A linear trend is observed for both data sets and501

can be attributed to the relation between shape porosity and its immediate effect on the flow502

dynamics around the particle, which affect the DMD eigenfrequencies. S3 presents a steeper503

linear profile than S1 for the minimum frequency (Figure 9(a)). The linear relationship504

between minimum eigenfrequency and porosity is stronger when forces are included in the505

snapshot matrix, as highlighted by the higher values of the coefficient of determination R2,506

and suggests a significant sensitivity of γDMD
min with respect to ǫ. Regarding γDMD

max , a less507

perceptible difference in the linear profile steepness between S1 and S3 demonstrates that508

the accounting for the forces influences the low eigenfrequencies more than the high ones.509

This can be explained by the fact that low eigenfrequencies correspond to less oscillating510

structures within the wake flow, which might be enhanced by the inclusion of the forces due511

to their temporal nature (see Section 3.3.1). Furthermore, the forces acting on the particle512

influence the long-term dynamics of the flow, which is why their inclusion in the DMD analysis513

tends to reflect on lower frequencies more significantly. An overall improvement in the linear514

trends appear whenever the forces are taken into account in the DMD analysis. Figure 9(c, d)515

illustrates the comparison between porosity ǫ and the minimum and maximum absolute decay516

or growth rate from DMD (ℜ(λDMD
i ) = σi) for all the three snow particles, for which a linear517

relationship is also established. High porosity particles, such as D1, exhibit strongly decaying518

(ℜ(λDMD
i )min) or stable (ℜ(λDMD

i )max) wake flow structures, resulting in more steady falling519

trajectories (McCorquodale and Westbrook, 2020b; Tagliavini et al., 2021b). Conversely,520

low-porosity particles, such as CC and MR, generate mildly decaying (ℜ(λDMD
i )min) or521

growing structures (ℜ(λDMD
i )max), leading to strong unsteadiness within the wake flow, thus522

more complex falling trajectories (McCorquodale and Westbrook, 2020b). The inclusion of523

forces acting on the snowflake in the snapshot matrix enhances our understanding of the524

interdependence between snowflake shape, wake flow features, and particle falling behavior.525

This effect is particularly evident in Figure 9(d), where high ℜ(λDMD
i )max values correspond526

to large wake flow instabilities and unsteady falling trajectories, as observed for MR. These527

findings establish a quantitative link between particle shape and wake flow characteristics,528

provide a method to predict wake flow instability and falling behavior based on particle529

geometrical features, and highlight the importance of considering both shape and forces in530

understanding snowflake dynamics.531
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Afterwards, we correlate the snowflake shape porosity to the minimum and maximum532

wavenumber from the spatial FFT of the first DMD mode (Equation (19) using ΦDMD),533

adimensionalized with the particle maximum dimension: κ∗min = Dmax · κmin and κ∗max =534

Dmax · κmax (with Dmax the particle’s maximum extension orthogonal to the flow direction,535

Figure 10(a, b)). The first mode is selected because it is the most energetic one (according to536

the selection criterion of Equation (20)) and generally carries the majority of the information537

on the flow dynamics. Similarly to the eigenfrequencies, the PSD wavenumbers also manifest538

a linear trend with respect to the shape porosity for both S1 and S3 , and from the coefficient539

of determination (R2) values reported in Figure 10, a slightly better agreement for data S3540

can be seen. However, no significant change in the slope between S1 and S3 is visible in541

Figure 10. In analogy of what we previously seen in Figure 6, 7, and 8, with respect to the542

spatial signals, the inclusion of the forces in the snapshot matrix does not significantly impact543

the spatial information. The linear relationship indicates that shape porosity plays a crucial544

role, not only in the temporal, but also in the spatial dynamics of the wake flow, influencing545

the size of the coherent structures that forms within the wake and thus impacting the particle546

falling motion, as discussed by Köbschal et al. (2023) and Sánchez-Rodríguez and Gallaire547

(2024). The highly porous shape of D1 (steady falling behavior) allows more fluid to pass548

through its structure, creating organized, finer-scale structures, which reflect onto higher549

wavenumbers. The intermediate porosity of CC (spiraling fall trajectory (McCorquodale550

and Westbrook, 2020b)) generates moderate complexity within the wake flow. This results551

in alternating small- and large-scale structures that correspond to intermediate values for552

the maximum and minimum wavenumbers. The least porous shape (MR, chaotic falling553

motion (Section 3.1)) displays large-scale wake flow structures, which find correspondence in554

low wavenumbers. For all the examined cases, the wavenumber from the spatially averaged555

spectra increases with increasing porosity. This denotes that a more porous geometry likely556

creates small-scale and intermittent structures within the wake flow that directly affect the557

falling trajectory of the particle, making it more stable (D1) (Cummins et al., 2018; Tagliavini558

et al., 2021b), while more porous shapes (low shape porosity) promote medium- and large-559

scale, temporally unstable structures that give rise to oscillating or chaotic falling behavior560

(CC, MR).561
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4 Conclusions562

This study employed Proper Orthogonal Decomposition (POD) and Dynamic Mode De-563

composition (DMD) to investigate the wake flow structures of three distinct snowflake geome-564

tries: a dendrite crystal (D1), a columnar crystal (CC), and a rosette-like crystal (MR).565

Our comprehensive analysis has yielded significant insights into the complex relationships566

between snowflake shape, wake flow characteristics, and falling behavior.567

POD revealed that spatial resolution sensitivity depends on the type of structures within568

the snow particle wake. For particles with steady falling motions (D1), the wake flow dis-569

played small, organized structures and the impact of spatial resolution was minimal. However,570

for particles with more complex wake flow (CC and MR), where larger structures are present,571

lower spatial resolution affected the information that the POD was able to capture at lower572

wavenumbers. This finding underscores the importance of spatial resolution considerations573

in experimental data interpretation, particularly for particles with complex wake flow.574

DMD provided crucial insights into both temporal and spatial dynamics of snowflake575

wake flows. We found that temporal resolution significantly affects how well the recon-576

structed temporal spectra from DMD match the forces’ spectra, especially for particles with577

strong wake flow instabilities. Including particle forces in the snapshot matrix improved the578

representation of high-frequency dynamics and mitigated information loss at lower sampling579

rates, particularly for particles with unsteady falling motions. Spatially, the DMD analysis580

showed distinct wake flow structures for each particle geometry. D1 exhibited small-scale581

structures, consistent with its stable falling motion. CC showed lateral flow separation at the582

column caps, with larger structures with marginally more intricate patterns. MR displayed583

randomly distributed large, coherent structures, aligning with its chaotic fall trajectory. The584

inclusion of forces in the snapshot matrix had a less decisive effect on the spatial dynamics,585

as compared to its effect on temporal dynamics, producing a slight increase in the spectral586

energy content for the case of particle D1.587

A key contribution of this study is the establishment of quantitative links between par-588

ticle shape (characterized by shape porosity), wake flow characteristics, and snow particle589

falling motion. We observed linear trends between particle porosity and the extracted DMD590

parameters, i.e. eigenfrequencies, growth or decay rates, and wavenumbers. High-porosity591

particles (D1) exhibited more stable, small-scale flow structures in the wake, corresponding592
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to steady falling behavior, while low-porosity particles (CC and MR) generated larger, less593

stable structures associated with more complex falling trajectories. The inclusion of force594

data stressed the complex interplay between snowflake shape, wake flow features, and particle595

falling behavior, offering a more complete understanding of snowflake aerodynamics.596

This study has significantly advanced our understanding of the wake flow of complex-597

shaped snow particles, providing both theoretical insights and practical tools for predicting598

snowflake falling behavior. Future work could extend this analysis to a broader range of599

snowflake geometries to further elucidate the relationships between particle shape, wake flow600

characteristics, and falling trajectories, which will allow for more accurate and reliable snow601

precipitation models, with far-reaching implications for weather forecast.602
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Tables and figures627

Figure 1: Cumulative energy percentage carried by each mode extracted from POD (Equa-

tion (25)) with the highest sampling frequency (∆t1). The comparison is made between the

original (S1 ) and the resampled numerical data (S2 ), as explained in Section 2.4.
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Figure 2: First and second mode resulting from Proper Orthogonal Decomposition per-

formed on the numerical (left) and the resampled data sets (right), respectively, pertaining

to particle D1. The top part of the figure qualitatively illustrates the spatial distribution of

the first (a) and the second (b) mode, while the bottom part shows the quantitative compar-

ison between the spatial signals and their power spectral density of S1 and S2 for the first

(c) and second (b) POD mode. The power spectral density and wavenumber are normalized

using their maximum values PSD∗ = PSD/PSDmax and κ∗ = κ/κmax (see Section 2.4).
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Figure 3: First and second mode resulting from Proper Orthogonal Decomposition per-

formed on the numerical (left) and the resampled data sets (right), respectively, pertaining

to particle CC. The top part of the figure qualitatively illustrates the spatial distribution of

the first (a) and the second (b) mode, while the bottom part shows the quantitative compar-

ison between the spatial signals and their power spectral density of S1 and S2 for the first

(c) and second (b) POD mode. The power spectral density and wavenumber are normalized

using their maximum values PSD∗ = PSD/PSDmax and κ∗ = κ/κmax (see Section 2.4).
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Figure 4: First and second mode resulting from Proper Orthogonal Decomposition per-

formed on the numerical (left) and the resampled data sets (right), respectively, pertaining

to particle MR. The top part of the figure qualitatively illustrates the spatial distribution of

the first (a) and the second (b) mode, while the bottom part shows the quantitative compar-

ison between the spatial signals and their power spectral density of S1 and S2 for the first

(c) and second (b) POD mode. The power spectral density and wavenumber are normalized

using their maximum values PSD∗ = PSD/PSDmax and κ∗ = κ/κmax (see Section 2.4).
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Figure 5: Comparison of the power spectra for all the three snowflake geometries D1

(a), CC (b), and MR (c). The reconstructed temporal signal (see Equation (22)) of the

first 100 DMD modes, of data sets S1 and S3 and for both sampling rates ∆t1 and ∆t2,

is compared with the temporal signal of the forces acting on each particle in x (drag), y,

and z (lift components) direction. On the left side the data of the numerical flow field

are presented, whereas on the right those including the forces acting on the particles are

shown. The power spectral density and frequency are normalized with their maximum values

PSD∗ = PSD/PSDmax and f ∗ = f/fmax (see Section 2.4).
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Figure 6: First and second mode resulting from Dynamic Mode Decomposition performed

on the numerical data (left) and the numerical data with the forces included in the snapshot

matrix (right), pertaining to particle D1. The top part of the figure qualitatively illustrates

the spatial distribution of the first (a) and the second (b) mode, while the bottom part shows

the quantitative comparison between the spatial signals and their power spectral density

of S1 and S3 for the first (c) and second (b) DMD mode. The power spectral density

and wavenumber are normalized with their maximum values PSD∗ = PSD/PSDmax and

κ∗ = κ/κmax (see Section 2.4).
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Figure 7: First and second mode resulting from Dynamic Mode Decomposition performed

on the numerical data (left) and the numerical data with the forces included in the snapshot

matrix (right), pertaining to particle CC. The top part of the figure qualitatively illustrates

the spatial distribution of the first (a) and the second (b) mode, while the bottom part shows

the quantitative comparison between the spatial signals and their power spectral density

of S1 and S3 for the first (c) and second (b) DMD mode. The power spectral density

and wavenumber are normalized with their maximum values PSD∗ = PSD/PSDmax and

κ∗ = κ/κmax (see Section 2.4).
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Figure 8: First and second mode resulting from Dynamic Mode Decomposition performed

on the numerical data (left) and the numerical data with the forces included in the snapshot

matrix (right), pertaining to particle MR. The top part of the figure qualitatively illustrates

the spatial distribution of the first (a) and the second (b) mode, while the bottom part shows

the quantitative comparison between the spatial signals and their power spectral density

of S1 and S3 for the first (c) and second (b) DMD mode. The power spectral density

and wavenumber are normalized with their maximum values PSD∗ = PSD/PSDmax and

κ∗ = κ/κmax (see Section 2.4).
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Figure 9: Relation between shape porosity (Equation (24)) and the minimum γDMD
min (a) and

maximum γDMD
max (b) DMD eigenfrequencies and minimum ℜ(λDMD

i )min (c) and maximum

ℜ(λDMD
i )max (d) absolute decay or growth rate of the first 100 DMD modes for each snow

particle geometry (Section 2.4). The full symbols represent the numerical data sets, while

the hollow markers refer to the numerical data with the forces added in the snapshot matrix.

A trend line is also shown together with the quality of the fitting (R2) to highlight the

improvements obtained when the forces are taken into account. For the slope value of each

trend line, see Table A1 in the Supplementary Material.
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Figure 10: Relation between shape porosity (Equation (24)) and the minimum κd,∗DMD,min

(a) and maximum κd,∗DMD,max (b) wavenumber of the averaged spatial signal of the first DMD

mode for each snow particle geometry (Section 2.4). The first mode is selected because it is

the most energetic one and generally carries the majority of the information regarding the

wake flow structures. The full symbols represent the numerical data sets, while the hollow

markers refer to the numerical data with the forces added in the snapshot matrix. A trend

line is also shown together with the quality of the fitting (R2) to highlight the improvements

obtained when the forces are taken into account. For the slope value of each trend line, see

Table A1 in the Supplementary Material.
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