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Abstract

Aims: Sertraline is frequently prescribed for mental health conditions in both preg-

nant and breastfeeding women. According to the limited available data, only small

amounts of sertraline are transferred into human milk, yet with a large amount of

unexplained interindividual variability. This study aimed to develop a population

pharmacokinetic (popPK) model to describe the pharmacokinetics of sertraline during

the perinatal period and explain interindividual variability.

Methods: Pregnant women treated with sertraline were enrolled in the multicenter

prospective cohort SSRI-Breast Milk study. A popPK model for sertraline maternal

plasma and breast milk concentrations was developed and allowed estimating the

milk-to-plasma ratio (MPR). An additional fetal compartment allowed cord blood con-

centrations to be described. Several covariates were tested for significance. Ulti-

mately, model-based simulations allowed infant drug exposure through placenta and

breast milk under various conditions to be predicted.

Results: Thirty-eight women treated with sertraline were included in the study and

provided 89 maternal plasma, 29 cord blood and 107 breast milk samples. Sertraline

clearance was reduced by 42% in CYP2C19 poor metabolizers compared to other

phenotypes. Doubling milk fat content increased the MPR by 95%. Simulations sug-

gested a median daily infant dosage of 6.9 μg kg�1 after a 50 mg maternal daily dose,
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representing 0.95% of the weight-adjusted maternal dose. Median cord blood con-

centrations could range from 3.29 to 33.23 ng mL�1 after maternal daily doses

between 25 and 150 mg.

Conclusions: Infant exposure to sertraline, influenced by CYP2C19 phenotype and

breast milk fat content, remains low, providing reassurance regarding the use of ser-

traline during pregnancy and breastfeeding.
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1 | INTRODUCTION

Mental health conditions affect 10% of pregnant women and 13% of

breastfeeding women according to the World Health Organization

(WHO).1 To ensure optimal management of these disorders in the

perinatal period, pharmacological treatments are often required.2,3

Selecting the appropriate medication in this population is challenging,

as it must be safe for the child and effective for the mother.

Selective serotonin reuptake inhibitors (SSRIs) are the most commonly

prescribed antidepressant drugs for pregnant and breastfeeding

women.4,5 Among the available SSRIs, escitalopram and sertraline

have been preferred due to their favourable safety profiles. Notably,

sertraline has gained particular attention, especially during the third

trimester of pregnancy, due to its relatively lower risk of perinatal

complications in the newborn, such as preterm birth, low birth weight

and admissions to the neonatal intensive care unit, compared to other

antidepressants.4,6

Understanding the pharmacokinetic (PK) properties of sertraline

can aid in understanding its safety profile. Sertraline is given in a dose

range of 50–200 mg day�1, in which it has linear PK properties.7 The

drug is characterized by slow absorption, an extensive volume of dis-

tribution exceeding 20 L kg�1, a clearance typically ranging between

1.09 and 1.41 L h�1 kg�1, and a half-life ranging between 22 and

32 h.8–10 Moreover, sertraline also exhibits a high degree of protein

binding, approaching 98%. The metabolism of sertraline occurs pri-

marily in the liver, where it undergoes biotransformation into its active

metabolite, desmethylsertraline, which possesses approximately 10%

of its parent drug's biological activity.8,11 This metabolic process

involves multiple cytochrome P450 (CYP450) enzymes, with

CYP2C19 and CYP2B6 playing particularly significant roles in sertra-

line biotransformation and elimination.8,12–14 Individuals classified as

CYP2C19 poor metabolizers exhibit a significantly slower rate of

metabolite formation compared to those with other CYP2C19 pheno-

types. Consequently, this slower metabolism leads to an increased

exposure to sertraline and contributes to the large interindividual vari-

ability observed within the general population.8 CYP2B6 genetic vari-

ation has also recently been associated with sertraline exposure.15

According to existing literature, sertraline has been observed

to transfer both through the placenta and into breast milk.11,16–27

However, the concentrations measured in cord blood and breast milk

were relatively low. In summary, following doses ranging from 25 to

200 mg of sertraline, the milk-to-maternal plasma concentration (M/P)

ratio has been found to vary between 0 and 5.2 with values often

exceeding 1, the latter suggesting higher concentrations of sertraline in

breast milk than in maternal plasma. For an exclusively breastfed infant

consuming 150 mL kg�1 of milk daily, the daily intakes of sertraline

dose were ranging between 0.5 and 44 μg kg�1, representing 0.07% to

3.2% of the maternal weight-adjusted dose.28 Although the percentage

of maternal weight-adjusted dose, that is, the relative infant dose

(RID), remains below 5% in all cases, a large interindividual variability

has been observed in the transfer of sertraline into breast milk,

potentially influenced by various factors including milk composition or

sampling procedures.11,16–22 In breastfed infants, sertraline concentra-

tions were mostly below 2 μg L�1. The highest concentration detected

in a breastfed infant was 13 μg L�1 after a maternal dose of 150 mg

per day.11,16–19,29–32 Regarding the transfer of sertraline to the fetus, a

mean (range) cord blood-to-maternal plasma concentration ratio (C/P

What is already known about this subject

• According to the available data, only small amounts of

sertraline are transferred into breast milk and cord blood.

• However, these data show significant unexplained inter-

individual variability.

What this study adds

• This novel popPK model complements existing successful

models for drug transfer into breast milk. It highlights the

effectiveness of this approach in characterizing the drug

pharmacokinetics in cord blood and breast milk, assessing

interindividual variability and identifying covariates

responsible for such variability.

• This model allows the identification of two covariates,

namely, CYP2C19 phenotype and fat content in breast

milk, influencing infant exposure to sertraline.

• However, infant exposure is low and reassuring regarding

the use of sertraline during pregnancy and breastfeeding.
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ratio) of approximately 0.41 (0.14–1.2) has been reported, indicating

low yet very variable transfer to the fetus.23–27 Currently, the underly-

ing reasons for these interindividual variabilities in both pregnant and

breastfeeding women remain to be fully elucidated.

A population pharmacokinetic (popPK) approach, requiring a lim-

ited number of per-patient samples from a large patient population,

represents an appealing method to assess the interindividual variabil-

ity of sertraline transfer into the fetus and in breast milk.33 This

approach is particularly valuable since collecting multiple cord blood

samples over time and obtaining multiple milk samples from breast-

feeding mothers is challenging.

The objective of this study was to describe the PK of sertraline in

women with a mental health condition during the perinatal period

using a popPK modelling approach. It aimed to evaluate multiple

genetic, environmental and demographic factors to explain interindivi-

dual variability in sertraline plasma, umbilical cord and milk concentra-

tions. Finally, model-based simulations were used to determine

potential infant exposure to sertraline through the placenta and breast

milk under various conditions.

2 | METHODS

2.1 | Study population

The SSRI-Breast Milk study (clinical trials identification number:

NCT01796132) aimed to assess the clinical and PK implications of

antidepressants during pregnancy and breastfeeding. Pregnant women

treated with sertraline or any other SSRI who intended to breastfeed

their infant and planned to deliver at the maternity unit of the Hospi-

tals of Lausanne, Geneva, Morges, Lyon or Nancy were included in the

study. The study received approval from local ethics committees and

local health authorities in both Switzerland and France in 2012 and

2013. Prior to participating in any phase of the study, written informed

consent was obtained from all enrolled women.

Participants to the SSRI-Breast Milk study were asked to provide

a blood sample paired with a cord blood sample on the day of deliv-

ery. Additionally, one maternal blood sample was collected and paired

with a foremilk and a hindmilk sample at 1 and 4 to 6 weeks postpar-

tum taken at the convenience of the woman after the sertraline dose.

The time after doses and steady-state conditions were self-reported

by each woman during interviews conducted by midwives.

2.2 | Sample collection and analytical methods

Maternal and umbilical cord blood samples (5 mL each) were collected

by venepuncture using ethylenediaminetetraacetic acid (EDTA)-K

tubes. Plasma samples were extracted through centrifugation and sub-

sequently stored at �20�C. Breast milk samples (5–10 mL) were

obtained in falcon tubes, employing either manual expression or an

electrical pump, and were also stored at �20�C. Prior to a feeding, a

5 mL sample was collected by the woman representing a foremilk

sample, and another 5 mL sample was collected after the same

feeding. Sertraline concentrations in maternal plasma, cord blood and

breast milk samples were measured using validated high performance

liquid chromatography coupled to electrospray mass spectrometry

methods, as previously described.34,35 The lower limit of quantifica-

tion for sertraline was established at 1 ng mL�1 in plasma and

5 ng mL�1 in breast milk. Additionally, breast milk samples were ana-

lysed for their fat, protein, carbohydrate and calorie content using a

Human Milk Analyzer (Miris, Uppsala, Sweden).

2.3 | Genotyping

Genomic DNA was extracted from EDTA-K blood samples collected

either at delivery or at Week 1 post-partum. A TaqMan-Assay-based

real-time polymerase chain reaction, previously described, was

employed to analyse several single nucleotide polymorphisms (SNPs)

including CYP2C19*2, CYP2C19*3, CYP2C19*17, CYP2D6*3,

CYP2D6*4, CYP2D6*6, CYP3A4*22, CYP3A5*3 and POR*28.36,37 Addi-

tionally, a TaqMan copy number assay was used to detect duplica-

tion/multiplication of the CYP2D6*�N and CYP2D6*5 gene deletion.

Based on their CYP2C19 genotype, patients were classified into four

predicted phenotypes: poor metabolizer (PM) if they carried two no

function alleles (*2/*2, *3/*3, *2/*3), intermediate metabolizer (IM) if

they carried one no function allele (*1/*2, *1/*3, *2/*17, *3/*17), nor-

mal metabolizer (NM) if they carried two normal function alleles (*1/

*1) and ultrarapid metabolizer (UM) if they carried one or two

increased function alleles (*1/*17, *17/*17). Similarly, four different

predicted phenotype groups were made for the CYP2D6 genotype:

PM if they carried two no function alleles CYP2D6*3, *4, *5 and *6

(e.g., *4/*4, *4/*5 or *4/*6), IM if they carried one normal function and

one no function allele (e.g., *1/*3, *1/*4, *1/*5), NM if they carried

two normal function alleles (*1/*1) and UM if they carried one normal

function allele and an increased number of gene copies (*1/*�N).

Actual genotypes were used for CYP3A4 (*1/*1, *1/*22, *22/*22),

CYP3A5 (*1/*1, *1/*3, *3/*3) and POR (*1/*1, *1/*28, *28/*28).

2.4 | Population pharmacokinetic analysis

Nonlinear mixed-effects modelling implemented with NONMEM

(version 7.4, ICON Development Solutions, Ellicott City, MD, USA)

and supplemented with the Perl-speaks-NONMEM toolkit (PsN, ver-

sion 5.3.0) and Pirana interface (version 2.9.3) was used to describe

sertraline concentrations in maternal, cord blood and breast milk.

Specifically, the FOCE-I algorithm with the subroutine ADVAN6 was

selected for this analysis. Graphical and statistical explorations, along

with virtual population generation were performed using R (version

4.2.2).

2.4.1 | Structural and statistical model development

A stepwise procedure was used to find the popPK model that best fits

the sertraline data. First, one- and two-compartment models with

MONFORT ET AL. 3
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various absorption processes were compared. Then, the transfer of

sertraline to breast milk was characterized either by adding a milk

compartment directly exchanging the drug with the plasma compart-

ment with a milk volume of 0.125 L to prevent identifiability

issues38–40 or by using a scaling factor between plasma and milk con-

centration profiles assuming to reflect the MPR.41,42 Finally, a fetal

compartment of negligible volume was scaled to the central compart-

ment and linked to it via a first-order process to describe cord blood

concentrations.39 Interindividual variability (IIV) in the PK parameters

was estimated using an exponential error model. Additive, propor-

tional and mixed models were explored to capture the residual unex-

plained variability (RUV).

2.4.2 | Covariate models

The influence of genetic, demographic and environmental covariates

on the final base model parameters was investigated using a forward

insertion/backward deletion approach. The following covariates were

considered for apparent sertraline clearance (CLSERT/F): maternal age,

body weight, moment of blood sampling (categorized as during labour,

after delivery, first week postpartum or 1 month after delivery) and

CYP2C19, CYP2D6, CYP3A4, CYP3A5 and POR polymorphisms.

Regarding drug transfer into breast milk, factors including feeding

occasion (foremilk or hindmilk) (FEED), the time postpartum (first

week postpartum or fourth week postpartum) (MOM), and the com-

position of breast milk in terms of fat (FAT), protein (PROT), carbohy-

drate (CARBO) and calorie content (ENERGY) were considered as

potential influencing covariates. In the absence of an IIV on the PK

parameters, covariates with a known a priori relationship to a

PK parameter were tested. A linear function was applied to continu-

ous covariates, involving normalization and centring on their median

population values. Dichotomous covariates were represented as 0 or

1. For discrete variables with more than two categories, either a fixed

effect was assigned to each group (rich model), or to regrouped cate-

gories (reduced model).

The most common predicted phenotype or genotype as appropri-

ate was assigned to the single patient with missing genetic informa-

tion. To manage missing values for FAT, a multiple imputation method

was employed,43 generating 20 datasets and incorporating the feed-

ing occasion and the time postpartum as covariates for plausible num-

bers generation. The median value from these 20 datasets was used

to replace the FAT missing values in our dataset. Missing data for

other continuous covariates were replaced by the median value.

2.4.3 | Parameter estimation and model selection

Differences in the NONMEM objective function (OFV) were used to

discriminate two nested models. Unless specified otherwise, a differ-

ence in OFV [ΔOFV = OFVtest model – OFVinitial model] of at least

�3.84 (χ2 distribution with 1 degree of freedom, P < .05) was consid-

ered statistically significant for the addition of one extra parameter

during model building and forward covariate insertion and 6.63 (χ2

distribution with 1 degree of freedom, P < .01) for backward deletion

steps. For non-hierarchical models, the Bayesian Information Criterion

(BIC) was employed to compensate for improved fit due to increased

model complexity, considering a drop of at least 2 relevant for the

selection of the most complex model.44

Additionally, goodness-of-fit plots, the precision of parameter

estimates and reductions in IIV were considered for model quality

assessment.

2.4.4 | Model evaluation

The final popPK model was evaluated using a non-parametric boot-

strap procedure with replacement to generate 2000 new datasets.

The resulting PK parameters were summarized as median along with

2.5th and 97.5th percentiles (95% confidence interval [95% CI]) and

compared to the estimations obtained from the original model. In

addition, prediction-corrected visual predictive checks (pc-VPC) were

conducted for breast milk, plasma and cord blood concentrations by

running 1000 simulations based on the final model using the PsN

toolkit. The observed 5th, 50th and 95th percentiles were plotted

alongside their respective simulated 95% CI values to assess model's

predictive performance.

2.4.5 | Simulation of drug concentrations and
prediction of infant exposure

Maternal plasma, breast milk and cord blood concentrations of sertra-

line at steady state were simulated for various dosage regimens

(25, 50, 75, 100, 125 and 150 mg day�1) in 10 000 mothers based on

the final popPK model with IIV as a function of the retained influential

factors. Half of the women were categorized into CYP2C19 PM, while

the other half as CYP2C19 non-PM. A single value of FAT was ran-

domly assigned to each woman following a uniform distribution with

a minimum value of 0.5 g 100 mL�1 and a maximum value of 7.4 g

100 mL�1, to mimic the FAT distribution in our population. Each

woman was assigned a random breastfeeding frequency and interval

following the last dose intake to generate breastfeeding time during

the day. The mean frequency was set at 11 feedings per day, ranging

between 6 and 18 times a day.45 Sertraline concentration in milk was

then predicted at each breastfeeding time according to mothers' char-

acteristics. Subsequently, the infant's daily dose was calculated using

the following equation:

Infant daily dose¼
Xn

i¼1

Cmilki�Vmilk ð1Þ

where Cmilk i (ng mL�1) represents the simulated sertraline concentra-

tion at the ith feeding time after administration of sertraline to the

mother, n is the daily feeding frequency and Vmilk is the volume of milk

ingested by a breastfed infant during a feeding occasion. A weight-

4 MONFORT ET AL.
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adjusted daily milk intake of 150 mL kg�1 day�1 divided by the feed-

ing frequency was used as a typical Vmilk for simplicity purposes.28

The RID was calculated as a percentage for clinical relevance for

all dosage regimens.28 Another valuable parameter for evaluating

infant exposure is the adult dose equivalent (ADEQ), a less commonly

known metric. The ADEQ quantifies the virtual number of standard

tablets that an infant would ingest over 6 months of exclusive breast-

feeding. The ADEQ is estimated by dividing the cumulative infant

daily dose over 6 months by a standard adult daily dose (50 mg for

sertraline) assuming an average child weight of 6 kg.

Lastly, the C/P ratio was computed for each simulated woman

across the dosage range of 25–150 mg day�1.

3 | RESULTS

3.1 | Study population and data

A total of 89 maternal blood samples (i.e., 34 at delivery, 35 at Week

1 postpartum, and 20 at Weeks 4–6 postpartum) were collected from

38 mothers taking sertraline included in the SSRI-Breast Milk study.

These women provided 107 breast milk samples, 67 of which were

collected at Week 1 and 40 at Week 4. Additionally, 29 cord blood

samples were collected at delivery. Sertraline concentrations vs. time

after dose are presented in Figure S1. Notably, two participants were

excluded from the popPK analysis due to undetectable sertraline

concentrations, likely attributable to non-adherence to the treatment

regimen. The median daily dose of sertraline was 50 mg, with doses of

25 mg (n = 10), 50 mg (n = 23), 75 mg (n = 1), 100 mg (n = 3),

125 mg (n = 1) and 150 mg (n = 2). Table 1 describes the demographic

and baseline characteristics of the women included in the study.

3.2 | Structural models

Sertraline plasma concentrations were best described by a one-

compartment model with first-order absorption and elimination

(ΔOFV = �1.72, P > .05 compared to a two-compartment model).

Assignment of IIV on CLSERT/F (ΔOFV = �43.06, P < .05), but neither

on apparent volume of distribution (VSERT/F) nor on absorption rate

(kaSERT) (ΔOFV ≥ �2.55, P > .05), improved model fit. The alternative

models used to describe simultaneously plasma and milk concentra-

tions yielded similar parameter estimations. Since none of the models

was statistically superior to the other (ΔBIC = 0.331), the simpler

parametrization with the MPR scaling factor was retained for further

analysis. The addition of an IIV on MPR did not significantly improve

the fit (ΔOFV = �2.97, P > .05). Finally, a third compartment of negli-

gible volume adequately fit the cord blood data, without altering the

maternal plasma compartment. Data did not support the inclusion of

an IIV on the transfer rates between maternal plasma and cord blood

(kMC and kCM). Proportional error models were retained to describe

maternal plasma, breast milk and cord blood RUV. Figure 1 represents

the final structural model. A template of the code is available in

Supporting information S2.

3.3 | Covariate models

Univariate analyses for the model that included plasma and milk

concentrations revealed a significant association between CYP2C19

TABLE 1 Demographic and baseline characteristics of the study
population.

Parameter Value

Treatment indicationa, n (%) (n = 29)

Depressive disorders 19 (47.5%)

Anxiety disorders 12 (30.0%)

Obsessive-compulsive disorders 1 (2.5%)

Other disorders 8 (20.0%)

Age (years), median (range) (n = 38) 34 (22–39)

Bodyweight (kg), median (range)

Term pregnancy (n = 23) 73.0 (51.9–103.0)

First week post-partum (n = 27) 71.4 (50.0–107.0)

First month post-partum (n = 15) 64.0 (49.0–93.0)

CYP2C19 predicted phenotype, n (%) (n = 35)

Poor metabolizer (PM) 2 (6%)

Intermediate metabolizer (IM) 5 (14%)

Normal metabolizer (NM) 15 (43%)

Ultrarapid metabolizer (UM) 13 (37%)

CYP2D6 predicted phenotype, n (%) (n = 35)

Poor metabolizer (PM) 5 (14%)

Intermediate metabolizer (IM) 9 (26%)

Normal metabolizer (NM) 18 (51%)

Ultrarapid metabolizer (UM) 3 (9%)

CYP3A4 genotype, n (%) (n = 35)

*1/*1 32 (91%)

*1/*22 3 (9%)

CYP3A5 genotype, n (%) (n = 35)

*1/*1 0 (0%)

*1/*3 3 (9%)

*3/*3 32 (91%)

POR genotype, n (%) (n = 35)

*1/*1 18 (51%)

*1/*28 14 (40%)

*28/*28 3 (9%)

Breast milk (foremilk) (n = 26)

Fat content (FAT) (g 100 mL�1) 1.9 (1.1–4.8)

Protein content (PROT) (g 100 mL�1) 1.6 (0.0–4.3)

Carbohydrate content (CARBO) (g 100 mL�1) 6.1 (1.2–7.9)

Calorie content (ENERGY) (g 100 mL�1) 49.0 (1.0–75.0)

Breast milk (hindmilk) (n = 24)

Fat content (FAT) (g 100 mL�1) 2.7 (0.5–7.2)

Protein content (PROT) (g 100 mL�1) 1.5 (0–2.6)

Carbohydrate content (CARBO) (g 100 mL�1) 5.9 (0.9–7.8)

Calorie content (ENERGY) (g 100 mL�1) 50.0 (17.0–93.0)

aWomen could have multiple treatment indications.

MONFORT ET AL. 5
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predicted phenotype and CLSERT/F (ΔOFV = �4.30, P < .05)

when separated into two groups (PM vs. IM/NM/UM), not

significantly different from a model with four distinct groups. None of

the other covariates improved the model fit for CLSERT/F

(ΔOFV = �3.434, P > .05). MOM (ΔOFV = �16.18, P < .05), FEED

(ΔOFV = �16.11, P < .05), and FAT (ΔOFV = �42.95, P < .05) all sig-

nificantly influenced MPR. Multivariate analyses did not show an

independent impact of MOM and FEED in addition to FAT on MPR

due to their direct relationship with the fat content in breast milk. The

value of MPR increased by 95% when the amount of fat content dou-

bled from 2.59 to 5.18 g 100 mL�1. Moreover, CYP2C19 predicted

phenotype on CLSERT/F did not remain a significant covariate

(ΔOFV = �2.94, P > .01), probably due to the small number of

CYP2C19 PM in the studied population. However, because of the

clinically significant reduction of CLSERT/F by 42% in CYP2C19 PM

compared to other phenotypes, this covariate was retained in the final

model together with FAT on MPR. Similar results were obtained with

the model including cord blood concentrations. Table 2 presents the

final parameter model and the bootstrap results, and Figures S3, S4

and S5 the model goodness-of-fit plots.

3.4 | Model evaluation

The bootstrap results (Table 2) indicate that all parameter estimates

from the final model fell within the 95% CI of the bootstrap-generated

datasets and were close to the median value (<9%), suggesting a high

degree of model stability. Pc-VPC plots (Figure 2) support the good

predictive performance of the model.

3.5 | Simulations

Model-based simulations conducted in 10 000 women taking a daily

sertraline dose of 50 mg revealed that an exclusively breastfed infant

with a daily milk intake of 150 mL kg�1 day�1 would ingest a median

sertraline dose of 6.9 μg kg�1 day�1 independently of the mothers'

CYP2C19 phenotype. The median RID based on these simulations

was 0.95%. In terms of ADEQ, an infant would ingest a median

cumulative dose of 7.5 mg over 6 months of exclusive breastfeeding,

equivalent to a 0.2 standard adult daily dose of sertraline. Importantly,

our simulations indicate slightly higher RID and ADEQ values for

CYP2C19 PM (1.2% and 0.2 tablets, respectively) than for CYP2C19

non-PM (0.7% and 0.1 tablets). Simulations at maternal daily doses

ranging from 25 to 150 mg yielded median infant daily dosages

between 3.5 and 20.8 μg kg�1 while the median RID remained consis-

tent at 0.95% across the entire dosage range considering both PM and

non-PM breastfeeding mothers. For these doses, an exclusively

breastfed infant would ingest a median cumulative dose between 2.7

and 28.6 mg, which is equivalent to 0.1–0.6 tablets of 50 mg sertra-

line. Figure 3 presents simulated RIDs and ADEQs as a function of

CYP2C19 phenotypes at all doses, while Table 3 shows median cord

blood concentrations and C/P ratios over the entire dosage range.

The median predicted cord blood concentrations ranged from

3.29 ng mL�1 at a dose of 25 mg to 33.23 ng mL�1 at a dose of

150 mg, while the median C/P ratio remained at 0.39 (range 0.14–

0.69) for all doses.

4 | DISCUSSION

In this study, we successfully developed a popPK model able to pre-

dict infant exposure to sertraline through the placenta and breast milk.

The PK parameters CLSERT/F and VSERT/F are consistent with those

reported in the general population using noncompartmental analysis,

considering the unique context of our pregnant and early postpartum

population.6–8 Indeed, during pregnancy, the volume of distribution

and clearance of most drugs are significantly increased, especially

towards the end of pregnancy. It may take a few days or weeks for

these PK parameters to return to pre-pregnancy values.46 While three

F IGURE 1 Compartmental structure of the final popPK model. Dashed lines represent the pregnancy model and solid lines represent the
breastfeeding model. Abbreviations: CLSERT/F, apparent sertraline clearance in maternal plasma; kaSERT, absorption rate; kCM, constant rate from
cord blood to maternal plasma; keSERT, elimination rate; kMC, constant rate from maternal plasma to cord blood; MPR, milk-to-plasma ratio; VSERT/
F, apparent sertraline volume of distribution in maternal plasma.
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TABLE 2 PopPK estimates with
bootstrap results.

Parameter

Final model
Bootstrap (n = 2000)

Estimates (RSE %) Median 95% CI

CLSERT/F (L h�1) for CYP2C19 PM 69.6 (19.3) 69.6 47.8–93.4

CLSERT/F (L h�1) for CYP2C19 IM/NM/UM 119 (7) 119.1 104.3–136.3

VSERT/F (L) 2320 (18.4) 2251.5 1503.8–3219.3

kaSERT (h
�1) 0.315 (26.5) 0.314 0.174–0.623

MPR 1.42 (6.3) 1.42 1.26–1.63

FAT on MPR (%) 93.1 (27.9) 92.3 60.4–114.3

kMC (h�1) 0.141 (47.5) 0.135 0.051–0.349

kCM (h�1) 0.383 (46.2) 0.367 0.172–0.916

IIVCLSERT (%) 41.5 (15) 40.5 25.2–51.5

σplasma (%) 37.8 (7.8) 37.4 31.2–43.3

σmilk (%) 42.9 (9.8) 42.2 34.1–49.8

σcord blood (%) 30 (13.8) 27.7 16.7–35.9

Abbreviations: CI, confidence interval; CLSERT/F, apparent sertraline clearance in maternal plasma; FAT,

fat content in breast milk; IIVCLSERT, interindividual variability on CLSERT; IM, intermediate metabolizer;

kaSERT, absorption rate; kCM, constant rate from cord blood to maternal plasma; kMC, constant rate from

maternal plasma to cord blood; MPR, milk-to-plasma ratio; NM, normal metabolizer; PM, poor

metabolizer; RSE, relative standard error; UM, ultrarapid metabolizer; VSERT/F, apparent sertraline volume

of distribution in maternal plasma; σplasma, residual variability.

F IGURE 2 Prediction-corrected visual predictive checks of the final covariate model in maternal plasma, cord blood and breast milk. Circles
represent prediction-corrected sertraline concentrations, continuous lines and dashed lines represent the population median prediction and the
2.5th and 97.5th percentiles, respectively, and semitransparent grey and blue fields represent the model-based percentile confidence intervals.

MONFORT ET AL. 7

 13652125, 0, D
ow

nloaded from
 https://bpspubs.onlinelibrary.w

iley.com
/doi/10.1111/bcp.16177 by U

niversitat B
ern, W

iley O
nline L

ibrary on [22/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



popPK models for sertraline concentrations in plasma have been pub-

lished, none of them assessed the transfer of sertraline into the fetus

or breast milk.47–49 Due to the substantial variability in PK parameters

obtained in these studies, no direct comparison can be made with our

PK parameter estimates. This large variability can be attributed to dif-

ferences in the populations studied, including age, health status and

pregnancy and/or breastfeeding status.

Across the entire dosage range, our results suggest minimal

transfer of sertraline into both cord blood and breast milk, thereby

resulting in limited exposure of infants to sertraline. This aligns with

the high protein binding of the drug.8 Indeed, our simulations reveal

that the median RID remains below 1%, consistently with the

literature.11,16–22 Absolute infant dose and ADEQ results show that

100% of simulated infants at maternal doses of 150 mg day�1 would

ingest less than 0.13 mg kg�1 day�1 of sertraline which represents

less than three 50 mg tablets over 6 months of exclusive breastfeed-

ing. Moreover, even at high doses of 150 mg day�1, cord blood con-

centrations would hover around the lower limit of the established

therapeutic range of sertraline (10–150 ng mL�1).8 These findings

are reassuring regarding the use of sertraline during late pregnancy

and breastfeeding.

Sertraline maternal clearance was significantly lower in mothers

identified as CYP2C19 PM compared to other phenotypes, in

agreement with existing literature on the impact of CYP2C19 phe-

notype on sertraline concentrations.50 Simulations suggested a

slightly higher but still limited exposure of infants born to CYP2C19

PM mothers to sertraline through the placenta and breast milk.

These results indicate a manageable level of exposure for infants

from CYP2C19 PM mothers. Furthermore, the Clinical Pharmacoge-

nomics Implementation Consortium guideline recommends a 50%

reduction in sertraline dosage for CYP2C19 PM, which mitigates the

potential risk of breastfed infants being exposed to an excessive

amount of sertraline.51 In clinical practice, the CYP2C19 phenotype

of mothers is typically unknown prior to sertraline prescription and

dose adjustments for breastfeeding women may not be standard

practice. Therefore, our results provide reassurance that infants

exposed to these doses during this period are unlikely to experience

high exposure.

F IGURE 3 RID and ADEQ simulations across the entire dosage range. Grey and white areas represent CYP2C19 PM and IM/NM/UM,
respectively. Abbreviations: ADEQ, adult dose equivalent; IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; RID,
relative infant dose; UM, ultrarapid metabolizer.

TABLE 3 Simulated cord blood concentrations and cord-to-maternal plasma (C/P) ratios according to CYP2C19 predicted phenotype at
doses between 25 and 150 mg.

Dose (mg)

Median cord blood concentration (ng mL�1) Median C/P ratio

CYP2C19 PM CYP2C19 IM/NM/UM CYP2C19 PM CYP2C19 IM/NM/UM

25 5.62 3.29 0.38 0.39

50 11.10 6.65 0.38 0.39

75 16.78 9.90 0.38 0.39

100 22.08 13.17 0.38 0.39

125 27.94 16.45 0.38 0.39

150 33.23 19.70 0.38 0.39

Abbreviations: IM, intermediate metabolizer; NM, normal metabolizer; PM, poor metabolizer; UM, ultrarapid metabolizer.
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Drug concentrations in breast milk are also influenced by the

composition of the milk, and particularly the quantity of fat in

the milk. Mature milk and hindmilk contain higher fat content com-

pared to colostrum and foremilk. Thus, lipophilic drugs like sertraline

tend to have a greater affinity for mature milk and hindmilk,16,28

which explains the observed significant association between FAT and

MPR in our model. Simulations demonstrated that doubling the FAT

from 2.59 to 5.18 g 100 mL�1 slightly increased the RID from 0.73%

to 1.41%. This minimal increase should have no significant impact on

the breastfed infant. Moreover, although of scientific interest, this

result lacks clinical relevance, as it is not feasible for a breastfed infant

to only ingest foremilk. This result also highlights the critical role of

selecting an appropriate experimental design for accurately assessing

infant exposure. Indeed, a bias in drug concentration measurements

can be introduced, particularly when only samples of foremilk or hind-

milk are obtained instead of a well-mixed aliquot.

We acknowledge that our method has certain limitations. Firstly,

the number of patients included in the study was limited. A small sam-

ple size increases the uncertainty in PK parameter estimates and the

risk of being unable to account for the overall IIV. This is likely why

we could not estimate the IIV on the MPR, despite some covariates

significantly influencing this parameter. Additionally, the small sample

size limits our ability to include less common phenotypes. For

instance, only two CYP2C19 PM individuals were included in our

study, making it challenging to determine the real effect size of this

covariate. Future studies with a larger representation of CYP2C19

PM would be beneficial. Similarly, it is possible that we were not able

to accurately quantify the true effect of body weight on sertraline

exposure, given its significant variation between pregnancy and 4–

6 weeks postpartum, due to the presence of multiple missing values.

Despite testing numerous covariates in our model, it is possible that

other factors such as the mother's feeding state or the use of comedi-

cations could explain the remaining unexplained variability. For

example, recent studies have demonstrated that the CYP2B6 gene

significantly influences sertraline metabolism.50 Unfortunately, our

study did not include screening this gene in women, and its potential

role as a covariate should be investigated in future studies. Some

information, such as the timing of drug intake prior to sampling, was

self-reported by the mothers. This could introduce a memorization

bias in the study if the mother does not accurately remember the

exact time of drug intake. Finally, we attempted to assess the infant

exposure to sertraline during pregnancy and breastfeeding without

measuring concentrations in infants to facilitate our study procedures.

Consequently, obtained model and estimations do not account for

physiological changes and variations that occur during the first

months of birth. For instance, CYP2C19 activity in fetuses and

newborns before 5 months of age is approximately 12%–15% of the

adult activity and CYP2B6 protein is detected in only 64% of samples

from birth to 30 days postnatal age.52,53 Therefore, our simulations

may slightly underestimate infant exposure to sertraline. However,

this potential underestimation could be balanced by the assumption

that all infants are exclusively breastfed with a daily intake of

150 mL kg�1 day�1 which overestimates the infant's intake and sub-

sequent exposure.54

5 | CONCLUSION

Using a popPK approach, we have reaffirmed the limited exposure of

infants to sertraline through the placenta and breast milk. This novel

popPK model complements existing successful models for drug trans-

fer into breast milk, highlighting the effectiveness of this approach in

characterizing the drug PK in cord blood and breast milk, assessing

interindividual variability, and identifying the covariates responsible

for such variability. Infant exposure to sertraline is influenced by

CYP2C19 phenotype and fat content in breast milk but, in any case,

remains low and reassuring regarding the use of sertraline during preg-

nancy and breastfeeding.
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