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Explainable artificial intelligence (XAI) has experienced a vast increase in recognition over the last few
years. While the technical developments are manifold, less focus has been placed on the clinical
applicability and usability of systems. Moreover, not much attention has been given to XAI systems
that can handle multimodal and longitudinal data, which we postulate are important features in many
clinical workflows. In this study, we review, from a clinical perspective, the current state of XAI for
multimodal and longitudinal datasets and highlight the challenges thereof. Additionally, we propose
the XAI orchestrator, an instance that aims to help clinicians with the synopsis of multimodal and
longitudinal data, the resulting AI predictions, and the corresponding explainability output. We
propose several desirable properties of the XAI orchestrator, such as being adaptive, hierarchical,
interactive, and uncertainty-aware.

As artificial intelligence (AI)-based support systems for radiology become
more widely available in clinical practice, limitations arising from their
“black box” nature lead to increased enunciation of the need for explainable
AI (XAI)1,2. Interpretable or explainable machine learning and AI algo-
rithms are systems where a human user can understand how the prediction
(output) is reached based on the input3. The terms “interpretable” and
“explainable” are often used interchangeably, but some authors emphasize
the distinction between the terms4. In this narrative review, we will use the
term “explainable” as proposedbyGraziani et al. Theydefined “explainable”
as “[…] to illustrate what features or high-level concepts were used by ML
[machine learning] system to generate predictions for one or multiple
inputs.”4 Ultimately, in clinical practice, XAI is meant to serve a common
purpose – providing insight into AI models to enhance physician’s efficacy
and patients’ safety. Explainability can be achieved through a variety of
different XAImethods; for example, inmedical image analysis, XAI is most
commonly based on visual explanations, so-called “saliency maps”.

XAI systems offer a variety of advantages over “black box”models by
exhibiting better quality assurance and auditability, as well as increased user
trust in the system5. Yet some challenges are so far unmet and impede the
tapping of XAIs’ full potential. These include the lack of studies that enrich
radiological XAI systemswith other types of clinical data (multimodal XAI)
or use longitudinal data sets. Merging these data types and deriving a
meaningful overall explanation is challenging and has received little

attention. We postulate that further developments of multimodal and
longitudinal XAI are essential and vastly needed in many clinical
workflows6,7.

In this narrative review, we aim to inform readership from biomedical
engineering and informatics disciplines, medical doctors, and other
healthcare professionals about multimodal data fusion and longitudinal
data analysis for XAI. In addition, in light of the current developments of
large languagemodels,we propose the “XAIOrchestrator” as an instance, or
virtual assistant todoctors,which is capable of coordinating, organizing, and
verbalizing explanations of specific AI models and provide a user-centered
mechanism for doctors to further enquire AI models operating on multi-
modal and longitudinal data.

XAI for multimodal and longitudinal data
In healthcare, diagnoses and treatment decisions are rarely based on a single
scan or blood draw - they are made in the synopsis of all relevant infor-
mation available8. A majority of radiologists (87%) stated in a survey that
clinical information impacts image interpretation significantly9,10. This
clinical information can include text-based data such as a transcript of
patient-reported disease history, findings from physical exams, vitals,
laboratorymeasurements, and, less frequently, complex -omics data such as
genomics. Combining these different data types, hereafter referred to as
multimodal data, for deep learning tasks is a promising and increasingly
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popular approach11–13. AI systems can profit significantly from assimilating
multimodal data into prediction and classification models to imitate inte-
grativehumanclinical decision-making.This canboost their robustness and
accuracy, enable the discovery of newbiomarkers and therapeutic targets6,14,
as well as improve model performance15–17.

Similarly, knowledge about the temporal evolution of biological pro-
cesses plays a crucial role in health care. For example, in oncology, long-
itudinal information is important to assess slowly progressive forms of
cancer or cancerswith yet unclear dignity18 (benign vs.malignant), aswell as
in the evaluation of treatment response. Just as for multimodal data,
introducing explainabilitymethods for the analysis of longitudinal datamay
contribute to the systems’ stability, robustness, and confidence19.

DiscussionofpreviousworkonXAI formultimodal data
Multimodal fusion has various benefits over the use of a single modality.
Multiple modalities can enable the visualization of complementary infor-
mation, enhance prediction robustness, and allow a system to make pre-
dictions even when one modality is missing20. Radiological data has been
combined with other data types for predictive AI systems in various clinical
disciplines like oncology21–24 or neurology25,26. For a systematic review of
studies on the fusion ofmedical imaging and electronic health record (EHR)
data using deep learning, we refer the reader to Huang et al.10. Yet often-
times, different research groups investigate similar questions with variable
approaches and differing results. For example, the prediction of Mild
Cognitive Impairment or Alzheimer’s disease based on the ADNI dataset is
frequently investigated27–32. But their predictive accuracy varies, and many
studies do not discuss which input modalities or features contributed most
to the prediction. This makes comparisons among the studies difficult and
limits the transferability of results. Beyondmodel comparison at the level of
performance, XAI techniques could enhance comparison regarding
pathophysiological plausibility by providing influential features, for exam-
ple, the volume of the hippocampus and amygdala as biomarkers of cog-
nitive impairment33.

Currently, only a few of these studies onmultimodal AI have made an
effort to make their systems explainable, even though the importance of
multimodal XAI systems has been highlighted6. Currently, one of the most
comprehensive studies on multimodal XAI is by Soenksen et al., who
developed the “HolisticAI inMedicine (HAIM)” framework, for combining
imaging, tabular, text, and time series data16. The authors proposemodality-
specific embeddings,which are combined and fed into an eXtremeGradient
Boosting (XGBoost) classifier to performavariety of prediction tasks.When
the authors tested their framework in over 14’000 different prediction
models, they found that predictions based on multimodal data outperform
unimodal comparators by 6-30%. For interpretability, Shapley values were
calculated for all input data16. This study laid a great foundation; for further
improvement, development and testing of (X)AI systems also need to be
performed on datasets featuring levels of data quality as found in daily
clinical routines, additionally to using well-curated research datasets. Also,
the data acquired since admission may not be sufficient to acknowledge all
relevant information, especially in chronic diseases. Systems should be
aimed at incorporating data from earlier hospital stays and outpatient
consultations. Furthermore, modeling outcomes in the form of binary
classification tasks does not fully capture clinical practice. For XAI, the
complexity of multi-class or multi-label problems is also increased with
respect to binary classification problems. Finally, the evaluation of a mul-
titude of different models composed of permuted combinations of input
features is suitable for the initial validation of a proposed framework.
Afterwards, it is important to test with a small, carefully selected number of
models that address clinically relevant questions.

Another recent example for the successful combination of imaging
with other data types for XAI is a study by Taleb et al.15. They introduce a
self-supervised learning approach where retinal fundus images were com-
bined and aligned in the feature space with different types of genetic data
using a contrastive loss. In this study, the authors adapted gradient-based
explainability algorithms to understand cross-modal associations. The

authors showed that imagemodel performancewas improved considerably
by including genetic information. Yet genetic analyses are often costly and
time-intensive to obtain. Prior to resorting to high-effort data modalities, it
would be desirable to predominantly incorporate readily available clinical
data, such as patient demographics, medical history, vitals, and routine
laboratory values. Additionally, clinical applicability needs to be always kept
in mind during development. While a prediction of cardiovascular risk
factors such as age, sex, smoking status, blood pressure, and BMI from
retinal fundus images is a technically interesting task, this information could
also be obtained with a brief patient visit.

Finally, Cao et al. predicted colorectal cancer microsatellite instability
(MSI) from histopathological whole slide images (WSIs)34. The prediction
was based only on a single type of data, theWSIs, but other data types were
used to enable interpretability of the model. The authors extracted the
pathological signatures that contributed most to the prediction of MSI and
explored their correlation to genetic and transcriptomic patterns, such as
patterns relating to deficient deoxyribonucleic acid (DNA) repair and
immune activation.

Other studies exist that have combined multimodal data for XAI
systems but did not involve medical images. For example, Jurenaite et al.
used non-fixed sets of mutated genome sequences (mutomes) and tran-
scriptomes in a transformer-based deep neural network, aiming to predict
seven common tumor types35. For explainability, primary attribution
methods were applied to obtain omic-specific attribution scores per patient
and feature type. For the genetic data, the authors reported that the genes
with the highest attribution scores all carried known biological significance
in cancer occurrence,which provides valuable confirmatory evidence on the
reliability of the AI system. In Prelaj et al., the efficacy of immunotherapy in
non-small cell lungcancerwaspredictedbasedondemographics, laboratory
measurements, tumor characteristics and staging, treatment information,
and radiological information36. The radiological features consisted of
information on whether certain types of metastases were present; no ima-
ging data was fed directly into the model. For explainability, they used
SHAP, which demonstrated that the most relevant features in their model
are clinical biomarkers that have previously been shown to be important36.

There are multiple toolkits, such as AIX-36037, Alibi38, Captum39,
EthicalML-XAI40, iNNvestigate41, Quantus42, among others, offering readily
implemented XAImethods for a wide variety of tasks applicable to medical
imaging (Table 1).While many of these libraries can process multiple input
data types separately, only Captum explicitly offers multimodality for the
joint processing of input features stemming from different data types. To
facilitate quality control and comparability, some of the toolkits also offer
XAI evaluations37,39,42.

Challenges of XAI for multimodal data
Some challenging aspects need to be considered when designing XAI that is
supposed to handle multimodal data:
1. Choice of XAImethod. Saliencymaps suited for radiological datamight

not be applicable for other data types, such as tabular data43. Currently,
many studies use early fusion techniques, where data from different
modalities are prematurely combined or concatenated. This makes it
challenging to understand to what extent, where-in and how each
modality contributes to the system’s decision.

2. Domain knowledge. Some -omics data, like metabolomics, are intrin-
sically complex, and interpretation should be performed by a trained
expert. Developers of XAI systems and users can only be experts in
some domains of human medicine. As the amount and type of
information per patient increase, multi-modality AI systems are
expected to emerge, leading to an amplification of the black-boxnature
of AI systems.

3. Curse of dimensionality. With increasingly sophisticated -omics tech-
nologies, the dimensionality of data increases rapidly, thereby sur-
passing the number of cases, which remains similar over time. This
phenomenon is described as the “curse of dimensionality”44. The high
dimensionality of data that makes it attractive to research may, at the
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same time, be a rate-limiting factor in the development of algorithms
capable of generalizing to real-world scenarios45. In this situation, XAI
becomes crucial as interpretability methods can help to find and
eliminate spurious correlations and shortcut learning46–48.

4. Susceptibility to adversarial attacks. The robustness of multimodal
models is a topic of ongoing discussion because multimodal models
may be equally or even more vulnerable to adversarial attacks than
models using a single modality. This susceptibility to adversarial
attacks results fromthenegative impact of increasing input dimensions
on adversarial robustness49–51.

Additional organizational or technical challenges regarding multi-
modal machine learning and AI in healthcare have previously been pointed
out20,44,52.

Discussion of previous work on XAI for
longitudinal data
Regarding the combinationof longitudinal imagedatawithother data types,
Rahim et al. aimed to predict Alzheimer’s Disease from three-dimensional
(3D) magnetic resonance imaging (MRI) data with three time points, in
combination with non-imaging data53. They suggest using a 3D convolu-
tional neural network to learn the deep spatial and inter-slice features from
the MRI volumes for every time point and a bidirectional recurrent neural
network to learn the inter-volume temporal features between time points.
Additionally, they provide two types of visual explanations: activationmaps
of two-dimensional (2D) MRI slices from each time point and 3D brain
surface rendering.

Besides the study by Rahim et al. not many are leveraging longitudinal
radiological images for an XAI system. More progress has been made in
other non-imaging fields. For example, longitudinal gene expression data
from a dietary intervention study was used by Anguita-Ruiz et al. to analyze
temporal gene-gene relationships54. With a sequential rule mining algo-
rithm, they aimed to find biologically relevant patterns and present them in
an easily understandable format. Shashikumar et al. used longitudinal data
from EHRs for early sepsis prediction in intensive care patients55. Addi-
tionally to the prediction, the system also provides local interpretability by
outputting the top factors contributing to the individual risk of sepsis for
every patient at every time point. In Ibrahim et al., the authors evaluated a
longitudinal dataset of electrocardiograms in combination with age and sex

to predict acute myocardial infarction56. They devised three algorithms, of
which an XGBoost model attained the best performance. Shapley values
were calculated, and age, age-adjusted Charlson Comorbidity Index, and
duration of the QRS complex were shown to contribute most to the pre-
diction. For an overview of XAI methods that can be applied to time series
data not specific to medical imaging, we refer the reader to Rojat et al.19.

As for multimodal XAI, studies involving radiological data are
lacking. It has been suggested that research onXAI for longitudinal data is
scarce because the input (single or collective time points) often lacks
meaningful interpretation to humans57. In our opinion, this is not always
true. In the medical field, certain input information becomes meaningful
only in combination with preceding or subsequent data. For example, for
the laboratory diagnosis of acute myocardial infarction (AMI), high-
sensitivity cardiac troponin (hs-cTn) needs to bemeasured at least twice58.
AMI is diagnosed if hs-cTn is elevated over the 99th percentile of a healthy
reference group in at least onemeasurement andan increase or decrease in
hs-cTn is observed between measurements. This allows to distinguish
AMI-related elevations from chronic conditions such as chronic kidney
disease58.

Challenges of XAI for longitudinal data
Just as for multimodal data, integrating time series of images into XAI
models, potentially combined with other types of data, poses some chal-
lenges that need to be considered.
1. Continuous vs. intermittent recording of data.Most radiological images

are acquired intermittently. Ultrasound, on the other hand, allows
recording images continuously over time, thereby capturing
mechanistic information, such as heart chamber contractions and
blood flow in echocardiography. For such continuous data, the
development of XAI techniques that are also temporally-based, such as
video sequences of color-coded saliency information, could lead to
improved intelligibility of the underlying temporal information.

2. Data sparsity and sampling intervals. Although data imputation
techniques aim at filling missing values with interpolations of adjacent
measurements, such approaches are not always useful depending on
the underlying physiology of the parameters. For example, prostate-
specific antigen (PSA) evolves steadily over time, so if it is measured
twicewithin severalmonths, the actual values for the periodmost likely
lie around these twomeasurements. Yet other parameters reflect acute

Table 1 | Overview of current XAI libraries and their supported input data types

Library Images Text Tabular Audio Video Longitudinal Evaluations

AIX-36037 ✓ ✓ ✓ ✗ ✗ ✗ ✓

Alibi explain38 ✓ ✓ ✗ ✗ ✗ ✗ ✗

Captum39 ✓ ✓ ✓ ✓ ✓ ✗ ✓

DALEX92 ✗ ✗ ✓ ✗ ✗ ✗ ✗

EthicalML-XAI40 ✗ ✗ ✓ ✗ ✗ ✗ ✗

H2O93 ✗ ✗ ✓ ✗ ✗ ✗ ✗

iNNvestigate41 ✓ ✓ ✓ ✗ ✗ ✗ ✗

InterpretDL94 ✓ ✓ ✗ ✗ ✗ ✗ ✓

PAIR saliency95 ✓ ✗ ✗ ✗ ✗ ✗ ✗

Quantus42 ✓ ✓ ✓ ✗ ✗ ✓ ✓

Shapash96 ✗ ✗ ✓ ✗ ✗ ✗ ✓

Tf-explain97 ✓ ✗ ✗ ✗ ✗ ✗ ✗

Torch-cam98 ✓ ✗ ✗ ✗ ✓ ✗ ✓

TorchRay99 ✓ ✗ ✗ ✗ ✗ ✗ ✓

Zennit100 ✓ ✗ ✗ ✗ ✗ ✗ ✗

The supported input data typeswere assessedby screening the library/packagedocumentation and the provided examples. If the email address of themain developer of the librarywas available online, we
also reachedout to them to confirm the supported data types. If no answerwas received, the assessmentwasbased on theonline documentationonly. References cite the correspondingpublication or the
GitHub account in the absence of a publication. Versions as of end of 2023.
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fluctuations for which the sampling interval needs to be flexible. For
example, two C-reactive protein (CRP) measurements, taken several
months apart, may both show normal values of <3mg/L, while the
patient could have developed and recovered from severe pancreatitis,
with CRP of say, 280mg/L in between. With respect to multimodal
data, the more data types are involved, the more difficult it is to define
meaningful sampling intervals.

3. Representation of spatio-temporal relationships. In clinical workflows,
the spatio-temporal relationships in imaging are important. However,
current saliency maps show where an AI system focuses on and are
limited to working with single time points. If a patient undergoes
imagingmultiple times for the same disease, it would be desirable for a
saliencymap to reflect the extent of the disease, implicitly characteriz-
ing disease information about the “location” and “extent of progres-
sion”. We therefore propose a “delta saliency maps”, which would
color-code imaging patterns on disease evolution status (e.g, disease
progression, response to therapy, stable disease, etc.), while the opacity
of such a map would reflect how important (i.e., attribution level) that
local area is to thefinal diagnosis of the explainedAI system. (cf. Fig. 1).

Proposing the XAI orchestrator
Considering the increased complexity of multimodal and longitudinal XAI,
as well as the need for the combination of both, we propose the XAI
orchestrator. Its development is motivated by oncological tumor boards
where specialists from different medical fields share their expertise, discuss
test results, and combine their findings to select an optimal treatment
strategy. We imagine a similar approach for an XAI system: Pretrained
biomedical knowledge, as well as patient-specific multimodal and long-
itudinal data, are collected and used to predict an outcome. XAI systems
interpret the results, providing modality-specific explanations. Subse-
quently, everything is assembled by a superordinate, Large LanguageModel
(LLM)-based XAI orchestrator, which considers the input data, the pre-
diction, and the explainability output (cf. Fig. 2). It produces a user-friendly
overall explanation and answers follow-up questions. Here, we do not
provide a full implementation and results of the XAI orchestrator but
describehow it could arise fromthe currentdevelopments of LLMsaswell as
its desirable properties, functionalities, and metrics. In the supplementary
materials (Supplementary Discussion A with Supplementary Fig. 1 and
Supplementary Discussion B with Supplementary Fig. 2), we provide two
clinical case examples of diagnostic processes where multimodal and
longitudinal data are essential to illustrate situations in which the XAI
orchestrator could be employed.

The XAI orchestrator and LLMs
LLMs have many potentially beneficial applications in healthcare practice
and research, including diagnostic (e.g., prediction of disease risk and out-
comes) and procedural (e.g., streamlining of clinical workflows, doc-
umentation, cost-effectiveness) tasks59. Recently, multiple language models

specific to the biomedical domain have been released, for example, models
of the BERT family. BioBERT was pre-trained on PubMed abstracts and
PubMedCentral full-text articles and exceededpreviousmodels in tasks like
named entity recognition, relation extraction, and question answering60.
Med-BERT was pretrained on structured EHR data from over 28 million
patients and evaluated on the prediction of pancreatic cancer, and heart
failure in patients with diabetes61.

Although the main strength of LLMs lies in the processing of and
responding to text input and in logical reasoning, strategies to leverage
LLM’s capabilities for image analysis are being investigated. For example,
Wang et al. propose ChatCAD, a system that takes Chest X-rays as input,
and passes them to different computer-aided diagnosis systems, which
produce vectors of output62. These vectors are translated into text, con-
catenated, and passed to an LLM, which analyzes them jointly, incorporates
pre-trained medical knowledge, and summarizes the results.

Currently, many research groups also work on LLMs that combine
multiple medical data types. GLoRIA is an attention-based framework that
learns global and local medical imaging representations from radiology
reports by contrasting text parts with image sub-regions from their paired
chest x-rays63. To address the scarcity of publicly available image-report pairs,
compared e.g. to the number of accessible images of cats and dogs,MedCLIP
uncouples images and texts for multimodal contrastive learning, thereby
increasing the number of training data and mitigating the problem of false
negative reports (i.e. many reports do not belong to the target patient’s
images, yet may still correctly describe their findings)64. In MedKLIP, the
authors developed a triplet extraction module that encodes medical entities
extracted from radiology reports, their position, and presence or absence as a
triplet. This triplet is then encoded with an entity translation that provides
detailed descriptions of entities by querying a medical knowledge database.

Even the capabilities of non-medicine-specific models are tested:
Although Open AI states that GPT-4V is not suitable for the interpretation
ofmedical images65, its performance onmultimodalmedical images with or
without other types of clinical data has been evaluated66. While it can dis-
tinguish between image modalities and recognize anatomical regions, its
diagnostic capabilities are currently suboptimal for clinical use, illustrating
the importance of dedicated training on medical data.

We believe that an LLM-based orchestrator could be beneficial in XAI
for clinical settings as it could provide a verbalization of explanations
adapted to the current user and situation. Moreover, LLM-based technol-
ogies could enable a bidirectional “dialogue” between users and (X)AI
systems. In the more or less distant future, such systems may serve as a
virtual assistant capable of working as a counselor in clinical scenarios.

Desirable properties, functionalities, andmetrics of the
XAI orchestrator
Properties
Fromaclinical point of view,wepropose the following attributes for theXAI
orchestrator to be helpful in daily practice (Table 2):

Fig. 1 | Improving over current saliency maps for longitudinal scenarios. The
delta saliency map. In this example case of interstitial pulmonary fibrosis, the left
image (a) was taken around two years prior to the middle image (b). During the two
years, the disease progressed heavily. The delta saliency map (c) shows this disease
progression through the yellow, orange, and red color overlays. The frontal and

dorsal areas of the lungs, which are heavily affected, as well as the subpleural areas,
are expected to contribute most to the classification and are therefore overlayed with
the highest opacity of color, whereas the extrapulmonary areas are only lightly
overlayed as they are expected to contribute only marginally.
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1. Adaptive. The XAI orchestrator must cope with a varying set of
potentially sparse input data. If underlying data contains com-
plementary rather than mutual information, explanations should
improve7. To enable such adaptivity, the XAI orchestrator needs to be
evaluated on representative real-world data.

2. Hierarchical. The XAI orchestrator should be able to provide expla-
nations at various levels of detail, with further information being
available on request.

3. Uncertainty-aware. The XAI orchestrater should also consider the
quality of the underlying data, regarding completeness, recency, noise
level, etc., and weigh their respective XAI outputs accordingly in the
overall explanation.

4. Interactive. The XAI orchestrator should comprise a chat mode. Vir-
tual reality equipment could facilitate immersive and flexible interac-
tion tailored to the user’s preferences.

5. Time effective. The XAI orchestrator should be integrated with time-
effectiveness in mind since it was found that clinicians sometimes
prefer rapid, less detailed information67.

6. Causality- andCo-dependency aware. It would be desirable for theXAI
orchestrator to be aware of co-dependencies and causalities in the data,
regarding both causality of biological processes, as well as “meta-
causality” relating to iterative ordering and evaluation of diagnostic
testing. Explicit knowledge of causal relationships is mostly unlever-
aged, as contemporary (X)AI consists mostly of deep learning systems
relying on correlations between input and outcome variables. Never-
theless, causality has recently enjoyed increasing attention again, with
discussion about causality in deep learning68 and medical imaging69,70.

7. Modular. The differentmodels andXAImethods that the orchestrator
is composed of should allow for flexible, modular testing and valida-
tion. This would facilitate targeted updating and maintenance in the
caseof adata shift, i.e., the imageprocessingunit canbe revised after the
introduction of a new scanner without the need for retraining of parts
unaffected by the data shift.

8. Privacy preserving. The XAI orchestrator should guarantee privacy-
preservation, for example with the application of federated learning
and the transfer of noisy weights. However, it needs to be considered
that also obfuscated gradients may become subject to reconstruction
attacks and leak information71,72.

9. Resilient to data drift. XAI approaches need to be evaluated and vali-
dated on multicenter datasets to ensure their generalization and
robustness against different scanner vendors, imaging protocols, and
other potential differences that can causemodel drift. In the case of the
XAI orchestrator, a model drift can yield an explanation drift that can
underscore what the underlying AI systems use as data information to

Fig. 2 | Conceptual description of the XAI orchestrator. Clinical guidelines and
recent research, constitute the knowledge base of the XAI Orchestrator. Addition-
ally, multimodal patient-specific data is collected. After outcome prediction, XAI
methods are applied to generatemodality-specific or time-specific explanations. The

superordinate XAI orchestrator aggregates all information and generates a com-
prehensive overall explanation while enabling further inquiries by an expert. Figure
created with BioRender.com.

Table 2 | Summary of the proposed properties, functionalities,
and metrics of the XAI orchestrator

Properties Functionalities Metrics

Adaptive
Hierarchical
Uncertainty-aware
Interactive
Time effective
Causality- and Codependency-
aware
Modular
Privacy-preserving

Information fusion
Task triaging
Scenario simulation

Faithfulness
Robustness
Localization
Complexity
Randomization
Axiomatic metrics

https://doi.org/10.1038/s41746-024-01190-w Review article

npj Digital Medicine |           (2024) 7:195 5



operate. For example, certain XAI saliency maps normalize their
internal representation of the data, while others do not. These differ-
ences in XAImethods can lead to inconsistencies in XAI results across
participating centers where different data acquisition protocols and
vendors are used. Here, an interesting area of further research is the
development of domain adaptation strategies for XAI technologies.

10. Up to date. The pre-trainedmedical knowledge base should be kept up
to date by regular auto-updating.

For the XAI orchestrator to find clinical use, it is critical to develop
time-effective and user-friendly Human-Machine Interactions (HMI) sys-
tems that are tailored to the specific clinical expert using it73,74. In this regard,
we believe that the properties of being hierarchical and interactive can be
useful in designing and testing HMI systems integrating the proposed XAI
orchestrator.

Functionalities
The XAI orchestrator would offer clinically relevant functionalities that
support healthcare workers in their daily tasks.
1. Information fusion. The XAI orchestrator could aggregate information

faster and more comprehensively than a person could.
2. Task triage. In the clinical routine, healthcare workers are often over-

whelmed with a large number of tasks, and it is not always straight-
forward which of them needs to be addressed first. The XAI
orchestrator could assist in task tracking and triaging beyond the
classical triaging of emergency patients and help healthcare workers in
all specialties with time management.

3. Scenario simulation. Additionally to summarizing patient data and
specialty knowledge, the XAI orchestrator could also aid in extra-
polating the effects of additional diagnostic tests or treatments. For
example, a diagnostic testmight be disadvised if the treatment remains
the same independent of the test’s outcome.

Metrics
Measuring the “goodness” of XAI explanations is an area of active research.
Recently, XAI toolkits such asQuantus started to provide evaluationmetrics
for XAI methods. Quantus structures their evaluation metrics into six
groups: faithfulness, robustness, localization, complexity, randomization,
and axiomatic metrics42. For the XAI orchestrator, we imagine similar
metric classes, yet the existing libraries need to be expanded and enriched to
be suited for the evaluation of LLMs. Evaluations of LLMs are still scarce,
and it has been argued that theymeasure self-consistency rather than actual
faithfulness75.

Possibilities for future implementation of the XAI
orchestrator
Existing transformers can be used to encode the data from different mod-
alities; for example, text data can be processed byClinical-BERT and images
via a vision transformer. The resulting embeddings are concatenated and
forwarded jointly to the central XAI orchestrator decoder. The user’s
question, encoded as a prompt, together with the prior medical knowledge,
retrieved e.g. from scientific literature databases like PubMed, are sent to the
decoder through retrieval augmented generation (RAG). The central XAI
orchestrator decoder is constructed with multiple transformer decoder
layers which generate a textual response to the input question (cf. Fig. 3).

How to answer questions is usually learned from dedicated training
data - answers to sample questions that people have phrased specifically for
training purposes. This is very time and cost-intensive. As additional
training data, verbal interactions like questions and answers that are given
bymedical professionals during their dailywork, for example, during tumor
board discussions, could be used. Tumor board session could be recorded
and transcribed. These real-world explanations given by medical profes-
sionals are likely using highly specific medical vocabulary, as they are
intended for colleagues. For a better understanding by theXAIorchestrator,
they could be augmented and enriched by another LLM, for example, as in

MedKLIP, where amedical knowledge base is queried for entity translation,
enabling understanding of unseen entities76. Making secondary use of real-
world explanations could greatly save time and money and enable training
that is closest to the way medical professionals are trained themselves.

Insights and pathways forward with the XAI
orchestrator
XAImethods enjoy rapidly increasing popularity, yet there is still a longway
to go to fully transfer the methodological work to clinical implementations.
To optimally tailor XAI systems to user needs, clinical domain experts
should be involved in the design, development, implementation, and
maintenanceof (X)AI systems through systemdevelopment cycles, research
partnerships, or advisory roles to facilitate smooth integration into existing
workflows, tailoring to the skills and needs of the specific users, and clinical
impact77. Additionally to medical doctors, this process should involve other
clinical professions, like nurses or radiology technicians who may be using
the system. Fruitful discussion may be facilitated by clinical experts with
solid basic knowledge of the technical aspects of XAI. A need for integration
of AI knowledge into core curricula has also been widely expressed among
medical students78.Next to recommendations from individuals and surveys,
which are conducted frequently on various topics in the field of AI79–83, a
multidisciplinaryDelphi study conducted among the targeteduser cohort of
radiological XAI systems may provide insight into which single solutions
most people could agree on. Delphi studies collect expert opinions through
questionnaires, just like simple surveys do, but the questionnaires are
conducted in multiple rounds, aiming to achieve consensus among the
expert group84. This is advantageous as the outcome of a Delphi study may
provide clearer directions than a simple survey. A recent article describes a
Delphi study among experts in the insurance industry to gain insight into
their preferences and opinions about XAI85. Similar studies concerning
radiological XAI applications are currently lacking.

Additionally, educational material adapted to the needs of clinicians is
needed. The educational materials on the technical aspect of XAI are often
beyond the scope of clinicians’ needs. Materials should focus on the use, as
opposed to the development, ofXAI. Furthermore, it is important to explain
to the users what the limitations of a system and its explanations are. For
users to trust a system, they need to know over which domain a model is
reliable, where it is uncertain, andwhere it is likely to break down86. Changes
in explanations need to be observed carefully when the system is confronted
with domain changes.

In this review, we aim to bring the attention of theXAI community to
the need to develop XAI systems that can handle multimodal and long-
itudinal data. From analyzing the state of the art on multimodal XAI, we
found few studies using XAI methods to produce confirmatory evidence
on the good properties of the explainedunderlyingmultimodal AI system.
Moreover, we observed that these studies remain at a prototype level and
encourage the community to further develop and test XAI systems on
datasets featuring levels of data quality as found in daily clinical routine.
Similarly, various techniques have been proposed to analyze longitudinal
datawithXAI57,87–90, butmost have not yet been extensively applied to real-
world clinical questions. The critical next step is for these to undergo
extensive field testing and external validation. Application to and eva-
luation on clinical problems should be conducted with the same rigor
demonstrated for technical method development. Also, for existing
methods, the discussion of what a good or reliable explanation constitutes
is ongoing (91, inter alia).

Finally, we propose the “XAI orchestrator” as a virtual assistant to
doctors, which is capable of coordinating explanations of specific models
and provide a user-centeredmechanism to further enquire aboutAImodels
operating on multimodal and longitudinal data. With the advent of LLMs
and their use inmedicine,we believe the development of anLLM-basedXAI
orchestrator can be a well-timed innovation. However, due to the respon-
sibilities attributed to such a system in coordinating specific (X)AI systems,
several challenges still need to be addressed to ensure its reliability, data
security, and trustworthiness.
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