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 2 

We are writing in response to Dr. Menno Hoekstra's recent letter (1) concerning our work "Adrenal Abcg1 1 

Controls Cholesterol Flux and Steroidogenesis" published in Endocrinology last February (2). 2 

In 2019, Dr. Hoekstra’s team published findings on a mouse model demonstrating mild glucocorticoid 3 

insufficiency and a reduction in adrenal cholesteryl esters following systemic deletion of the transporter 4 

Abcg1 (3). Our research, however, showed that adrenal-specific inactivation of Abcg1 results in mild 5 

hypersecretion of corticosterone without altering adrenal fat composition (2). 6 

We believe that these contrasting results provide an opportunity for further exploration and understanding. 7 

In our discussion, we proposed three potential reasons for these discrepancies: 8 

1. Systemic vs. Adrenal-Specific Deletion: We suggested that global deletion of Abcg1 might 9 

influence corticotropin-releasing hormone and/or adrenocorticotropin hormone (ACTH). Dr. 10 

Hoekstra highlighted that their protocol included ACTH stimulation 3 hours before sample 11 

collection, which addresses acute exposure. However, the possibility of prolonged low ACTH 12 

levels contributing to adrenal hypofunction remains plausible, as documented in both human and 13 

mouse models of secondary adrenal insufficiency following corticosteroid treatment (4). Further 14 

research could clarify the impact of systemic Abcg1 deletion on ACTH levels and/or other factors 15 

related to the hypophyseal-pituitary-adrenal axis. 16 

2. Adrenal Cortex Function/Development: We hypothesized that global Abcg1 inactivation could 17 

impair adrenal cortex function or cause dysgenesis. Dr. Hoekstra's letter did not address this 18 

possibility, suggesting an area for additional investigation to determine the broader effects of Abcg1 19 

deletion on adrenal cortex development. 20 

3. Degree of Abcg1 Recombination: Dr. Hoekstra noted residual Abcg1 transcripts in the zona 21 

Fasciculata in Fig. 1C of our paper and argued that the remaining transcripts may account for 22 

phenotype discrepancies (2). Of note, we observed a significant reduction in signal dots compared 23 

to controls, and whole-adrenal quantitative PCR showed a marked decrease in Abcg1 transcripts. 24 

Together, this indicates substantial Abcg1 reduction across the cortex following tissue-specific 25 

recombination. Nevertheless, even residual levels of Abcg1 transcripts are unlikely to explain the 26 

phenotypic gain-of-function (i.e., higher corticosterone levels) observed in our model of adrenal-27 

specific Abcg1 deletion. 28 

In addition, Dr. Hoekstra raised concerns about the suitability of the Aldosterone Synthase (AS, 29 

Cyp11b2)-regulated Cre system for recombination in the zona Fasciculata, where AS is not 30 

expressed. We refer to numerous lineage-tracing studies over the past decade, which confirm that 31 
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 3 

AS-expressing cells in the zona Glomerulosa transdifferentiate into zona Fasciculata cells (5,6). 1 

Consistent with these findings, the specific Cre-expressing mouse strain we used achieves nearly 2 

complete renewal of the steroidogenic cortex from AS-expressing cell descendants by 11-12 weeks 3 

of age (7). Thus, our experiments were appropriately conducted at this developmental stage. 4 

Moreover, we are pleased to share that additional lineage-tracing experiments using an mTmG 5 

allele (8) in Abcg1 conditional knock-out and control mice at 12 weeks of age showed no impact 6 

of Abcg1 deletion on transdifferentiation of zona Glomerulosa cells into zona Fasciculata cells (data 7 

not shown). 8 

We thank Dr. Hoekstra for prompting this discussion and for the opportunity to clarify our findings. We 9 

hope these points contribute to a deeper understanding of Abcg1's role in adrenal physiology and encourage 10 

further collaborative research in this area. 11 

 12 
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