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Abstract
Motivation: Understanding protein thermostability is essential for numerous biotechnological applications, but traditional experimental meth-
ods are time-consuming, expensive, and error-prone. Recently, deep learning (DL) techniques from natural language processing (NLP) was ex-
tended to the field of biology, since the primary sequence of proteins can be viewed as a string of amino acids that follow a physicochemi-
cal grammar.
Results:  In this study, we developed TemBERTure, a DL framework that predicts thermostability class and melting temperature from protein 
sequences. Our findings emphasize the importance of data diversity for training robust models, especially by including sequences from a wider 
range of organisms. Additionally, we suggest using attention scores from Deep Learning models to gain deeper insights into protein thermosta-
bility. Analyzing these scores in conjunction with the 3D protein structure can enhance understanding of the complex interactions among amino 
acid properties, their positioning, and the surrounding microenvironment. By addressing the limitations of current prediction methods and intro-
ducing new exploration avenues, this research paves the way for more accurate and informative protein thermostability predictions, ultimately 
accelerating advancements in protein engineering.
Availability and implementation: TemBERTure model and the data are available at: https://github.com/ibmm-unibe-ch/TemBERTure.

1 Introduction
Biocatalysts have become integral to numerous industrial 
processes, driving e.g. advances in pharmaceutical, food, and 
biofuel productions (Himmel et al. 2007, Kuddus 2018, 
Singh et al. 2016). In these applications, protein thermosta-
bility plays a crucial role (Adams and Kelly 1995, Bommarius 
et al. 2006). Proteins that can endure high temperatures are 
essential for accelerating and enhancing chemical reactions, 
leading to reduced production costs (Singh et al. 2016). 
However, exposure to elevated temperatures can cause dena-
turation and loss of biological activity (Matsuura et al. 
2015), underscoring the importance of improving our under-
standing of protein thermostability.

Despite notable progress in experimental techniques for 
measuring protein thermostability, the process remains time- 
consuming and challenging to scale up, resulting in limited 
data on protein thermostability (Stourac et al. 2021). 
Currently, ProThermDB is the largest dataset of experimental 
thermodynamic data for protein stability (Nikam et al. 
2021), encompassing a comprehensive collection of 32 000 
proteins, of which 38% are wild-type sequences and 51% 
single point mutations. Recently, novel experimental techni-
ques have emerged that allow for the determination of the 
thermal stability of proteins across the entire genome of a 
cell. These techniques involve the integration of mass 

spectrometry with limited proteolysis (Leuenberger et al. 
2017), or liquid chromatography (Jarzab et al. 2020). In ad-
dition to experimental techniques, the growth temperature of 
organisms is commonly employed as a proxy for protein ther-
mostability (Ahmed et al. 2022a, Chakravarty and 
Varadarajan 2002, Lin and Chen 2011, Modarres et al. 
2018, Vieille and Zeikus 2001).

Protein thermostability is a complex interplay between a 
protein's intrinsic properties, encoded in its amino acid se-
quence and structure, and extrinsic factors such as pH, solvent 
conditions, and the presence of stabilizing agents. Extrinsic 
factors can be important in vivo. However, large datasets of 
in vivo thermostability data along with the metadata are still 
currently lacking, thus making in vivo thermostability model-
ing difficult. On the other hand, understanding and predicting 
the inherent stability encoded in a protein's sequence and 
structure is crucial, in particular, for biotechnological applica-
tions. By optimizing intrinsic thermostability, proteins become 
less reliant on specific external conditions, increasing their ver-
satility and applicability in diverse biotechnological settings.

Statistical comparisons of thermophilic and non-thermophilic 
protein sequences have identified key features associated with 
thermostability, including higher proportions of hydrophobic 
and charged residues and specific dipeptide motifs of thermo-
philic proteins (Fukuchi and Nishikawa 2001, Vieille and 
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Zeikus 2001, Ding et al. 2004, Liang et al. 2005, Zhou et al. 
2008). A higher occurrence of hydrogen bonds, salt bridges, di-
sulfide bonds, and hydrophobic interactions is also observed in 
thermophilic proteins (Haney et al. 1997, Sadeghi et al. 2006, 
Bleicher et al. 2011, Bashirova et al. 2019).

Extensive research has led to the development of several 
machine learning models aimed at predicting protein thermo-
stability, treating it as a classification task (Gromiha and 
Xavier Suresh 2007, Zhang and Fang 2006, 2007, Wu et al. 
2009, Lin and Chen 2011, Nakariyakul et al. 2012, Tang 
et al. 2017, Charoenkwan et al. 2021, 2022). Early models 
such as Thermopred employed a support vector machines 
(SVM) classifier trained on a dataset of 793 non-thermophilic 
and 915 thermophilic protein sequences (Lin and Chen 
2011), which became a foundation for training subsequent 
models (Nakariyakul et al. 2012, Tang et al. 2017). An ex-
panded version of this dataset, consisting of 1368 thermophilic 
and 1443 non-thermophilic proteins, was utilized for training 
the iThermo model, a multi-layer perceptron (MLP) (Ahmed 
et al. 2022a) and the Sapphire framework, a staking-based en-
semble model (Charoenkwan et al. 2022). Other models have 
approached the problem as a regression task to directly predict 
the melting temperature (Yang et al. 2019, 2022).

Transformer-based models such as bidirectional encoder 
representations from transformers (BERT) (Devlin et al. 
2018) have improved natural language processing (NLP). By 
considering proteins as a string of amino acids, NLP can be 
applied to biology and more specifically to protein modeling 
and classification. ProtTrans (Elnaggar et al. 2022), a family 
of models including protBERT, leverages transformers to ex-
tract protein characteristics from sequence data. BertThermo 
(Pei et al. 2023) uses the protBERT embeddings with classical 
machine learning models for thermophilicity classification, 
whereas DeepSTABp incorporates ProtTrans-XL embeddings 
and growth temperature to predict protein melting tempera-
ture (Jung et al. 2023). Similarly, TemStaPro (Pud�ziuvelyt _e 
et al. 2024) is an ensemble of models incorporating ProtT5- 
XL (Elnaggar et al. 2022) embeddings to feed-forward 
densely connected neural network models, and ProLaTherm 
(Haselbeck et al. 2023) integrates the encoder part of a 
T5-3B (Raffel et al. 2020) model with ProtT5-XL (Elnaggar 
et al. 2022) as the feature extractor.

To overcome the shortcomings of present model approaches, 
we developed TemBERTure, a deep learning package for pro-
tein thermostability prediction. It consists of three components: 
(i) TemBERTureDB, a large-curated database of thermophilic 
and non-thermophilic sequences, (ii) TemBERTureCLS, a classi-
fier, and (iii) TemBERTureTm, a regression model, which pre-
dicts, respectively, the thermal class (non-thermophilic or 
thermophilic) and melting temperature of a protein, based on its 
primary sequence. Both models are built upon the existing 
protBERT-BFD language model (Elnaggar et al. 2022) and fine- 
tuned through an adapter-based approach (Houlsby et al. 2019, 
Poth et al. 2023). Our findings demonstrate the remarkable 
capability of deep learning to differentiate protein classes 
based on their sequences. However, they also highlight its 
limitations due to the current lack of available data. Despite 
these limitations, the insights gained from the attention scores 
within these models offer promising clues to unraveling the 
underlying mechanisms of protein thermostability and thus 
can suggest new research directions in biotechnology and 
protein engineering.

2 Methods
This section is composed of four main parts. Part 1 outlines the 
workflow for establishing comprehensive curated databases of 
thermophilic and non-thermophilic protein sequences sourced 
from various experiments and data collection, with 
TemBERTureDB as the primary training resource and two addi-
tional databases used for bias and generalization assessment. 
Parts 2 and 3 describe the architecture and training of 
TemBERTureCLS and TemBERTureTm, respectively. And fi-
nally, Part 4 provides the technical details used for the analyses.

2.1 Database creation
2.1.1 TemBERTureDB

TemBERTureDB leveraged data from the Meltome Atlas ex-
periment (Jarzab et al. 2020). We obtained pre-processed 
protein sequences from the ProtStab2 dataset (Yang et al. 
2022). These sequences were supplemented by retrieving all 
sequences from UniProtKB (The UniProt Consortium 2023) 
corresponding to the same 13 organisms as in the Meltome 
Altas. To address the class imbalance between thermophilic 
and non-thermophilic sequences, we enriched the thermo-
philic dataset by sourcing additional data from the BacDive 
database (Reimer et al. 2022). Here, we classified sequences 
based on the growth temperature of their respective organ-
isms: thermophilic (>60�C) and non-thermophilic (<30�C). 
Protein sequences were retrieved for each organism from the 
NCBI database (Sayers et al. 2022). Ambiguous and short 
(<30 amino acids) sequences were excluded. MMseqs 
(Hauser et al. 2016) was then employed to cluster the sequen-
ces within each dataset, using a threshold of 50% for thermo-
philic and 80% for non-thermophilic. To further address the 
class imbalance, we augmented the non-thermophilic dataset 
with challenging examples. These examples were retrieved 
from non-thermophilic organisms (BacDive) and exhibited 
high sequence similarity (80% < identity < 95%) to the ther-
mophilic sequences (Fig. 1A). The final TemBERTureDB was 
stored as an SQL database facilitating efficient data retrieval 
for downstream analyses (Supplementary Table S1).

2.1.2 BacDIVE
Within the BacDive database, organisms were classified 
based on growth temperature: thermophilic (>60�C) and 
non-thermophilic (<30�C). Protein sequences were then re-
trieved for each organism from the NCBI database, and am-
biguous or short sequences (<30 amino acids) were excluded. 
Given the substantial disparity between the number of non- 
thermophilic and thermophilic sequences, we used MMseqs 
in cascading mode to cluster the non-thermophilic sequences. 
We then undersampled the centroids (representatives of each 
cluster) to align with the number of thermophilic centroids 
identified using MMseqs with a 50% identity threshold 
(Supplementary Table S2).

2.1.3 Meltome
We leveraged data curated within TemBERTureDB and ex-
cluded the non-thermophilic counterparts of the high- 
similarity sequence pairs retrieved from the BacDive database 
(Supplementary Table S3).

2.1.4 Splitting
For model training, we partitioned the datasets into an 
80:10:10 ratio for the training, validation, and test sets, re-
spectively. To mitigate any potential information leakage 
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between sets, all sequences were clustered with MMseqs at a 
50% identity threshold. Centroids and their corresponding 
clusters were then assigned to the same split.

For the regression task, we exclusively used the initial 
Meltome dataset. Melting temperatures were categorized into 
temperature bins of 10�C, and 10 data points from each tem-
perature bin were randomly selected for both the test and val-
idation sets. To address the imbalance in the distribution of 
melting temperatures within the training set, we implemented 
a combination of undersampling and oversampling techni-
ques. Temperature bins with an abundance of data points 
(40–55�C) were undersampled, whereas bins with a scarcity 
of data points (20–40 and 60–90�C) were oversampled. This 
approach ensured a balanced number of data points across 
all temperature bins.

2.2 TemBERTureCLS

TemBERTureCLS (Fig. 1B) is a sequence-based classifier 
that takes the amino acid sequence as input and outputs the 
corresponding thermal class of the protein along with its as-
sociated score. It was built on top of the pre-trained 
protBERT-BFD model (Elnaggar et al. 2022), a BERT model 
composed of 30 layers, 16 heads, and 1024 hidden layers and 
trained on over 2 billion protein sequences from the BFD100 
(Steinegger and S€oding 2018, Steinegger et al. 2019) dataset. 
In order to reduce the number of trainable parameters and 
enhance the efficiency of the training process, we opted for 
an adapter-based fine-tuning technique (Houlsby et al. 2019, 
Poth et al. 2023), where light weight bottleneck layers are 
inserted between each transformer layer.

TemBERTureCLS was thus implemented as a 
BertAdapterModel with Pfeiffer adapters (Pfeiffer et al. 
2021) configuration using the PyTorch framework via 

adapters (Houlsby et al. 2019, Poth et al. 2023) library. It 
was initiated with the proBERT-BFD (Elnaggar et al. 2022) 
weights through the HuggingFace API (Wolf et al. 2019) and 
the Pfeiffer adapter architecture layers were added after the 
feed-forward block of each transformer layer (Vaswani et al. 
2017, Wolf et al. 2020). In this way, we reduced the number 
of trainable parameters from 420 million to 5 million.

2.2.1 Training
Protein sequences were tokenized at the amino acid level uti-
lizing the protBERT-BFD (Elnaggar et al. 2022) tokenizer, 
with all sequences truncated to a maximum length of 512. 
For each dataset, a separate hyperparameter search was 
carried out to optimize the training and architecture of the 
model (Supplementary Table S4). This hyperparameter 
search was performed using W&B Sweeps (Biewald 2020) 
grid hyperparameter search. The adapter training was carried 
out for a maximum of 20 epochs for each dataset with a 
batch size of 16, using AdamW optimizer (Loshchilov and 
Hutter 2017) with default Hugging Face (Wolf et al. 2019) 
configuration. The model that achieved the lowest validation 
loss was then saved for evaluation. To ensure model robust-
ness, the final configuration of each model was trained three 
times under identical conditions, varying only the random 
seed. This approach allowed us to assess the model's indepen-
dence from specific random seeds and to confirm its reliabil-
ity across different runs. All models were trained on a single 
NVIDIA A100 80G GPU.

2.3 TemBERTureTm

TemBERTureTm is a sequence-based regression model 
designed to predict the protein melting temperature (Tm) di-
rectly from its amino acid sequence. This model has the same 

Figure 1. TemBERTure database creation and model architecture. (A) TemBERTureDB creation pipeline: protein sequences from organisms within the 
Meltome Atlas were retrieved from the UniProt database and categorized based on their thermophilicity (right: thermophilic, left: non-thermophilic). 
Additional sequences were then collected from BacDive (Reimer et al. 2022) and NCBI (Sayers et al. 2022) databases at various temperature thresholds 
to augment the dataset. The final database comprises approximately 0.3 million each for thermophilic and non-thermophilic proteins, further divided into 
training, testing, and validation sets that are representative of the temperature distribution. (B) TemBERTureCLS model architecture was based on the 
proBERT-BFD framework, with lightweight bottleneck adapter layers inserted between each transformer layer (shown in gray). The model takes a protein 
sequence as input and outputs a score indicating the classification score of the sequence being thermophilic or non-thermophilic.
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underlying architecture configuration and tokenization as 
TemBERTureCLS, with a regression head. Leveraging the pre- 
trained protBERT-BFD model, we adopted again an adapter- 
based fine-tuning technique to reduce trainable parameters.

2.3.1 Training
The model was trained on a curated dataset created specifi-
cally for predicting protein melting temperatures, based on 
TemBERTureDB. All sequences are truncated to a maximum 
length of 512. The training was carried out for a maximum 
of 200 epochs for each run with a batch size of 16 and using 
AdamW optimizer (Loshchilov and Hutter 2017) with de-
fault Hugging Face (Wolf et al. 2019) values. We conducted, 
with W&B Sweeps (Biewald 2020), an extensive search to 
identify the optimal configuration of the regression head 
(Supplementary Table S5). We then explored various weight 
initialization approaches for the model. In addition to ran-
dom initialization, we investigated transfer learning from 
TemBERTureCLS at different training stages. This involved 
introducing classifier weights at 25%, 50%, 75%, and 100% 
of the first epoch, along with weights from the fully trained 
classifier. To assess model stability and consistency across 
random initializations, all models were trained three times 
with different random seeds. For each configuration, the 
model achieving the lowest validation loss was saved for fur-
ther evaluation. All training runs utilized a single NVIDIA 
A100 80G GPU.

2.4 Analyses
2.4.1 Ensemble evaluation for melting 
temperature prediction
To improve prediction accuracy, we evaluated different ensem-
bles of models on the validation set. We built these ensembles 
by selecting subsets of the initial 18 models. These 18 models 
encompassed all distinct initialization methods (random and 
transfer learning with TemBERTureCLS weights) and their rep-
licates. We investigated three ensemble approaches: greedy al-
gorithm, weighted ensemble, and a method leveraging 
TemBERTureCLS. Additionally, we experimented with various 
averaging techniques (standard deviation and interquartile 
range, IQR) to combine predictions and identify the optimal 
value for each data point. Overall, these ensemble strategies 
aimed to harness the strengths of multiple models and achieve 
a configuration effective across a broad temperature range. 
Detailed descriptions are provided in the Extended Methods in 
the Supplementary Information.

2.4.2 High attention score
The IQR method was used to identify amino acids within a 
protein sequence with a high attention score (HAS). We cal-
culated a threshold by adding 1.5 times the IQR to the third 
quartile (Q3) of the attention scores. Attention scores exceed-
ing this threshold are flagged as outliers, indicating a notice-
ably HAS and potentially significant influence on the 
model's decisions.

3 Results
3.1 TemBERTureDB

To train our deep learning models for predicting protein ther-
mostability, we curated TemBERTureDB, a comprehensive 
dataset built upon the Meltome Atlas (Jarzab et al. 2020) 
that includes data for over 48 000 proteins across 13 

different species (Fig. 1A). We further enriched it with all 
protein sequences from UniProtKB for each organism (The 
UniProt Consortium 2023). This initially resulted in a highly 
imbalanced dataset with only 44 000 sequences from thermo-
philic organisms (growth temperature above 60�C) compared 
to 4.3 million sequences from non-thermophilic organisms 
(growth temperatures: 16–36�C). To address this imbalance, 
we incorporated thermophilic proteomes from BacDive, add-
ing 0.9 million sequences (Reimer et al. 2022). However, the 
thermophilic dataset remained biased toward bacterial and 
archaeal sequences. Therefore, we included similar bacterial 
sequences (<30�C growth temperature) with high identity 
(>80%) to thermophiles. This added valuable non- 
thermophilic examples outside the target class, for a more 
challenging training set (Supplementary Table S1).

To ensure that both classes contained diverse protein fami-
lies and folds, we clustered each class separately using 
MMseqs (Hauser et al. 2016), resulting in a balanced dataset 
of 300 000 sequences per class. We partitioned it into train-
ing, validation, and test sets at an 80:10:10 ratio, ensuring 
that sequences with high similarity remained within the same 
split, to avoid information leakage. To enhance model learn-
ing and generalization, pairs of highly similar sequences from 
different classes were exclusively reserved for training, effec-
tively bridging the gap between thermophilic and non- 
thermophilic sequences (Supplementary Table S6).

3.2 TemBERTureCLS

TemBERTureDB served as the training dataset for 
TemBERTureCLS, a sequence-based classifier designed to pre-
dict the thermal class of a protein solely from its amino acid 
sequence (Fig. 1B). TemBERTureCLS is a binary classifier, 
where the thermophilic class is defined as a sequence coming 
from organisms with a growth temperature above 60�C. 
TemBERTureCLS leveraged protBERT-BFD, a pre-trained 
protein language model (Elnaggar et al. 2022), and utilized 
adapter layers (Houlsby et al. 2019, Poth et al. 2023) for effi-
cient task-specific learning. This approach offers faster (up to 
50%) and more robust training (avoiding catastrophic forget-
ting) than full fine-tuning, thus enabling rapid model experi-
mentation and optimization without sacrificing performance.

TemBERTureCLS achieved an overall accuracy of 0.89, an 
F1-score of 0.9, and a Matthews correlation coefficient 
(MCC) of 0.78, with balanced predictive performance across 
both classes (0.88 and 0.90 F1-score for non-thermophilic 
and thermophilic sequence, respectively). Low standard devi-
ation across multiple trained models confirms robust train-
ing. We, therefore, chose to retain the initially trained model 
as the final TemBERTureCLS model. When comparing the 
performance of TemBERTureCLS to state-of-the-art models, 
we observed that many of the latter tend to overpredict the 
non-thermophilic class (Fig. 2). Despite achieving a competi-
tive average precision of 0.79 for thermophilic sequences, 
their recall fell below 0.7, resulting in numerous misclassifica-
tions of non-thermophilic proteins. This highlights the limita-
tions in the generalizability of current methods (Supplementary 
Table S7).

To assess the generalization of TemBERTureCLS, we tested 
it on the widely used iThermo dataset (Ahmed et al. 2022a) 
and the TemStaPro test set (Pud�ziuvelyt _e et al. 2024). After 
removing similar sequences (over 50% identity), the final test 
sets contained 65 and 1495 thermophilic sequences and 505 
and 10 849 non-thermophilic sequences for iThermo and 

4                                                                                                                                                                                                                                   Rodella et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/4/1/vbae103/7713394 by U

niversitaetsbibliothek Bern user on 23 July 2024

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae103#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae103#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae103#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae103#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae103#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbae103#supplementary-data


TemStaPro, respectively. This substantial reduction in dataset size 
resulted in highly imbalanced non-overlapping sets. 
Consequently, we evaluated TemBERTureCLS performance using 
the macro-averaged F1-score, recall, and precision 
(Supplementary Table S8). TemBERTureCLS maintained high ac-
curacy, achieving 86% on iThermo and 83% on TemStaPro. To 
explore TemBERTureCLS ability to perform on sequences from 
novel organisms, we created a new test set with sequences from 
organisms in the BacDive database (Reimer et al. 2022). 
Although non-thermophilic sequence precision remained high 
(0.81), precision for thermophilic sequences dropped (0.74), sug-
gesting limitations in generalizing to completely new organisms.

To further investigate this observation, we trained separate 
models, with the same architecture as TemBERTureCLS, with 
two distinct datasets: one derived from BacDive (Reimer 
et al. 2022), focusing solely on bacterial and archaeal organ-
isms, and another one from the Meltome Atlas (Jarzab et al. 
2020), augmented solely with thermophilic sequences 
(Supplementary Tables S2 and S3). Each model performed 
well on the dataset derived from the same source as its train-
ing data. However, performances dropped significantly when 
tested on the other datasets (Fig. 3A). These variations were 
less pronounced for the thermophilic class, most likely be-
cause all datasets used BacDive for selecting thermophilic 
organisms. In contrast, the non-thermophilic class exhibited 
greater performance variations. The BacDive-trained model's 
performance dropped significantly, when tested on the 
TemBERTureDB or MeltomeDB data (almost random classifi-
cations), whereas TemBERTureCLS and the Meltome-trained 
model maintained comparable performance across all data-
sets, indicating the necessity of using diverse training datasets 
to improve generalizability. To assess potential data leakage 
between training and test sets, we clustered TemBERTureDB 

test sequences based on their maximum identity to training 
set sequences (Fig. 3B). TemBERTureCLS performance 
remained consistent across all identity ranges for the non- 
thermophilic class. A decrease in performance was observed 
specifically within the thermophilic class for sequences with 

less than 20% identity. However, the performance remained 
comparable to the one previously observed when using a test 
set from a different source than the training data. This could 
be attributed to either overfitting to specific training data pat-
terns or the inherent difficulty of classifying these sequences 
(e.g. orphan proteins).

3.3 TemBERTureTm

Building on these promising TemBERTureCLS results, we de-
veloped TemBERTureTm, to predict protein melting tempera-
ture (Tm) from its primary sequence. Extracting the readily 
available protein melting temperature data from the Meltome 
Atlas, we again leveraged protBERT-BFD and adapter layers 
for training TemBERTureTm. Even though the model 
achieved a seemingly high Pearson correlation of 0.78, a 
more detailed analysis revealed a clear limitation (Fig. 4A). 
The predicted temperatures displayed a surprising bimodal 
distribution, concentrated around non-thermophilic (below 
60�C) and thermophilic (above 80�C) ranges. This suggests a 
bias toward classifying temperatures into these broad catego-
ries rather than accurately predicting the melting points. This 
bias agrees with the weak correlation within each class (0.41 
for non-thermophilic, −0.33 for thermophilic) and high 

Figure 2. Comparison of TemBERTureCLS with state-of-the-art models on 
the TemBERTureDB test set. Recall and precision are shown separately 
for thermophilic (right) and non-thermophilic (left) thermal categories.

Figure 3. TemBERTure database creation and model architecture. (A) 
Confusion matrix comparing the performance of the TemBERTureCLS 

model with models trained on data derived from only BacDive and 
Meltome. The evaluation is performed on three separate test sets: 
TemBERTureDB, BacDiveDB, and MeltomeDB test sets. Each cell in the 
matrix represents the proportion of predictions made by a specific model 
on a specific test set. (B) TemBERTureCLS performance on 
TemBERTureDB test sequences clustered by maximum identity to 
training data. Shades of blue (top row) indicates correct predictions for 
the non-thermophilic category, while shades of red (bottom row) 
represent the performance for thermophilic sequences. Off-diagonal 
entries indicate instances of misclassification.
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accuracy (82%) of TemBERTureTm as a classifier using a 
70�C threshold. Moreover, TemBERTureTm displayed signifi-
cant variability among replicates trained with different ran-
dom seeds, suggesting instability and limitations within the 
training process.

Given the limited size (around 30 000 sequences) of the 
Meltome Atlas dataset, we explored transfer learning. We 
hypothesized that pre-trained adapter weights from 
TemBERTureCLS, which captured thermal class features, 
could improve TemBERTureTm regression performance. Our 
approach involved replacing the random initialization of the 
adapter layers with weights from various stages of the classi-
fication training process. Since TemBERTureTm prediction 
followed a bimodal distribution, we chose different training 
stages for the adapter weights, aiming to balance leveraging 
learned thermal features and enabling the regression to move 
beyond this bias. However, this approach did not yield any 
significant improvements in performance.

In order to improve the performance, we explored diverse 
ensembling strategies (see Extended Methods in Supplementary 
Information). First, we established an upper bound on achiev-
able performance using an oracle approach. From all 
TemBERTureTm variations, the oracle selected the prediction 
from all TemBERTureTm variations that was closest to the ex-
perimentally measured melting temperature. This yielded a best- 
case scenario with an MAE of 2.64�C and an R2 of 0.94 on the 
test set, highlighting the potential of the underlying approach. 
However, the ensemble techniques only led to a marginal 
change in performance (Supplementary Table S9). A more 
promising approach involved leveraging thermal class informa-
tion. We first predicted a protein's class (non-thermophilic or 
thermophilic) using TemBERTureCLS to predict the thermal 
class (non-thermophilic or thermophilic) of the protein se-
quence. Then, we selected a subset of best performing 
TemBERTureTm models for each class. This resulted in a combi-
nation of five models for non-thermophilic predictions (all trans-
fer learning) and two models for thermophilic predictions 
(Supplementary Table S9), i.e. one with random weights and 
one with partial first-epoch weights. This highlights the impor-
tance of incorporating class information, achieving a decrease in 

MAE (6.31�C) and an increase in R2 (0.78) on the test set com-
pared to other ensembling techniques.

Despite limitations in predicting individual melting points, 
TemBERTureTm showed promise in capturing broader ther-
mal properties. We used the model to predict the melting tem-
peratures of unmeasured proteins from organisms within the 
Meltome Atlas. Interestingly, the predicted distribution mir-
rored the known distribution of measured melting tempera-
tures across diverse organisms (Fig. 4B). This suggests that, 
although TemBERTureTm has some difficulties in predicting 
individual values, it still might capture underlying patterns re-
lated to protein thermostability across species.

3.4 Interpretability
To explore the intricate relationships between amino acid 
properties and thermostability, we conducted an analysis of 
the attention mechanisms in the TemBERTureCLS model. 
Attention mechanisms offer an interpretable scoring function, 
highlighting segments of the input sequence that are most im-
portant for a particular prediction by assigning them higher 
scores. In the context of TemBERTureCLS, this would allow 
for a comprehensive identification of crucial amino acids and 
regions within a sequence that may influence the thermostabil-
ity prediction. We defined HAS regions as exceeding the IQR 
of attention values across the entire sequence. All analyses 
were performed using the first replica of TemBERTureCLS.

3.4.1 Effect of fine-tuning
To investigate the impact of fine-tuning on the model's atten-
tion patterns, we compared the frequencies of HAS amino 
acids between the pre-trained protBERT-BFD model and 
TemBERTureCLS. We hypothesized that changes in HAS fre-
quencies might correlate with features linked to thermostabil-
ity. Although the overall attention scores remained remarkably 
similar between the two models, we observed a shift in the fre-
quency of HAS for specific amino acids (Fig. 5A). For thermo-
philic proteins, leucine, arginine, and alanine appeared more 
frequently as HAS, whereas the frequency only increased for 
leucine in non-thermophilic sequences (Supplementary 
Fig. S1).

Figure 4. Predicted melting temperatures. (A) Scatter plot comparing the measured melting temperatures to predicted melting temperature. Each point 
is colored base on the thermal category (blue: non-thermophilic and red: thermophilic). The dashed gray line represents a perfect prediction. Standard 
deviations are calculated from the predictions of three replicates. (B) Distributions of melting temperature for various organisms, represented by a 
colored gradient ranging from red (high growth temperature) to blue (low growth temperature). The measured melting temperature distributions are 
shown in gray, while the predicted distributions using TemBERTureTm are shown in color. Gray circles mark the growth temperatures of each organism 
and the temperatures noted in parentheses indicating the average melting temperatures of the organism’s proteome.
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3.4.2 Amino acids enrichment
We conducted a more in-depth analysis by comparing the en-
richment levels of each amino acid within the protein sequen-
ces with their natural occurrence frequencies. We calculated 
the background frequency of each amino acid in the 
TemBERTureDB test set and compared it to the frequency at 
which they appeared as HAS (Fig. 5B and Supplementary Fig. 
S2). This analysis revealed distinct patterns between thermo-
philic and non-thermophilic proteins. For example, we ob-
served an increase in HAS frequency for several hydrophobic 
residues, such as alanine, phenylalanine, and leucine, which 
potentially reflect their role in stabilizing the protein core 
through tight packing. Interestingly, cysteine, which is known 
for forming stabilizing disulfide bridges and coordinating 
metals (Pace and Weerapana 2014), received higher attention 
in non-thermophiles. Glutamine and asparagine, susceptible 
to deamidation at high temperatures (Ahern and Klibanov 
1985, Tomazic and Klibanov 1988, Rahimzadeh et al. 2012), 
showed decreased HAS, in agreement with their expected 
scarcity in these organisms. TemBERTureCLS also showed a 
clear preference for different charged amino acids, with an in-
crease in HAS for arginine and a decrease in HAS for lysine. 
However, it is crucial to underscore the potential complexity 
in interpreting HAS scores. An increase in HASs might sug-
gest functional importance; however, their interpretation 
requires caution due to dependence on the local amino acid 
environment. Conversely, decreased HAS for specific amino 
acids might not indicate a negative impact, but rather reflect 
the model's focus on their specific critical interactions within 
the protein structure.

3.4.3 Structural analysis
In order to gain some structural insights from the attention 
scores, we analysed 17 pairs of homologous thermophilic and 
non-thermophilic proteins correctly classified by 
TemBERTureCLS. These pairs shared moderate sequence 

similarity (identity score: 0.28–0.54). Although the overall at-
tention patterns between homologous proteins showed some 
correlation, the HAS amino acids exhibited more variability. 
Between homologous proteins, the model assigned a similar 
number of HAS to both conserved and non-conserved amino 
acids (Fig. 6A and Supplementary Fig. S3). Interestingly, the 
specific amino acids receiving HAS often differed between 
homologs, even in conserved regions. This is further sup-
ported by the presence of many HAS within insertion regions, 
highlighting the model's ability to focus on regions beyond 
the conserved core for thermostability prediction.

To understand how TemBERTureCLS leverages structural 
information beyond sequence similarity, we mapped the at-
tention scores directly onto protein structures (Fig. 6B and C, 
and Supplementary Fig. S4). Higher attention scores localized 
similarly across homologs, regardless of sequence entropy 
(Fig. 6D and Supplementary Fig. S5). Notably, higher atten-
tion scores often resided in helical regions and in the protein 
core, potentially revealing the prioritization of structurally 
important elements for predicting thermostability.

4 Discussion
Protein thermostability is crucial for various applications in 
biotechnology and biology. Traditional experimental meth-
ods for assessing it are laborious, expensive, and prone to 
errors. Here, we developed a new set of tools which allowed 
us to explore the potential of deep learning models to predict 
protein thermostability. Our study highlights the crucial role 
that data diversity plays in training robust models. We ob-
served significant performance improvement with datasets 
encompassing a wider range of sequences from various 
organisms. Conversely, insufficient diversity, as seen in the 
BacDive derived dataset, led to models that struggled with 
challenging test sets. This emphasizes the need for a holistic 
approach to data curation, in order to ensure balanced repre-
sentation of diverse species in the training data.

Figure 5. Frequency of high attention score (HAS) by amino acid. (A) Scatter plot comparing the frequency of HAS amino acids of the pre-trained 
proBERT-BFD model to TemBERTureCLS. Each point represents an amino acid and is colored in gray if the frequency of HAS increased in 
TemBERTureCLS. (B) Bubble plot comparing the frequency of each amino acid in the test set to its HAS frequency. Red bubble indicates that the 
frequency of HAS is higher for thermophilic and blue bubbles for non-thermophilic. Each bubble is scaled to the difference in frequency between 
both classes.
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Although the Meltome Atlas presents an impressive num-
ber of melting temperatures, it suffers from certain biases, in 
particular, the data primarily represents non-thermophilic 
organisms with a temperature gap between 60 and 70�C. 
And yet, TemBERTureTm's predictions, while not accurate 
for absolute melting temperatures, still captured the overall 
distribution of melting temperatures observed across different 
species in the dataset. This suggests the model might have pri-
oritized recognizing the species origin of the sequence rather 
than intrinsic thermostability features. This agrees with previ-
ous findings showing that sequence embeddings from lan-
guage models can already capture these broad differences 
between thermophilic and non-thermophilic organisms 
(Pud�ziuvelyt _e et al. 2024). Additionally, the presence of ther-
mostable proteins within non-thermophilic proteomes further 
underscores the limitations of using growth temperature 
alone as a thermostability proxy.

Various statistical approaches have attempted to identify im-
portant changes in amino acid composition linked to thermo-
stability (Sch€afer et al. 1996, Kumar et al. 2000, Vieille and 
Zeikus 2001, Sadeghi et al. 2006, Folch et al. 2008, Folch 
et al. 2010, Ahmed et al. 2022b). However, such analyses 
heavily depend on dataset curation, leading to contradictory 
results. Furthermore, while certain biophysical properties of 
residues may elucidate their prevalence in thermostable pro-
teins, thermophilicity is a multifaceted attribute influenced by 
the positioning and microenvironment of amino acids within 
the protein. This study presents the concept of leveraging at-
tention scores to gain more nuanced insights into protein ther-
mostability. Even though we observed some global trends 
consistent with previous analyses (e.g. enrichment of specific 
amino acids), TemBERTureCLS also highlighted the value of 
analyzing these interactions within the context of the 3D pro-
tein structure. However, our findings suggest that the present 
attention scores still need to be refined, since they capture both 
thermostability-related features and organism-specific charac-
teristics. Further research is needed to refine them for a more 
precise understanding of protein thermostability.

In conclusion, this study shed light on the limitations of 
current approaches for predicting protein thermostability and 
introduced new avenues for exploration. It highlighted the 

importance of using diverse training data, thus extending the 
analysis beyond single-species, and exploiting important fea-
tures of the models, such as attention scores. Although our 
study demonstrates the importance of careful data splitting 
strategies, the precise impact of different sequence identity 
thresholds warrants further investigation. These findings can 
be expected to lay the groundwork for future research to de-
velop even more robust and informative methods for predict-
ing protein thermostability.
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