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Abstract 

Genome-wide association studies (GWAS) have been successful at finding 

associations between genetic variants and human traits, including the immune-mediated 

diseases (IMD). However, the requirement of large sample sizes for discovery poses a 

challenge for learning about less common diseases, where increasing volunteer numbers 

might not be feasible. An example of this is myositis (or idiopathic inflammatory myopathies, 

IIM), a group of rare, heterogeneous autoimmune diseases affecting skeletal muscle and other 

organs, severely impairing life quality. Here, we applied a feature engineering method to 

borrow information from larger IMD GWASs to find new genetic associations with IIM and its 

subgroups. Combining this approach with two clustering methods, we found 17 IMD 

genetically close to IIM, including some common comorbid conditions, such as systemic 

sclerosis and Sjögren’s syndrome, as well as hypo- and hyperthyroidism. All IIM subtypes 

were genetically similar within this framework. Next, we colocalized IIM signals that overlapped 

IMD signals, and found seven potentially novel myositis associations mapped to immune-

related genes, including BLK, IRF5/TNPO3, and ITK/HAVCR2, implicating a role for both B 

and T cells in IIM.  This work proposes a new paradigm of genetic discovery in rarer diseases 

by leveraging information from more common IMD, and can be expanded to other conditions 

and traits beyond IMD. 
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Introduction 

Since their first application over 15 years ago, genome-wide association analyses 

(GWAS) have successfully identified tens of thousands of genetic variants associated with 

thousands of diseases and biological traits. These efforts have provided key insights into trait 

genetic architecture and helped achieve translational benefits, including creating polygenic 

risk scores and drug repurposing.1,2 One of the crucial challenges of GWAS has been 

statistical power, which is crucial for discovery. Since millions of variants are tested in GWAS, 

the threshold to consider a variant statistically significant must be high to avoid type 1 errors 

(ie. false positives), so large cohorts are needed. While cohort sizes have been increasing 

over time for a wide variety of diseases and traits, recruiting enough individuals in the context 

of rare diseases is often not possible due to the low numbers of patients for such diseases. 

Here, we leverage the genetic evidence across a wide range of common immune-mediated 

diseases (IMD) in order to enhance discovery in one group of rare diseases: idiopathic 

inflammatory myopathies (IIM [MIM: 160750]).  

IIM, also known as myositis, are a heterogeneous group of rare, systemic autoimmune 

diseases affecting skeletal muscle, skin, and other organs, and characterized by chronic 

inflammation and muscle weakness, leading to severe impairment of quality of life.3,4 IIM 

patients can be classified in subtypes based on clinical and serological criteria, although IIM 

rarity and heterogeneity have limited our understanding of IIM pathogenesis and thus made 

diagnosis and classification efforts challenging.5,6 There are some recognized subgroups of 

IIM, including, but not limited to, juvenile-onset dermatomyositis (JDM), dermatomyositis (DM), 

inclusion body myositis (IBM), and polymyositis (PM). Other subgroups are determined by the 

detection of autoantibodies, such as the anti-histidyl-tRNA synthetase (anti-Jo1), associated 

with the anti-synthetase syndrome.6 

GWAS conducted on IIM in individuals with European ancestry have identified the 

strongest disease associations at the Major Histocompatibility Cluster locus (MHC, 

chromosome 6),7–9 a region commonly associated with IMD, with additional associations at 
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PTPN22 (associated with PM)9–11 STAT4, TRAF6, UBE2L,9,10,12 PLCL1, BLK, and CCR5.9,13 

IIM-associated genes are involved in crucial innate and adaptive immune response pathways, 

such as the T cell receptor pathway (i.e. PTPN22 and STAT4), and the nuclear factor-κB (NF-

κB) signaling pathway (BLK, UBE2L3, and TRAF6).5 Other efforts have explored the 

contribution of rare genetic variation, finding an association with IFI35 via aggregate 

association testing.14 

The number of confirmed genetic associations for IIM is relatively small compared to 

other, more common IMD (e.g. asthma or type 1 diabetes) due to limited GWAS sample sizes, 

resulting in limited statistical power for discovery, particularly within IIM subtypes. However, 

the coexistence of IIM with other IMD, such as systemic lupus erythematosus (SLE [MIM: 

152700]), Sjögren’s syndrome (SjS [MIM: 270150]), and systemic sclerosis (SSc [MIM: 

181750]) in IIM patients, as well as familial coaggregation suggest that IIM genetic risk factors 

may be shared with other IMD.15–19 

We recently developed a method to learn shared genetic risk factors among related 

diseases and enable the transfer of learning from larger IMD GWAS to inform smaller 

studies.20 With this approach, we derived a set of 13 features that capture different aspects of 

IMD risk and can be used together to study a new independent dataset or to compare different 

datasets in a much lower dimensional, IMD-focused space. While some features have 

straightforward interpretations (eg. PC1 discriminates between auto-inflammatory and 

autoimmune disease), others do not, and interpretation of association of any given dataset to 

a given feature requires care. Each feature is defined as a weighted sum of effect sizes across 

a subset of “driver” SNPs, where the weight, and the choice of SNPs (which varies between 

features), was learnt from the set of large IMD GWAS. Thus, independent datasets can be 

projected onto these features and each feature, and associated driver SNPs, tested for 

significant association with the disease of interest (described in detail in Methods). We used 

this strategy to identify novel associations for small GWAS studies, which replicated in larger 

datasets when these were available, giving us confidence that this approach can be used to 

identify association in GWAS studies of IMD with relatively small sample sizes.  
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 Here we analyzed summary data from the two largest IIM genetics studies to date in 

the context of the 13 IMD features learned this way: (1) a full GWAS of 1711 cases and 4724 

controls (which we call the “Miller study”)8 and (2) a more extensive study of 2565 cases and 

10,260 controls using the immune-targeted ImmunoChip and subsequently imputed to 

genome-wide coverage (the “Rothwell study”).9 The samples in the two studies substantially 

overlap, but the genotyping platforms and genome coverage are substantially different. These 

two studies comprised multiple GWAS IIM subgroups (DM, JDM, and PM in Miller, and DM, 

JDM, PM, anti-Jo1+ and IBM in Rothwell) as well as one meta-analysis containing all 

subgroups (which we will refer to as “IIM (M)/(R)” in our figures and tables) in each study, 

totaling 10 datasets (see Table S1). Given that these studies balance strengths in sample size 

(larger in Rothwell) vs. SNP coverage (larger in Miller), we chose to analyze both, 

concentrating on features that showed significant association with either one, as long as they 

showed consistent direction of association with the feature.  

We projected the IIM and a selection of 466 IMD GWAS summary statistics onto our 

learned feature space and used this low-dimensional representation of IIM genetics in order 

to better understand the genetic basis of IIM and its clinical subtypes, identifying which IMD 

exhibited close genetic proximity to IIM overall and which shared specific associations with 

IIM or its subtypes.  

Materials and Methods 

IIM GWAS data 

We used GWAS summary statistics from two IIM studies, which we will refer to as the 

“Miller” and the “Rothwell” studies, respectively (Table S1).8,9 Both studies included European 

individuals recruited by the Myositis Genetics Consortium (MYOGEN),10 with some technical 

differences. More specifically, Miller included 1,710 cases and 4,724 controls that were 

genotyped using multiple Illumina genome-wide arrays, described elsewhere.7 Rothwell 

included an expanded sample, comprising 2,565 cases and 10,260 controls, and included 
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~1.6M SNPs genotyped using the ImmunoChip array followed by imputation using the 

Haplotype Reference Consortium panel. Both studies classified patients in IIM subtypes and 

performed GWASs on each subtype and a pooled IIM sample (referred to as “IIM (M)” and 

“IIM (R)” in our tables and figures). Rothwell subtypes comprised Anti-Jo1+ myositis, DM, IBM, 

JDM, and PM. Miller included DM, JDM, and PM subtypes. 

Harmonisation, imputation and projection of GWAS data 

To analyze IIM datasets in the context of other IMD, we created a compendium of 

IMD GWAS summary statistics datasets from public repositories, including the NHGRI-EBI 

GWAS catalog,21 FinnGen Project Release 7,22 UK Biobank (Pan-UK Biobank),23 and 

Biobank Japan,24 or via a request to study authors (Table S2). GWAS summary statistics 

datasets come in different formats, with no current consensus format. We wrote a shell and 

R pipeline (GWAS_tools) for formatting and quality control of all downloaded datasets, trying 

to accommodate as many different input formats as possible and keeping a consensus 

minimum set of information from each study: genomic coordinates, reference and effect 

allele, effect size estimate measured as log odds-ratio (Beta), standard error of the effect 

size, and p-value. We identified the genome build of the datasets and computed the genomic 

coordinates in GRCh38/hg38 genome build using the liftOver tool (available at UCSC 

Genome browser website). 

We also re-scaled the effect sizes and standard errors of datasets when generated 

using linear models (eg. BOLT-LMM) from linear to odds-ratio scale by using the proportion 

of cases, as suggested in BOLT-LMM manual:25 

𝑐𝑝 =  𝑁1/(𝑁0 + 𝑁1)  

�̂� =  𝛽/(𝑐𝑝 (1 − 𝑐𝑝)) 

𝑆�̂� =  𝑆𝐸/(𝑐𝑝 (1 − 𝑐𝑝)) 

where 𝛽 and  𝑆𝐸 are the original estimated effect sizes and standard error in the linear scale,  

�̂� and 𝑆�̂� the effect sizes and standard error in odds-ratio scale,  𝑁1 is the number of cases 
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and 𝑁0 the number of controls. Finally, we excluded all datasets that contained < 80% of the 

driver SNPs in the 13 IMD features, as well as datasets that were components of meta-

analyses used to train the features, as these would be overfitted.20  

We projected quality-controlled datasets onto the 13 features using the cupcake 

package. Each feature is defined by a set of driver SNPs (ranging from 107–373), and 

associated weights learnt from the large IMD GWAS studies. In order to learn the weights, 

we needed to first center a matrix of scaled effect sizes from the large IMD studies. New 

datasets can be projected into the feature space by first subtracting the same centering 

factor, then summing the weighted effect estimates across these driver SNPs for each 

feature. We report projected results as �̂�, the difference between the projected �̂� and a 

projected synthetic control with all zero entries (ie. all �̂� set to zero). This allows us to 

perform statistical inference on the estimand, 𝛿, being significantly different from zero. 

We used the Benjamini-Hochberg approach, calling overall significance of a test of 𝛿 = 0 at 

FDR < 0.01. To estimate the FDR we consider the overall test statistic not just for the 

projected IIM datasets, but also all 466 datasets we projected for comparison (Tables S2 

and S3). The test for overall significance is a 13 degree of freedom chi-square test (for 13 

features), and we must account for any correlation between features which arises due to LD 

between driver SNPs associated with the different features. Calculation of this covariance 

matrix and its use in a chi-square test of 𝛿 = 0 is described in the supplementary note of 

Burren and colleagues.20 We also tested whether 𝛿 differed from 0 for each feature 

independently and considered a trait was significant for a given feature at FDR < 0.01 and 

suggestive at FDR < 0.05. Traits were considered feature-significant only if they were 

significant for a given feature and overall. We manually removed redundant IMD projections 

(ie. multiple projections corresponding to the same or very similar disease or diagnosis) to 

facilitate interpretation, giving preference to datasets with larger case sizes and multi-

ancestry when available. 
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Distance and clustering analyses 

 One of our aims was to investigate the genetic relationships with other IIM from the 

projections. Clustering is a useful tool to group diseases according to genetic similarity within 

these features. However, there are particular properties of the data which make the choice of 

clustering method difficult. First, there is uncertainty about each projection (captured in a 

standard error), and second, despite the use of principal component analysis in feature 

learning, the same SNPs may contribute to multiple features, meaning that there is 

dependence between the features. Therefore, we took two complementary approaches to 

cluster IIM and IMD datasets. 

The Bhattacharyya distance (DB) measures the similarity between two distributions, 

considering uncertainty and the correlations across features derived from linkage 

disequilibrium (LD) among the SNPs in them.26 Thus, we computed a covariance matrix for 

each projection, containing the correlation of effect sizes, and calculated DB between each 

pair of projections. We clustered diseases using the complete linkage method in hclust R 

function and called clusters in the data using the cutree function with k = 9, as this was the 

largest k that captured an IIM cluster we observed. 

However, the number of clusters cannot be reliably learned from the data in 

hierarchical clustering. Therefore, we also applied a Bayesian nonparametric clustering 

method, DPMUnc (Dirichlet Process Mixtures with uncertainty),27 that extended a standard 

Dirichlet Process Mixture Model, which allows k to be estimated, to include measured 

uncertainty in observations. We ran DPMUnc with 5 parallel chains and the following 

parameters: kappa0 = 0.01, alpha0 = 2, beta0 = 0.1, nIts = 5,000,000, and scaleData = TRUE. 

After checking that all five chains converged (Figures S1 and S2), we removed the first half of 

each chain as burn in to avoid undue influence from initial values and summarised the 

remaining samples in a posterior similarity matrix (PSM). Then, we used the complete linkage 

method to cluster the diseases according to the PSM and used the minbinder algorithm28 to 

call clusters. Since our focus are IIM, we used data (projection estimates and variance) from 
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seven features for which any IIM dataset was significant at FDR < 1% (PC1, 2, 3, 8, 9, 12, and 

13) in both approaches.  

Colocalisation and driver SNP follow-up 

We investigated whether IIM associations with individual features reflected a sharing 

of disease causal variants between IIM and IMD associated with the same features. 

First we identified driver SNPs that showed evidence of association with any IIM and 

another IMD. The seven IIM-associated features relate to 255 unique driver SNPs. We 

extracted Z scores for those 255 SNPs from the summary statistics of the IIM and genetically 

similar IMD datasets defined using clustering (see Results and Table S4), computed their p-

values and applied FDR to this set of SNPs for each disease in parallel. The FDR estimates 

the probability that a SNP is not associated with a given trait from its p-value. Assuming these 

probabilities are independent, we can therefore compute the probability that a given SNP is 

associated with both a given IIM form and another IMD, as follows: 

𝑃(𝐼𝐼𝑀 & 𝐼𝑀𝐷 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 | 𝑝𝐼𝐼𝑀, 𝑝𝐼𝑀𝐷)  =  (1 − 𝐹𝐷𝑅𝐼𝐼𝑀) (1 − 𝐹𝐷𝑅𝐼𝑀𝐷) 

where pIIM and pIMD are the p values for the SNP with IIM and the comparator IMD, and FDRIIM 

and FDRIMD are the estimated FDR at the same SNP for IIM and the comparator IMD. 

 

However, the premise behind our analysis strategy is that these probabilities are not 

independent, but that there is positive dependence – ie knowing a variant is associated with 

an IMD, we assume it may be more likely to also associate with IIM. Allowing for positive 

dependence, we see the equation above gives a lower bound, so it is a conservative estimate 

of the probability of joint association, since 

𝑃(𝐼𝐼𝑀 & 𝐼𝑀𝐷 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 | 𝑝𝐼𝐼𝑀, 𝑝𝐼𝑀𝐷) = 

𝑃(𝐼𝐼𝑀 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 | 𝐼𝑀𝐷 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑) 𝑃(𝐼𝑀𝐷 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑) ≥ 

𝑃(𝐼𝐼𝑀 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑) 𝑃(𝐼𝑀𝐷 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑) =  (1 − 𝐹𝐷𝑅𝐼𝐼𝑀) (1 − 𝐹𝐷𝑅𝐼𝑀𝐷) 

Thus we can calculate the probability that at least one of IIM or IMD is not associated as 

Jo
urn

al 
Pre-

pro
of



 

11 

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝐹𝐷𝑅 ≤ 1 −  (1 − 𝐹𝐷𝑅𝐼𝐼𝑀)(1 − 𝐹𝐷𝑅𝐼𝑀𝐷)  

Pairwise FDR summarises evidence for association. To address the more specific hypothesis 

of shared causal variants, we used coloc.29 We selected all driver SNP and IMD pairs with 

pairwise FDR < 0.05 (meaning a shared association is likely) for coloc analysis. We thinned 

the SNPs by distance to at most 1 SNP in a 1Mb window, keeping the SNP with the minimum 

pairwise FDR. This resulted in 13 driver SNPs and 61 IIM-IMD pairs. Using a 2Mb window 

centred at the focus SNP, we ran coloc with prior p12 = 5e-6, a conservative but robust prior 

according to simulations (Table S5).30 

 Coloc provides posterior probabilities across five hypotheses in each colocalization 

test. We are interested in hypothesis H4 (ie. both traits have a single shared causal variant in 

the defined region) and considered PP H4 > 0.5 and PP H4 > 0.8 as medium- and strong-

confidence colocalization signals, respectively. The query driver SNP might not be the shared 

causal SNP, so for PP H4 > 0.5 signals, we report the top candidate SNP (ie. the SNP with 

the highest posterior probability of being the shared causal variant in each region). This is 

analogous to fine mapping a single GWAS peak using approximate Bayes factors. Thus the 

top candidate SNP is the most likely causal variant, subject to specific assumptions: 

1. that the causal variant is included in the SNPs available for both traits 

2. that there is a single causal variant in the fine mapping region 

3. that the assumption of colocalisation holds: as these regions were selected with PP H4 > 

0.8, there is a chance (1 - PP.H4) that colocalisation does not hold. 

Where associations within the same regions pointed at different candidate causal SNPs, we 

highlight the top candidate causal SNP for each region based on the PP H4 associated with it 

or the number of times it was assigned by coloc as the candidate SNP across associations in 

the same region. We queried OpenTargets Genetics to retrieve the rsIDs of the driver and 

candidate SNPs and the names of their nearest genes. To facilitate interpretation, when there 

was a neighboring gene with a better-known immunity role compared to the nearest gene, we 

reported it instead in tables and figures. We called novel associations those candidate SNPs 

that (1) have high posterior to be shared (PP H4 > 0.5) between a given IIM and an IMD, (2) 
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are not genome-wide significant (ie. 𝑃 >  5 × 10−8) in the IIM GWAS, (3) the top hit (ie. the 

one with the lowest p-value) in the 1Mb region defined for coloc is not genome-wide significant, 

and (4) was not previously reported as genome-wide significant by any IIM GWAS to our 

knowledge. 

 

Validation of approach 

To estimate the chance that the above approach produces false positive results, we replicated 

the process with 17 IMD traits from FinnGen Release 5 (R5)22 in place of the IIM traits (Table 

S6). The FinnGen R5 traits had case numbers from 1,290–22,997, a wide range of sample 

sizes, making them suitable for general validation of our approach. We projected each R5 trait 

onto the feature space, identifying significant features as for IIM and its subtypes. For each 

significant R5 IMD we found the closest IMD from our IMD pool (excluding equivalent R7 IMD 

and IIM traits) using DB. As there is no one-size-fits-all threshold for DB, we chose the closest 

17 IMD, as we did in our IIM analyses. Then, as before, we computed FDR on P-values of 

driver SNPs of significant features in each R5 and their close IMD traits, and pairwise FDR for 

each pair. For those signals with pairwise FDR < 0.05, we ran coloc as described above. For 

all hit variants declared by our approach (that is, pairwise FDR < 0.05 and coloc H4 > 0.5 or 

0.8), we evaluated whether the variants had smaller or larger p-values for the same traits in 

FinnGen Release 10 (R10), a later release with larger sample sizes, as more patients have 

been added over time. Our reasoning is that small p-values for truly null traits should, on 

average, have got larger, whereas those for truly associated traits should, on average, have 

got smaller. We explored this expectation in a simple simulation and showed that our metric - 

the proportion of p values that get smaller in the second release - varies as a function of the 

true proportion of false positives in a sample (Supplementary Note 1, Figure S3). However, 

we note that while it is related to the proportion of false positives, it is also related to the 

strength of association at a given SNP and does not directly quantify the proportion of false 
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positives. We performed the same FinnGen R5 vs R10 comparison for lead SNPs in R5 with 

P < 5 × 10-8 and separated by at least 1 Mb. This allowed us to compare the frequency of 

SNPs that validated our p-value comparison in our approach above to those identified at the 

conventional genome-wide significance threshold (Table S7).  

Results 

IIM projections 

We projected all ten IIM datasets from the Miller and Rothwell studies onto the 13-

dimension feature space, together with projections from a curated collection of 466 summary 

statistics covering a broad array of IMD (Table S2 and S3). We tested whether the location of 

each GWAS trait differed from those of a null GWAS control by feature and overall, calling 

significance at FDR < 1%. 274 out of 476 datasets (57.6%) were significantly different from 

the null control overall (see Methods), including all IIM datasets (Table S1) except for the 

inclusion body myositis (IBM) subtype. The lack of significance in the projections can be 

explained by low statistical power due to sample size (eg. IBM N cases = 252), or by specific 

IMD not sharing the factors with the IMD used to train the basis or having less clear immune 

involvement, resulting in a weak or null signal (Figure S4).  

At the feature level, projections of at least one IIM dataset showed significant associations to 

7 out of 13 features at FDR < 1%: PC1-3, PC8-9, and PC12-13 (Figure 1). Projections of IIM 

are significant for more features at FDR < 1% than subtype projections, and likewise for 

Rothwell datasets compared to Miller datasets, as expected given the larger sample sizes in 

the former.  

Some IIM-associated features have established interpretations, allowing us to characterise 

IIM biological aspects. For example, PC1 distinguishes autoimmune (positive, red) from 

autoinflammatory (blue, negative), and all IIM datasets are associated with the former, 

reflecting its autoimmune nature. IIM are also associated with higher expression of the IFN-
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driven chemokines CXCL9 (MIG) and CXCL10 (IP-10), captured by negative PC3, and with 

increased eosinophil counts, associated with positive PC13. The other four features 

associated with IIM (PC2, 8, 9, and 12) are not yet biologically characterized (Figure S5-S11). 

However, we can appreciate some patterns. For example, PC2 seems to be SLE-dominated, 

with PM and other connective tissue diseases on the same side. PC9 features rheumatoid 

arthritis (RA) and multiple sclerosis on opposite extremes, with Anti-Jo1+, PM, and other IMD 

like PR3+ ANCA-associated vasculitis and hyperthyroidism on the same side as RA. 

IIM in the Context of Other IMD 

To explore the relationships between IIM and other IMD in our collection, we filtered 

the 274 overall significant IMD datasets to remove redundant traits, resulting in 62 IMD 

projections (9 IIM + 53 IMD, Table S2). Clustering using the Bhattacharyya distance (DB) 

placed IIM and all its subtypes in the same cluster, together with ten other IMD: CR(E)ST 

syndrome (CR(E)ST [MIM: 181750]), early-onset myasthenia gravis (EOMG [MIM: 254200]), 

Felty syndrome (Felty [MIM: 134750]), IgG+ neuromyelitis optica (IgG+NMO), juvenile 

idiopathic arthritis (JIA [MIM: 618795]), MPO+ ANCA-associated vasculitis (MPO+ AAV [MIM: 

608710]), primary biliary cholangitis (PBC), Sjögren’s syndrome (SjS), systemic lupus 

erythematosus (SLE), and systemic sclerosis (SSc) (Figure 2 and S12).  

DPMUnc assigned all diseases in the Bhattacharyya IIM cluster to the same cluster 

but also included seven other IMD. This larger IIM cluster additionally included hypo- and 

hyperthyroidism (HypoThy [MIM: 140300] and HyperThy [MIM: 275000], respectively), late-

onset and pooled myasthenia gravis (EOMG and MG), palindromic rheumatism (PR), 

rheumatoid arthritis (RA [MIM: 180300]) and granulomatosis with polyangiitis (also known as 

Wegener’s granulomatosis, GPA [MIM: 608710]). (Figure S13). Given that the clustering using 

the Bhattacharyya distance required us to pick the number of clusters while the DPMUnc 

method can choose them automatically, and the similarity between the solutions, we decided 

to consider any IMD co-clustering by either method as genetically related to IIM.  
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Identifying SNPs connecting IIM with other IMD 

 We investigated whether we could leverage the genetic similarity of IIM to these other 

IMD with often larger datasets to identify novel IIM genetic associations.  

We selected all 17 IMD identified as genetically similar to IIM at the clustering step to explore 

specific associations with each of the nine Miller and Rothwell IIM datasets at the SNP level 

(See Table S4). The genetic features are linear functions of summary effects at a small set of 

SNPs, referred to as “driver SNPs”. A screening approach based on pairwise FDR identified 

13 driver SNPs as likely to be associated with both a IIM trait and another IMD (61 IIM-IMD 

pairs). We used coloc29 to formally investigate whether these associations correspond to 

shared putative causal variants or distinct but neighboring causal variants. Regions around 8 

of 13 SNPs showed evidence of shared causal variant association (PP H4 > 0.5) between at 

least one IIM and a selected IMD dataset as well as pairwise FDR < 0.05, with five out of the 

eight driver SNPs having strong evidence (PP H4 > 0.8). Finally, seven signals were novel (ie. 

no reported genome-wide significant association in the region in any IIM dataset in our study 

or other publications)(Figure 3, Table 1, Table S5). 

Most colocalization signals come from the four connective tissue diseases mentioned above 

that co-occur most commonly with IIM: RA, SLE, SjS, and SSc. The driver SNP with the most 

colocalizations between IIM and IMD is rs2476601, a missense variant of PTPN22 and one of 

the best-known non-MHC risk variants associated with autoimmune disease. Our results show 

high confidence of colocalization at rs2476601 between IIM (meta-analyses)/PM and multiple 

autoimmune diseases, but no colocalization signals in anti-Jo1+, DM, or JDM (Figure 3), which 

suggests the signal we observe in the IIM for this SNP may come predominantly from PM 

patients, although a similar magnitude though less significant signal is also seen for anti-Jo1+ 

myositis (Figure S14). The lack of colocalization signal for anti-Jo1+ may reflect lower power 

due to sample size rather than lack of association. PTPN22 encodes LYP, a negative regulator 

of T cell receptor signaling. Several other colocalizations also implicate T cells in IIM.  
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rs163315 indexed medium and high-confidence colocalization of DM and IIM with 

HyperThy and HypoThy. This variant lies in an intron of ITK, another tyrosine-protein kinase 

highly expressed in T-cells,31 which promotes pro-inflammatory Th17 differentiation.32 

However, rs163315 is also an eQTL for HAVCR2, which encodes TIM3, an inhibitory receptor 

for which loss of function mutations lead to a severe autoinflammatory and autoimmune 

phenotype.33 

rs7072793 indexed medium confidence (PP H4 = 0.57, pairwise FDR = 0.02) 

colocalization between IIM and RA in the IL2RA region. IMD association with IL2RA is known 

to be complex, with multiple causal variants in the gene.34 Thus, rs7072793 may be tagging 

multiple IIM signals in the region, but the strength of the signal in IIM alone precludes fine 

mapping. IMD-associated variants in this region have been shown to lower IL-2 signaling and 

decrease Treg function.35 

rs819991 indexes a medium confidence (PP H4 = 0.53, pairwise FDR = 0.03) 

colocalisation between IIM and SSc. This intergenic variant is an eQTL of EOMES, which 

encodes eomesodermin, a transcription factor with a role in CD8+ Treg homeostasis.36  

rs5754217 indexes strong colocalisations (PP H4 = 0.80-0.82) between DM/IIM and 

SSc. This candidate SNP is an intron variant and an eQTL of UBE2L3 (Ubiquitin-conjugating 

enzyme E2 L3), which participates in the ubiquitination of many target proteins and regulates 

pathways like the NF-κβ.37 UBE2L3 has been previously reported to be associated with 

increased risk for SLE,38–40 Crohn’s disease (MIM: 266600),41 and HypoThy (where rs5754217 

was identified as one of the risk variants),42 among other IMD. 

Other colocalization hits are specifically B-cell-related. rs2736340 indexed strong 

colocalization signals of IIM with RA and SSc and weaker for SLE and SjS. rs2736340 has 

been previously identified as a risk variant for multiple IMD,43 including DM in an early GWAS,7 

but was not genome-wide significant in the two IIM studies considered here. Immune disease 

risk variants have been linked to lower expression of the nearest gene BLK and lower 

thresholds for B cell receptor signaling.44  
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rs13236009 showed strong colocalization signals for IIM with MPO+ AAV, RA, SjS, 

and SSc and weaker signals for HypoThy and SLE. This variant is an intron variant of TNPO3, 

of which it is also an eQTL and is a novel candidate SNP for IIM. TNPO3 encodes a nuclear 

import receptor and is physically proximate to IRF5, a regulatory factor that regulates the 

expression of interferon and is critical to many inflammatory pathways. Many variants in the 

IRF5-TNPO3 locus have been associated with SLE, SjS, SSc, PBC, and other IMD.45–48 

rs6738825 indexes a medium confidence (PP H4 = 0.52-0.63) colocalisation between 

IIM and SjS. This is an intron variant and an eQTL of PLCL1 (phospholipase C like 1). This 

protein has been previously identified as a risk locus for RA, as it regulates inflammation of 

fibroblast-like synoviocytes in RA patients.49 In addition, rs6738825 has been identified as one 

of the modulators of allergic rhinitis susceptibility (in Chinese population).50 

Validation of approach 

When we performed the same set of analyses on 17 IMD traits from FinnGen revision 5 (Table 

S6), we identified 63 (87) trait-variant associations with pairwise FDR < 0.05 and coloc PP H4 

> 0.8 (0.5). We calculated that for 4.76% (9.2%) of these, p-values got larger between FinnGen 

R5 and R10 (Table S7). While we expect p-values of truly associated SNPs to get smaller in 

larger samples (and vice versa for truly null SNPs), this is not guaranteed, particularly for 

diseases with relatively small case counts. Thus we do not expect this ratio of larger/smaller 

p-values to be 0, even if all effects detected are true. For these same R5 traits, we found 150 

genomewide significant SNPs at least 1 Mb apart, of which 15.33% p-values became larger 

in R10. This suggests that our approach produces results with a similar false discovery rate to 

using a genome-wide significance threshold, but it is helpful at finding SNPs below the 

genome-wide significant threshold, which makes it useful to find novel causal variants in 

smaller GWAS (Figure 4).  
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Discussion 

IIM are rare and heterogeneous disorders that are often challenging to classify and 

assign patients to upon clinical diagnosis. Here, we used data from two GWAS that provided 

data on five IIM subtypes in combination with a collection of selected IMD datasets, allowing 

us to both distill the genetic basis of the subtypes and compare the signals found in the data 

across both studies. While the signals found in IIM subtypes generally agree in direction, we 

observed differences in the intensity of the signals. For example, we find the strongest 

autoimmune signal in DM and JDM (PC1), whereas anti-Jo1+ has its strongest signal with the 

CXCL9/CXCL10 feature (PC3) and uncharacterized PC9, and PM is most strongly associated 

with eosinophil levels (PC13, Figure 1). However, although there is suggestive evidence that 

the PTPN22 signal is specific to PM11 and anti-Jo1+, no two IIM subtypes differed significantly 

in their location on any of these features. This may reflect a lack of power but also emphasizes 

a degree of commonality of genetic risk between subtypes (Figure S15).  

Regarding specific feature-IIM associations, previous reports have shown CXCL9 and 

CXCL10 to be upregulated in IIM, with elevated levels of both cytokines in muscle and serum, 

in concordance with the signals observed in PC3.51,52 Elevated levels of both chemokines have 

also been associated with anti-Jo1+ antibodies in patients with interstitial lung disease, a 

common complication of IIM.53 Elevated CXCL10 have also been identified among the 

biomarkers of disease activity in JDM,54–57 but we observe only weak and non-significant 

signals for JDM or DM on PC3. While elevated eosinophil levels are a hallmark of atopic IMD, 

like asthma58, data on the role of eosinophil abundance in IIM is scarce. We found a strong 

eosinophilic signal associated with PM at PC13. Although very rare subtypes of IIM are 

characterized by elevated eosinophils (eg. eosinophilic myositis)59 they are likely too rare to 

be driving this signal, suggesting a potential role for eosinophils in IIM, and particularly in PM. 

By clustering the projections of IIM together with other IMD in our collection using two 

complementary methods, we identified 17 IMD with closer genetic profiles to IMD among a 

pool of 53 selected IMD. Six IMD (CR(E)ST, EOMG, Felty, GPA, IgG+ NMO, and PR) 

Jo
urn

al 
Pre-

pro
of



 

19 

clustered with IIM by at least one method, but we could find no pairwise FDR/colocalization 

signals, likely due to lack of power, as these disease datasets tended to have fewer cases 

than for the others. 

Some co-clustering IMD reflect known comorbidities (also called “overlap myositis”)60,61 

such as the connective tissue disorders RA, SLE, SjS, and SSc, revealing a partially shared 

genetic architecture among these IMD. Others have a less clear relationship to IIM, such as 

subtypes of ANCA-associated vasculitis (AAV), another rare systemic disease with 

heterogeneous clinical manifestations that affect small vessels.62 Co-occurrence between IIM 

and AAV is considered exceedingly rare, with only a few cases reported of patients presenting 

both conditions.63,64  

MG is another disease affecting muscles and both its subtypes (early- and late-onset)  

clustered as close to IIM. Although its co-occurrence with IIM has been described only rarely 

in case series,65 both have a strong auto-antibody profile, and a review of MG cases in 

Swedish registry data found co-occurrence of MG with DM or PM was significantly higher than 

expected by chance, with an odds ratio of 21.66 Increased co-occurrence was attributed to the 

common genetic risk factor HLA-B8-DR3, but as the MHC region was excluded here, our 

results suggest a broader genetic relationship between MG and IIM. 

We also identified the two main forms of thyroid disease (hyperthyroidism/Graves’ 

disease and hypothyroidism/Hashimoto’s disease). Muscle is a major target of the thyroid 

hormone,67 and patients with thyroid dysfunction commonly present musculoskeletal 

complaints and conditions, like thyrotoxic and hypothyroid myopathy, frequently after 

treatment onset.68–70 Cases of hyper/hypothyroidism in IIM patients have also been reported, 

with one study identifying up to 5.5% IIM patients developing some form of thyroid disease,71 

in line with prevalence in the general population. Our findings suggest the genetic relationship 

between these IMD might be closer than previously appreciated. 

Our work has some limitations. First, in both the feature engineering and colocalization 

processes, we assumed a single causal variant per disease and genomic region, which is 

unrealistic and may prevent us from finding additional causal variants, although it allowed us 
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to analyze multiple GWAS summary statistics without accurate LD estimations. Second, we 

excluded the MHC region in this study, which is key to immune response and autoimmunity, 

and the strongest hits in almost all autoimmune GWAS are found in this region, including IIM. 

By excluding this important region, we are restricting our view of shared IMD genetics. 

However, the MHC has a long and complex LD structure, which makes analyzing MHC signals 

challenging with current methods, and the strength and diversity of GWAS signals mean it 

might dominate the features. Its exclusion means that results here relate to genetic variants 

outside the MHC, which may complement results from other MHC-focused studies, such as 

seen with the relationship between IIM and MG. Third, four of the seven relevant genetic 

features for IIM lack a clear interpretation, which prevents us from further understanding some 

genetic aspects of IIM. Fourth, while our method has proven to capture genetic signals even 

in low sample size datasets, the rarity of IIM means all studies have relatively modest sample 

sizes, as well as the reliance on genomic imputation quality (in the Rothwell study), may limit 

our power to detect additional genetic signals, especially in the smallest IIM subtypes, like 

IBM. Finally, our approach increases discovery through learning from larger studies of related 

diseases. This means additional risk variants can only come from those with shared effects 

with other IMD and cannot reveal IIM-specific risk variants. The initial studies used to define 

the features may thus limit discovery. Our studies were chosen for large sample sizes and to 

cover a breadth of IMD. If, for example, we wanted to distinguish effects specific to JDM from 

DM, we may have to prioritize including a mixture of child- and adult-onset IMD. From our 

initial studies, only T1D72 was predominantly childhood-onset, with cases coming from the UK 

GRID study which reports disease onset prior to 16 years as an inclusion criterion. 

This work extends the genetic feature engineering work proposed by Burren et al.20 by 

using a combination of pairwise FDR and coloc to prioritise new associations, and represents 

a paradigm for enhanced discovery in less common diseases.  

 Validation analysis in FinnGen suggests that our approach has a false discovery rate 

comparable to applying a genome-wide significance threshold to diseases with modest case 

counts. By exploiting the patterns of shared genetic architecture across common and rare 
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IMD, we found seven novel IIM variants not found by earlier studies, an increase of over 140% 

on published genome-wide significant variants outside the MHC. While our focus was on IIM 

in this study, the approach is directly applicable to other IMD using the same published 

features we developed. It is also expandable beyond IMD, as features can be trained in any 

group of diseases and biological traits, such as metabolic or psychiatric traits. We proposed 

that leveraging information from related traits can be a powerful tool to enhance genetic 

discovery in rare diseases.  

Data and code availability 

The datasets and code generated during this study are available its dedicated GitHub 

repository (see Web Resources). All publicly available GWAS summary statistics from which 

data for this study was derived are referenced in Tables S2 and S6. 

Web Resources 

GitHub repository for this project: https://github.com/GRealesM/myositis-IMD 

OpenTargets:  https://genetics.opentargets.org/ 

GWAS_tools summary statistics processing pipeline: 

https://github.com/GRealesM/GWAS_tools 

Cupcake R package: https://github.com/ollyburren/cupcake 

UCSC Genome browser: http://genome.ucsc.edu/ 

FinnGen: https://www.finngen.fi/ 

Pan-UKBB: https://pan.ukbb.broadinstitute.org 

Biobank Japan: https://biobankjp.org/en/ 

Online Mendelian Inheritance in Man: https://www.omim.org/ 
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Supplemental Information 

Supplemental information includes 14 figures, two notes, and 7 tables. 
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Tables 

Table 1 | Colocalisation results from 8 SNPs with support for a shared causal variant (PP H4 

> 0.5) and pairwise FDR < 0.05 for at least one IIM/IMD pair. (M) and (R) represent the Miller 

and Rothwell studies, respectively. IIM (R)/(M) labels represent meta-analyses. 

Driver SNP 

Top 

candidate 

SNP 

Open 

Targets 

candidate 

gene 

Top SNP P-

value† IIM IMD 

Pairwise 

FDR H4 

rs13277113 rs2736340* BLK 1.92E-04 IIM (R) RA 0.0046 0.8830 

     SLE 0.0045 0.5561 

     SSc 0.0044 0.8667 

     SjS 0.0045 0.5988 

rs669607 rs819991* EOMES 1.06E-03 IIM (R) SSc 0.0343 0.5254 

rs7072793 rs7072793* IL2RA 1.19E-03 IIM (R) RA 0.0226 0.5754 

rs10488631 rs13236009* IRF5/TNPO3 6.41E-05 IIM (R) HypoThy 0.0039 0.7340 

     MPO+ AAV 0.0044 0.8800 

     RA 0.0039 0.8581 

     SLE 0.0039 0.7847 

     SSc 0.0039 0.9105 
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     SjS 0.0039 0.8356 

rs394378 rs163315* ITK/HAVCR2 3.78E-05 DM (R) HyperThy 0.0361 0.8199 

    DM (R) HypoThy 0.0359 0.6617 

   6.22E-04 IIM (R) HyperThy 0.0145 0.6554 

     HypoThy 0.0143 0.5699 

rs10196612 rs6738825* PLCL1 1.16E-04 IIM (M) SjS 0.0327 0.5245 

   3.10E-05 IIM (R) SjS 0.0046 0.6385 

rs2476601 rs2476601 PTPN22 1.63E-07 IIM (R) HyperThy 0.0000 0.9979 

     HypoThy 0.0000 0.9975 

     JIA 0.0000 0.9975 

     LOMG 0.0186 0.7147 

     MG 0.0000 0.9985 

     MPO+ AAV 0.0007 0.9849 

     PBC 0.0460 0.6795 

     RA 0.0000 0.9975 

   2.59E-05 PM (M) HyperThy 0.0129 0.9272 

     HypoThy 0.0129 0.9313 

     JIA 0.0129 0.8806 

     MG 0.0129 0.9417 

     MPO+ AAV 0.0136 0.6967 

     RA 0.0129 0.9311 

   1.25E-06 PM (R) HyperThy 0.0001 0.9957 

     HypoThy 0.0001 0.9952 

     JIA 0.0001 0.9942 

     LOMG 0.0187 0.6055 

     MG 0.0001 0.9967 

     MPO+ AAV 0.0008 0.9734 
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     PBC 0.0461 0.5613 

     RA 0.0001 0.9952 

rs5754217 rs5754217* UBE2L3 3.00E-04 DM (R) SSc 0.0372 0.8055 

   7.44E-05 IIM (R) SSc 0.0053 0.8255 

† For each test, coloc reports the SNP with the highest PP to be the causal in the region. Since these signals are 

likely to be caused by one rather than multiple SNPs, here we report the top candidate SNP p-value (in the IIM 

dataset), selected for being associated with the highest PP H4 or for being identified as the candidate SNP in most 

tests. 

* Novel signals. 

Results with PP H4 > 0.8 are highlighted in bold. 

 

Figure captions 

Figure 1 | Heatmap showing overall significant (FDR < 1%) IIM datasets from Miller 

and Rothwell studies across 13 features. Colors represent projection values; similar colors 

mean the projections are closer in a given feature. Full dots represent the dataset is significant 

for the feature at FDR < 1%, and hollow dots represent significance at FDR < 5%. For 7 out 

of 13 features, at least one myositis dataset was significant at FDR < 1%. IIM (M)/(R) = meta-

analyses, R = Rothwell, M = Miller. 

Figure 2 | Relationships among DPMUnc and Bhattacharyya distance (DB) clusterings. 

DPMunc called 7 clusters, while we called 9 using DB. IIM datasets are allocated to cluster 2 

in DPMUnc and cluster 5 in DB, along with other IMD (highlighted in light blue). Other IMD in 

DPMUnc cluster 2 are located in DB clusters 7 and 9. Abbreviations: CR(E)ST, CR(E)ST 

syndrome; EOMG, early-onset myasthenia gravis; Felty, Felty syndrome; GPA, 

Granulomatosis with Polyangiitis (Wegener’s granulomatosis); HyperThy, 

hyperthyroidism/thyrotoxicosis; Hypothy: Hypothyroidism; IgG+ NMO, IgG+ neuromyelitis 

optica; JIA, juvenile idiopathic arthritis; LOMG, late-onset myasthenia gravis; MG, myasthenia 

gravis; MPO+ AAV, MPO+ ANCA-associated vasculitis; PBC, primary biliary cholangitis; PR, 
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palindromic dermatitis; RA, rheumatoid arthritis; SjS, Sjögren’s syndrome; SLE, systemic 

lupus erythematosus; SSc, systemic sclerosis. 

Figure 3 | Posterior probabilities (PP) for shared causal variants (H4) between IIM and 

selected IMDs at eight top candidate SNPs. A colored square indicates the colocalisation 

analysis was performed, and the shade of color represents the PP H4 for the test. Medium-

confidence associations (0.5 < PP ≤ 0.8) are marked in yellow rectangles, and high-confidence 

(PP > 0.8) associations in green rectangles. Top candidate SNPs are labeled with their nearest 

gene or with a nearby strong IMD candidate gene when we find one. Abbreviations: HyperThy, 

hyperthyroidism/thyrotoxicosis; Hypothy, Hypothyroidism; JIA, juvenile idiopathic arthritis; 

LOMG, late-onset myasthenia gravis; MG, myasthenia gravis; MPO+ AAV, MPO+ ANCA-

associated vasculitis; PBC, primary biliary cholangitis; RA, rheumatoid arthritis; SjS, Sjögren’s 

syndrome; SLE, systemic lupus erythematosus; SSc, systemic sclerosis. (M) and (R) 

represent that the dataset comes from the Miller or Rothwell study, respectively. “IIM” labels 

represent meta-analysis datasets. 

Figure 4 | Comparison of P-values of SNPs from FinnGen R5 and FinnGen R10 used in our 

validation process. Panels A and C show SNPs identified using our pairwise FDR and 

colocalisation approach (pwFDR + coloc) at two PP H4 levels (H4 > 0.5 and H4 > 0.8), and 

panel E show SNPs identified using a conventional genome-wide significant threshold (P < 

5e-8). Panels B, D, and F offer a zoomed-in view of the data showed in panels A, C, and E. 

The diagonal red line represents the validation threshold (-log10(P) R5 = -log10(P) R10). The 

vertical blue line represents the genome-wide significant threshold. Numbers in green 

represent the number of SNPs that validate (above red line) and those that do not (below red 

line). 
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Finding relevant genetic variants is challenging for rare diseases due to reduced statistical power. We 

used a feature engineering approach that borrows information from common immune-mediated 

diseases, followed by colocalisation, to find seven additional associations in myositis, implicating a 

role for both T cells and B cells.  

Jo
urn

al 
Pre-

pro
of


	1

