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Abstract
Purpose Menopause is associated with a decrease in smell discrimination ability. This study assessed the impact of black 
cohosh on hippocampal (HC) and hypothalamic (HT) gene expression profiles in rats, to understand, if herbal treatment 
has an impact on neurologic changes due to menopause and whether this could address a decrease in smell discrimination.
Methods HC and HT tissues from female Sprague Dawley rats (total n = 19) were analyzed at three different life stages: 
intact tissues of the HC (n = 4) and the HT (n = 4), oophorectomized tissues 3 months after oophorectomy (OVX) of the HC 
(n = 4) and the HT (n = 3), and tissues after treatment with an isopropanolic extract (iCR) from the rhizomes of black cohosh 
(60 mg/kg) for 3 months after OVX of the HC (n = 2) and the HT (n = 2).
Main outcome measures To reveal underlying biological processes a gene set enrichment analysis (GSEA) was performed.
Results The GSEA revealed gene ontology terms that were significantly enriched, including several genes associated with the 
olfactory system, indicating biological processes regulated by treatment with iCR. Six olfactory receptor genes were further 
analyzed by another GSEA, demonstrating the possibility of iCR treatment to compensate for oophorectomy-induced changes.
Conclusion Findings suggest that herbal treatment, such as iCR, has an esteeming impact on HC and HT genes that are 
changed through menopause. Further studies are needed to suggest black cohosh as a treatment option for decreased smell 
discrimination.
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What does this study add to the clinical work 

This study demonstrates that herbal treatment with 
cohosh (BC) signifcantly alters gene expression 
profiles in the hippocampus (HC) and hypothala-
mus (HT), particularly affecting the olfactory sys-
tem. Clinically this suggests BC might help man-
age some sensory and physilogical changes during 
menopause, making it a potential option for future 
treatment.

Introduction

Our ability to qualitatively discriminate among different 
odors may no longer be essential for survival but certainly 
supports a high quality of life. Unfortunately, the sense of 
smell changes throughout different life stages. As people 
age, a decline in olfactory cells, nerve fibers, and mucus 
production, among other factors, leads to reduced olfactory 
capability in both healthy men and women [1]. Furthermore, 
postmenopausal women experience a notable increase in 
the threshold of perception due to declining estrogen levels. 
Diminishing estrogen levels result in reduced gray matter 
volume across various brain regions, including the supple-
mentary motor area, inferior frontal gyrus, superior temporal 
gyrus, and olfactory cortex. This phenomenon elucidates 
several menopausal symptoms, notably the decline in olfac-
tory capability [2–3].

Responsible for the detection of odorants are olfactory 
receptors (OLR). These are part of the large g-protein cou-
pled receptors and are located within the nasal olfactory epi-
thelium, reacting to odorant molecules thus leading to the 
perception of smell. The olfactory receptor gene family is 
the largest of the genome and other than in nasal epithelium, 
OLR genes can be found within many ectopic tissues, such 
as the brain, more precisely the hypothalamus (HT) and the 
hippocampus (HC) [4]. Both brain areas, HT and HC are 
involved in olfactory functions. The HT is part of the vital 
reaction of prey animals to predators, as their scent induces 
an instinctive fear response that includes behavioral changes, 
as well as an increase in blood stress hormones that mobi-
lizes multiple body systems to escape impending danger [5]. 
Multiple olfactory cortical areas transmit signals to hypo-
thalamic corticotropin-releasing hormone (CRH) neurons 
which control stress hormone levels [6]. Ensuring survival, 
olfactory perception in mice modulates food intake depend-
ing on the energy balance of the body through the neuropep-
tide orexin A, a hypothalamic neuropeptide. On the other 
hand, gonadotropin-releasing hormone (GnRH) released by 

the nervus terminals at the level of the olfactory epithelium, 
is able to reduce sensitivity to food odorants in the olfactory 
epithelium so that olfactory system is predominantly avail-
able for odorants involved in mating [7]. The HC, for its part, 
plays a role in olfactory perception in mice, as repeated food 
intake changes neuronal signaling in the HC suggesting that 
mice are able to learn food approach behavior [8]. Further-
more, olfactory dysfunction is reported to be a possible early 
symptom of Alzheimer’s disease, where the HC similarly 
plays an important role [9]. Overall, olfactory function is 
therefore a vital necessity working through interactions with 
both the HT, as well as the HC.

To compensate for the decrease in smell discrimination, 
hormone replacement therapy (HRT) has proven likely to 
be beneficial [10]. However, there is still a variety of differ-
ent research outcomes whether HRT has an effect on cogni-
tive and olfactory functions, while a recent study suggests 
a positive effect [11–12]. The different outcomes depend, 
for example, on the duration of treatment [13], on estrogen 
replacement therapy (ERT) only or combined HRT (estro-
gen and progestogen) [14] and also if the study involved 
women possessing the APOE-ε4 allele, which contains sus-
ceptible genes for Alzheimer’s disease. A brain region that 
is positively affected by long-term low-dose HRT is the HC 
in women expressing the ApoE-ε3/-ε4 genes, where HRT 
prevents from HC atrophy and is therefore also reducing the 
risk of developing Alzheimer’s disease [15–16]. Currently, 
HRT is mainly recommended to alleviate vasomotor symp-
toms, such as hot flushes caused by hypothalamic mecha-
nisms. However, HRT is not recommended for maintenance 
of olfactory function after menopause [17]. Even though 
a recent comprehensive review reports HRT to be safe for 
women who use low-does HRT for short durations, younger 
women and women within 10 years of menopause [13], a 
history of heart attack, stroke or breast cancer—to mention 
only a few—would put women at high risk, when using HRT 
[18]. Thus, many menopausal women seek for alternative 
natural therapies to HRT.

Addressing this problem, there is growing interest in 
the use of black cohosh (BC, Cimicifuga racemosa) [10]. 
BC has been found to significantly reduce hot flushes pos-
sibly by increasing the number of c-fos protein—a marker 
of neuronal activity—and positive cell density within the 
HT nuclei [19–20]. BC also interacts with the hypotha-
lamic–pituitary–adrenal axis thereby alleviating the acute 
stress responses in rats [21]. Furthermore, BC has been 
shown to display neuroprotective effects in rats and to mod-
ulate hippocampal local steroid metabolism in non-human 
primates [22–23]. A recent meta-analysis comprising 35 
clinical studies showed that neurovegetative and psycho-
logical menopausal symptoms in women were effectively 
reduced through isopropanolic Cimicifuga racemose (iCR) 
extract when compared to placebo [24].
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In the present study, we assessed gene expression profiles 
within the HC and HT of rats with or without BC treat-
ment. Our hypothesis was that BC alters the hippocampal 
and hypothalamic gene expression profiles in oophorecto-
mized rats compared to intact rats. A confirmation of this 
hypothesis would strengthen the use of black cohosh as a 
treatment for decreased smell discrimination due to neuro-
logic changes during menopause.

Methods and materials

Animal characteristics

Hippocampal and hypothalamic tissue from Female Sprague 
Dawley rats (total n = 19), that were euthanized in the course 
of other experiments [25], were collected and then analyzed 
at three different points of time presenting intact, oophorec-
tomized and hormonally treated tissues. Group 1 (PRAE) 
presents intact hippocampal (n = 4) and hypothalamic (n = 4) 
tissues from rats without oophorectomy (OVX). Group 2 
(OVX) presents oophorectomized hippocampal (n = 4) and 
hypothalamic (n = 3) tissues from rats 3 months after OVX. 
Group 3 (OVX + iCR) presents hippocampal (n = 2) and 
hypothalamic (n = 2) tissues from rats after treatment with 
an isopropanolic extract from the rhizomes of Cimicifuga 
racemosa (black cohosh, 60 mg/kg) for 3 months after OVX.

Gene expression microarray assays

Total RNA was extracted from frozen hippocampal and 
hypothalamic tissue samples using QIAzol reagent followed 
by purification using a miRNeasy Mini kit (Qiagen, Hilden, 
Germany), and quantified using a Nanodrop UV–VIS spec-
trophotometer (Implen GmbH, München, Germany). RNA 
intactness and quality were confirmed using an Agilent 
2100 Bioanalyzer (Wilmington, DE). Only samples with an 
RNA integrity number (RIN) greater than 8.0 were used for 
hybridization. 100 ng of total RNA from each sample was 
labeled using the Low Input Quick Amp Labeling kit (Agi-
lent Technologies Inc., Santa Clara, CA) following the man-
ufacturer’s one-color microarray-based expression analysis 
protocol. RNA was then fragmented and hybridized to Gene 
Expression 4 × 44 K Rat Genome Arrays (Agilent Technolo-
gies Inc., Santa Clara, CA) for 17 h, prior to washing and 
scanning. Data were extracted from scanned images using 
the Agilent feature extraction software (Agilent Technolo-
gies Inc., Santa Clara, CA).

Quantitative RT‑PCR

RNA was extracted as described above. cDNA was subse-
quently synthesized from 3 µg RNA by random priming 

using the Superscript II Reverse Transcriptase (Invitrogen, 
Carlsbad, CA). Transcript levels for targets found to be sig-
nificantly up- or down regulated were measured in quantita-
tive real-time polymerase chain reaction (qRT-PCR) using 
the Sibir Hot Master Mix (BIORON GmbH, Ludwigshafen, 
Germany). Oligonucleotides were purchased from Biom-
ers GmbH (Ulm, Germany). PCR was performed using the 
Light  Cycler® 480 Real-Time PCR System (Roche diag-
nostics, Risch, Switzerland). Samples were normalized to 
endogenous GAPDH and ACTB using rat-specific primers. 
Relative expression was determined using the ΔΔCt method 
calculated by the appropriate Light Cycler Software v1.5.

Differential gene expression and statistical analysis

RNA was extracted from rat hippocampal and hypothalamic 
probes, from animals representing pre- or postmenopause. 
Differential gene expression analysis was performed setting 
contrasts between pre- and postmenopause (i), premeno-
pause iCR treated (ii) and postmenopause iCR treated (iii) 
for hippocampus and hypothalamus, respectively. The cutoff 
was set as significantly (p-value < 0.05) up- or down-regu-
lated genes that show a fold change (FC) of > 1.5 in gene 
expression. The R-based Bioconductor Linear Models for 
Microarray Data (LIMMA) package was used for statistical 
analysis [26]. The latest release of gene annotation data was 
purchased from the Bioconductor homepage (http:// www. 
bioco nduct or. org). Gene ontology and pathway analyses 
were performed using the Broad Institute Gene Set Enrich-
ment Analysis (GSEA) platform, which is a computational 
method that determines whether an a priori defined set of 
genes shows statistically significant, concordant differences 
between two biological states (e.g. phenotypes) [27].

Results

Global gene expression profiles

In a total of 1957 genes in the hypothalamic and in 2119 
genes in the hippocampal probes, treatment with iCR 
induced an up- or down-regulation of FC > 1.5 as shown in 
Fig. 1. In HT tissues 683 of 1957 genes were significantly 
up- or down-regulated by iCR when comparing OVX to 
OVX + iCR. In HC tissues the corresponding number was 
648 of 2119 genes. To focus on the pharmacological effect 
of iCR in OVX samples we used an intersection analysis 
visualized in Venn diagrams (Fig. 1).

This analysis was used to select genes that are exclu-
sively regulated by iCR without overlapping effects of pre- 
(intact) and postmenopause (oophorectomized). Thereby, 
we obtained 76 candidate genes in hypothalamic tissue and 
217 candidate genes in hippocampal tissue, respectively. 

http://www.bioconductor.org
http://www.bioconductor.org
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To reveal underlying biological processes, we performed 
a gene set enrichment analysis (GSEA) [28]. This analy-
sis revealed pathways and gene ontology terms that were 
significantly enriched, indicating biological processes regu-
lated by treatment with iCR as shown in Table 1 for gene 
expression in HC and Table 2 for gene expression in HT. 
Among these processes were several bone morphogenic or 

cartilage-related terms for the hippocampus probes, demon-
strating the link between iCR and bone biology as reported 
before [29]. Furthermore, there was an enrichment of terms 
related to the immune system, reproductive behavior and 
responses to abiotic stimulus supporting a previous study 
in mice [30]. This gene expression profile revealed a clear 
response to the iCR treatment, further strengthened by the 

Hypothalamus Hippocampus

Fig. 1  Commonly regulated genes comparing pre- to post menopause 
and iCR effect in Hypothalamus and Hippocampus Venn analysis 
showing commonly regulated genes in hypothalamic (HT) samples 
in and hippocampal (HC) samples in. Contrasts correspond to groups 

comparing (i) intact and OVX, (ii) intact and OVX + iCR and (iii) 
OVX and OVX + iCR for hippocampus and hypothalamus, respec-
tively

Table 1  Gene expression microarray data in hippocampus

Set of 217 genes regulated by iCR in hippocampus

Cluster Term Count % Enrichment p-Value Genes

1 GO:0060348 ~ bone development 5 2.59067358 0.026 ZCCHC2, MGP, COL1A1, SOX9, COL10A1
GO:0060349 ~ bone morphogenesis 3 1.55440415 0.027 COL1A1, SOX9, COL10A1
GO:0051216 ~ cartilage development 4 2.07253886 0.029 MGP, COL1A1, SOX9, COL10A1
GO:0001501 ~ skeletal system development 7 3.62694301 0.033 ZCCHC2, COL3A1, MGP, COL1A1, SOX9, 

ALX3, COL10A1
2 GO:0019098 ~ reproductive behavior 3 1.55,440,415 0.015 DRD5, TH, TGM4

GO:0007618 ~ mating 3 1.55,440,415 0.021 DRD5, TH, TGM4
3 IPR013162:CD80-like, immunoglobulin C2-set 4 2.07253886 0.005 BTNL8, KIRREL, BTN1A1, NPHS1

GO:0002684 ~ positive regulation of immune 
system process

7 3.62694301 0.019 MASP2, ICOS, ITGA2, IL7R, SELE, TLR8, 
LAG3

rno04672: Intestinal immune network for IgA 
production

3 1.55440415 0.059 CCR9, ICOS, CXCL12

4 GO:0009628 ~ response to abiotic stimulus 9 4.66321244 0.029 ZCCHC2, DRD5, COL3A1, MGP, ITGA2, 
CHEK2, COL1A1, SYNGAP1, CXCL12

Table 2  Gene Expression Microarray Data in Hypothalamus

Set of 76 genes, regulated by iCR in hypothalamus

Cluster Term Count % Enrichment p-value Genes

1 GO:0010035 ~ response to inorganic substance 4 5,97014925 0.062 SLC25A13, NR3C1, FOSL1, ADAM9
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fact that also hypothalamic tissue showed an enrichment of 
genes associated with a response to inorganic substance, 
although through a different set of genes. In the next step, the 
question was addressed if iCR treatment-induced biological 

processes compensating for the pre- and postmenopausal 
effects. If this was the case, gene candidates should be found 
within the overlap between the group i (intact and ovx) and 
iii (ovx and ovx + iCR). Therefore, a GSEA was performed 

Table 3  Gene expression microarray data in hippocampus

Set of 56 genes, regulated by iCR in hippocampus, overlapping to differential expression between pre- and post-menopause

Cluster Term Count % Enrichment p-value Genes

1 GO:0004984 ~ 
Olfactory receptor activity

9 19 0.002 OLR1063, OLR655, LOC690821, OLR780, OLR1200, OLR384, 
OLR1514, OLR841, OLR200

GO:0009593 ~ 
detection of chemical stimulus

8 17 0.007 OLR1063, OLR655, OLR780, OLR1200, OLR384, OLR1514, 
OLR841, OLR200

2 GO:0050877 ~ 
neurological system process

10 21 0.005 OLR1063, COLQ,
OLR655, OLR780, OLR1200, OLR384, OLR1514, OLR841, 

OLR200, TAS2R121

Table 4  Gene Expression Microarray in Hypothalamus

Set of 49 genes, regulated by iCR in hypothalamus, overlapping to differential expression between pre- and post-menopause

Cluster Term Count % Enrichment p-value Genes

1 GO:0004984 ~ 
Olfactory receptor activity

9 18 0.030 OLR84, LOC686683, OLR379, OLR823, OLR661, OLR1540, 
OLR156, OLR1521, OLR522

GO:0009593 ~ 
detection of chemical stimulus

8 16 0.064 OLR84, OLR379, OLR823, OLR661, OLR1540, OLR156, 
OLR1521, OLR522

2 GO:0050877 ~ 
neurological system process

10 20 0.076 OLR84, HRH1, OLR379, OLR823, TACR2, OLR661, OLR1540, 
OLR156, OLR1521, OLR522

Table 5  Fold changes up or down regulations of OLR-genes in Hip-
pocampus

Up- and down regulation (fold change) of olfactory receptor genes by 
OVX + iCR

Gene Intact – OVX Intact – OVX + iCR OVX – OVX + iCR

OLR84 2.94252 1.21937 −2.41314
OLR379 2.50644 1.4785 −1.69526
OLR823 4.04127 1.14747 −3.5219
OLR661 −2.8678 1.8085 5.18641
OLR1540 2.58238 1.221 −2.11498
OLR156 3.09302 1.25109 −2.47227
OLR1521 3.17143 1.30024 −2.43912
OLR522 2.07444 1.10047 −1.88505
OLR1063 1.3081 1.43127 1.09416
OLR655 1.01564 1.25382 1.23452
OLR780 −1.01442 1.18257 1.19962
OLR1200 1.09106 1.26118 1.15592
OLR384 1.00301 1.20911 1.20549
OLR1514 1.05776 1.2488 1.1806
OLR841 1.24981 1.67318 1.33875
OLR200 1.35285 1.25361 −1.07916

Table 6  Fold changes of up or down regulations of OLR-genes in 
Hypothalamus

Up- and down regulation (fold change) of olfactory receptor genes by 
OVX + iCR

Gene Intact—OVX Intact—OVX + iCR OVX—OVX + iCR

OLR84 1.26195 1.18001 −1.06944
OLR379 1.27406 1.92163 1.50827
OLR823 1.3519 1.75897 1.30111
OLR661 2.85797 1.2186 −2.34529
OLR1540 1.09537 1.18173 1.07884
OLR156 1.12103 2.1536 1.92109
OLR1521 1.2533 1.21543 −1.03116
OLR522 1.66456 1.94379 1.16775
OLR1063 3.31585 1.27204 −2.60672
OLR655 2.06269 −1.03806 −2.14119
OLR780 2.26661 −1.06755 −2.41972
OLR1200 4.77291 1.03744 −4.60064
OLR384 2.9143 1.18632 −2.45659
OLR1514 2.03514 1.17995 −1.72477
OLR841 3.62671 1.00296 −3.61602
OLR200 2.483 −1.03652 −2.57368
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with 49 genes of the hypothalamus and 56 genes of the hip-
pocampus, respectively (Fig. 1). Interestingly, most of these 
sets of genes are associated with the sensory system, specifi-
cally the olfactory system as shown in Table 3 for the HC 
and Table 4 for the HT.

Olfactory receptors

Looking at absolute data (not shown) and FC of up- or 
down-regulation of genes associated with the olfactory sys-
tem, in some olfactory receptor (OLR) genes OVX induced a 
significant up- or down-regulation of hippocampal and hypo-
thalamic genes that was compensated by iCR treatment, as 
documented in Tables 5 and 6. Interestingly, if OVX leads 
to a change in OLR gene expression, it almost exceptionally 
lead to an up-regulation and the following iCR treatment 
to a compensation, meaning a down-regulation. Also, the 
OLR genes that showed a reaction to OVX and iCR treat-
ment differ in the HC and the HT. In the next step six of 
these OLR-genes (OLR379, OLR522, OLR655, OLR841, 
OLR661, OLR1063) were picked to be further validated by a 
quantitative real-time PCR (qRT-PCR) addressing the ques-
tion, whether an iCR treatment would significantly and com-
pletely compensate OVX induced changes in these genes in 
the HT and HC.

Looking at the FC shown in Table  5, we assumed 
a nearly complete compensation of OVX-induced 

up-regulation by iCR treatment in OLR522 and OLR379 
and a compensation of the OVX-induced down-regulation 
in OLR661. As for the HT, looking at the FC shown in 
Table 6, we assumed a compensation of OVX-induced up-
regulation in OLR1063, OLR655 and OLR841.

In hippocampal OLR522 the OVX induced an up-
regulation by FC > 1.5 (p-value 0.003), as seen in Fig. 2. 
ICR treatment then induced a down-regulation by FC > 1.5 
(p-value 0.012). The differential expression between intact 
and OVX + iCR is not statistically significant (p-value 
0.941), thus proving a complete compensation of OVX-
induced changes by the iCR treatment. Hypothalamic 
OLR522 did not show the same outcome as it is up-regu-
lated by an OVX and further up-regulated after an addi-
tional iCR treatment, although it is not statistically signifi-
cant (p-value 0.62), also seen in Fig. 2. The same OVX 
and iCR-induced changes can also be seen in hypotha-
lamic OLR655, OLR661 and OLR1063. In hippocampal 
OLR655 the OVX-induced up-regulation is also reversed 
by the ICR treatment, but not statistically significant 
(p-value > 0.05). In hippocampal OLR379 and OLR841 
an OVX induced an up-regulation (all p-values < 0.05), 
which the iCR treatment compensates by down-regulating 
the expression, but by a greater FC than the up-regula-
tion, in terms of an overcompensation. In hippocampal 
OLR661 and OLR1063 an OVX induced no change or a 

p-value

prae - OVX 0,062

OVX - OVX+iCR 0,059

prae - OVX+iCR 0,541

p-value

prae - OVX 0,031

OVX - OVX+iCR 0,073

prae - OVX+iCR 0,062

p-value

prae - OVX 0,003

OVX - OVX+iCR 0,012

prae - OVX+iCR 0,941

p-value

prae - OVX 0,024

OVX - OVX+iCR 0,062

prae - OVX+iCR 0,055

Fig. 2  qRT-PCR showing the fold change and the corresponding p-value of OLR522 and OLR655 in the hippocampus and hypothalamus, 
respectively. * p-value < 0.1, **  p-value < 0.05, *** p-value < 0.01
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down-regulation, with a further down regulation through 
iCR treatment (Fig. 3).

Discussion

The present study investigated the impact of herbal treat-
ment, with BC, on the olfactory system within the HC and 
the HT. Our data showed that treatment with BC has a signif-
icant impact on HT and HC gene expression profiles. A total 
of 1957 HT genes and 2119 HC genes were up- or down-
regulated by 1.5 FC through an iCR treatment. A GSEA of 
these genes revealed that many of the influenced biological 
processes involved the sensory system, next to bone mor-
phogenic, cartilage, immune system, reproductive behavior 
and responses to abiotic stimuli. Thus, proving that OVX 
and iCR treatment have a great influence on these pathways. 
Addressing the further question if iCR treatment is able to 
compensate for OVX-induced changes another GSEA was 
performed, revealing mostly olfactory receptor genes.

Six OLR genes that showed a reaction to the OVX and 
the iCR treatment, namely three HC genes and three HT 
genes, were further selected for a qRT-PCR to see if iCR 
treatment would completely compensate the OVX-induced 
up-regulation. Solely hippocampal OLR522 showed the 
expected results with a significant up-regulation by FC > 1.5 
by OVX, followed by a down-regulation of FC > 1.5 through 
iCR treatment. HC OLR655 also showed the expected result 

as described, but only as a trend. And HC OLR379 showed 
a reaction to both the OVX and iCR treatment, but not by an 
FC > 1.5, and also only as a trend. None of the HT qRT-PCR 
validated OLR genes showed the expected result, as iCR fur-
ther up-regulated the OVX-induced OLR gene expression. 
Overall, our data provides evidence that iCR treatment has 
an impact on many different biological pathways in both the 
HC and the HT.

The question remains of what impact a different expres-
sion of a single gene has on a whole pathway such as the 
olfactory function pathway. The GSEA was in fact explic-
itly invented to look at groups of gene expression profiles, 
rather than to look at single genes. Especially for the olfac-
tory receptor gene family being the largest of the genome, 
we cannot tell if the differential expression of single genes 
would actually lead to a change in the olfactory function. 
The limitations of this study are therefore the small amount 
of gene expression profiles being analyzed by the GSEA. 
Also, looking at gene expression profiles does not reveal 
changes in the olfactory function in vivo.

In order to draw more reliable practical conclusions, 
more research is needed. Future studies could, for example, 
involve an analysis of a greater number of gene expression 
profiles. Furthermore, randomized clinical trials would be of 
interest, since oophorectomy is not entirely identical to the 
processes occurring during menopause (Fig. 4).

p-value

prae - OVX 0,107

OVX - OVX+iCR 0,232

prae - OVX+iCR 0,008

p-value

prae - OVX 0,041

OVX - OVX+iCR 0,030

prae - OVX+iCR 0,029

p-value

prae - OVX 0,155

OVX - OVX+iCR 0,058

prae - OVX+iCR 0,007

p-value

prae - OVX 0,070

OVX - OVX+iCR 0,129

prae - OVX+iCR 0,016

Fig. 3  qRT-PCR showing the fold change and the corresponding p-value of OLR661 and OLR1063 and the p-value in the hippocampus and 
hypothalamus, respectively. * p-value < 0.1, ** p-value < 0.05, ***  p-value < 0.01
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Conclusion

To conclude, our data showed an up-regulation of HC and 
HT olfactory receptor genes through an OVX. Crucially, we 
were able to corroborate our hypothesis, that herbal therapy 
with BC alters olfactory gene expression within the HC and 
the HT. Further studies would be needed to see if BC has 
an influence on the olfactory function in rats, since changes 
in single gene expression profiles may not lead to an altered 
OF. Thus, black cohosh cannot conclusively be recom-
mended as a preventive treatment for postmenopausal olfac-
tory functional changes. A major limitation of this study is 
the low sample size; the interpretation should be tentative.
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