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Abstract
Background: Despite remarkable progress in diabetes technology, most systems still require estimating meal carbohydrate 
(CHO) content for meal-time insulin delivery. Emerging smartphone applications may obviate this need, but performance 
data in relation to patient estimates remain scarce.

Objective: The objective is to assess the accuracy of two commercial CHO estimation applications, SNAQ and Calorie 
Mama, and compare their performance with the estimation accuracy of people with type 1 diabetes (T1D).

Methods: Carbohydrate estimates of 53 individuals with T1D (aged ≥16 years) were compared with those of SNAQ (food 
recognition + quantification) and Calorie Mama (food recognition + adjustable standard portion size). Twenty-six cooked 
meals were prepared at the hospital kitchen. Each participant estimated the CHO content of two meals in three different 
sizes without assistance. Participants then used SNAQ for CHO quantification in one meal and Calorie Mama for the other 
(all three sizes). Accuracy was the estimate’s deviation from ground-truth CHO content (weight multiplied by nutritional 
facts from recipe database). Furthermore, the applications were rated using the Mars-G questionnaire.

Results: Participants’ mean ± standard deviation (SD) absolute error was 21 ± 21.5 g (71 ± 72.7%). Calorie Mama had a 
mean absolute error of 24 ± 36.5 g (81.2 ± 123.4%). With a mean absolute error of 13.1 ± 11.3 g (44.3 ± 38.2%), SNAQ 
outperformed the estimation accuracy of patients and Calorie Mama (both P > .05). Error consistency (quantified by the 
within-participant SD) did not significantly differ between the methods.

Conclusions: SNAQ may provide effective CHO estimation support for people with T1D, particularly those with large or 
inconsistent CHO estimation errors. Its impact on glucose control remains to be evaluated.
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Introduction

Despite remarkable progress in diabetes technology, most 
treatment modalities still require estimating meal carbohy-
drate (CHO) content for meal-time insulin dosing.1-3

Accurate CHO quantification is not only burdensome4 but 
also challenging and therefore prone to errors.5,6 Innovative 
technologies enabling food analysis may support more accu-
rate CHO quantification and reduce the burden of diabetes 
management.4

Image-based food recognition and quantification systems 
combining depth-sensing smartphone cameras with com-
puter vision is an emerging field.7,8 Although several com-
mercial solutions, such as SNAQ or Calorie Mama, allow for 
automated food recognition,9,10 the feature of volume estima-
tion allowing for quantification of meal CHO content is cur-
rently restricted to very few apps.9 Given the relevance of 
CHO determination for insulin dosing in people with type 1 
diabetes (T1D),11 insights into the accuracy of commercial 
food quantification systems and cross-comparison with esti-
mation skills of patients are of interest to the patient com-
munity and caring health care professionals. Although 
several studies assessed CHO estimation skills of people 
with T1D5,12 and accuracy of automated food recognition 
systems,10,13 head-to-head (human vs device) comparisons 
allowing to rate technology performance relative to patient 
skills remain scarce.

In this study, we aimed to evaluate the accuracy of SNAQ 
and cross-compare it to the estimation performance of 
another app adopting a different technology (Calorie Mama), 
as well as to estimations by people with T1D.

Materials and Methods

Study Design and Procedures

The study was performed at the outpatient diabetes clinic  
of the University Hospital Bern, using meals served at the 
hospital canteen. Twenty-six meals (see Supplementary 
Appendices A and B) were chosen to create a representative 
sample of everyday cooked dishes. Each meal was prepared 
in three different sizes (1/4 portion, 1/2 portion, full por-
tion), resulting in 78 different plates for evaluation. Ground-
truth macronutrient content was determined by the research 
staff weighing each food item with a kitchen scale to the 
nearest 1 g. Nutrient information of the items was retrieved 
from the nutrition service software LogiMen (V5.4, 
LOGIMATIKA GmbH, Leonberg, Germany). LogiMen  
contains nutritional information from the German BLS and 
Swiss Food Composition nutrient databases. The Ethics 
Committee Bern was informed about the project and declared 
non-responsibility in the absence of health-related data col-
lection (Req-2023-00230).

In a walk-in area, German-speaking individuals with 
T1D aged ≥16 years were offered to participate in the 

study after their routine medical consultation. Participants 
first estimated the CHO content of two meals (each 
served in three sizes) without any assistance, resulting in 
six estimates per participant. Thereafter, participants 
evaluated the CHO content of every plate with one of the 
two apps (Calorie Mama or SNAQ) in a randomized 
order. The first meal was evaluated by one of the two 
apps (in all three sizes), whereas the second was evalu-
ated with the other app. Every participant was given a 
short instruction on the usage of the apps and had access 
to a user manual in German for both apps (Supplementary 
Appendix C). The automated food item recognition of the 
app was provided in German for SNAQ and English for 
Calorie Mama, as Calorie Mama is currently only avail-
able in English. If needed, a list containing the menu 
items in both languages (Supplementary Appendix A) 
was provided, to avoid any confounding by insufficient 
language skills.

A windowless environment with artificial light was cho-
sen to minimize variability in lighting conditions. Afterwards, 
participants were asked to fill the German version of the 
Mobile Application Rating Scale (MARS-G, Supplementary 
Appendix D), evaluating the functionality and subjective 
quality of the apps.14 The study procedure is visualized in 
Supplementary Appendix E.

Smartphone Apps

The apps SNAQ (Version 8.7.4, SNAQ GmbH, Zurich, 
Switzerland) and Calorie Mama (Version 5.330.41301, 
Azumio Inc, Palo Alto, California) were installed on an 
iPhone 12 Pro (Apple Inc, Cupertino, California) and were 
used according to their intended purpose. The rationale for 
the choice of test smartphone was the embedded depth sen-
sor technology (currently only available on the newer iPhone 
models X, 11, and 12), allowing for volume estimation of 
recognized food items in the SNAQ app.

Both apps require the user to take a photo of the plate 
using the back camera (on iPhone models X and 11, SNAQ 
requires the use of the front camera to include depth-sensing 
technology). SNAQ proposes different food items on cap-
tured meal and requires to confirm the suggestions or select 
appropriate alternatives in a drop-down list. Once confirmed, 
depth-sensing technology allows for calculation of the food 
items’ volume, which is subsequently converted into a weight 
using a food density database. Linkage with information of a 
nutrient database finally allows to assess the total macronu-
trient and energy content of the meal.15 Conversely, Calorie 
Mama let the user confirm the recognized food items and 
calculates macronutrient quantities and energy content based 
on adjustable standard portion sizes. The sources of the 
incorporated bulk density values (SNAQ only) and nutrient 
databases of both applications are not disclosed by the 
manufacturers.
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Target Metrics and Outcomes

The primary outcome was the absolute error of meal CHO 
content. The following target metrics were calculated to 
evaluate the accuracy of the CHO content estimates based on 
comparison with ground-truth (nutrient content as assessed 
using the measured weight and the nutrient information from 
the database) denoted as reference:

•• Absolute error (units: [g] and [%])

The absolute estimation error is defined as: Absolute error (%) 
= |estimation-reference|/reference and Absolute error (g) =  
|estimation – reference|

•• Bias (units: [g] and [%])

The bias of the estimation is defined as the difference between 
estimate and ground truth/reference (estimate – reference)

•• Limits of agreement (units: [g] and [%])

The 95% limits of agreement were calculated as Bias ± 2 * SD 
(details regarding the calculation of the SD are reported in 
section “Statistical Analysis”).

•• Percentage of clinically relevant estimation errors 
(unit: [%])

Clinically relevant estimation errors were defined as absolute 
errors of >10 g of CHO in accordance with evidence on the 
impact of CHO counting errors on the quality of glycemic 
control.16

•• CHO estimation consistency

The consistency of CHO estimation was calculated by the 
within-participant SD of the signed relative errors.

In addition to the accuracy in terms of meal CHO content 
estimation, the performance of the two apps regarding the 
estimation of energy, fat, and protein content was evaluated. 
Furthermore, a sensitivity analysis was conducted for the app 
SNAQ to identify the impact of different nutritional data-
bases used between the app and the ground-truth calculation 
on the calculated errors (see section “Statistical Analysis”). 
The performance evaluation of the food recognition of the 
two apps was outside the scope of the study and is addressed 
elsewhere.10 Usability was evaluated using the Mobile 
Application Rating Scale in German language (MARS-G).14

Statistical Analysis

All errors were determined on plate level (total CHO content 
of the plate). The Bland-Altman-type plots17 were generated 
to visualize the level of agreement between the estimates and 

ground-truth values. Mixed-effect modeling18,19 was used to 
estimate the accuracy metrics of interest, including standard 
deviations (SDs) (from which 95% Limits of Agreement 
[LoA] were calculated) as well as absolute and signed errors, 
according to the experimental procedure.20 The ground-truth 
CHO content of the plate was treated as a fixed effect, 
whereas participants and meals were considered as random 
effects. In case of a significant difference between the meth-
ods, assessed using a Type III ANOVA with Satterthwaite’s 
method, pairwise P-values were obtained by means of a 
Tukey’s test using the emmeans package.19 Data are described 
using mean ± SD, unless otherwise specified. All absolute 
errors and biases are presented as absolute values (g) fol-
lowed by the relative values in parentheses. For the sensitiv-
ity analysis, performed to evaluate the influence of the 
different nutritional databases used by the apps and the 
ground-truth method, macronutrient content was calculated 
on the basis of the app’s weight estimations (ignoring the 
embedded background nutrient database) and the corre-
sponding nutritional information of the LogiMen software. 
Consequently, all the estimates were generated based on an 
identical nutritional database and were therefore only influ-
enced by the accuracy of the app’s volume quantification 
performance and food bulk density information. The sensi-
tivity analysis was only applicable to SNAQ, as Calorie 
Mama does not allow exporting weight information of food 
items.

The consistency of the estimation method was evaluated 
by the respective within-participant SD of the apps and the 
participants. To account for possible influence by the study 
design (ie, the same participant rating the same meal in three 
different portion sizes could influence the consistency esti-
mate), we also calculated the within-participant SD using 
only one (randomly selected) of the three portion sizes. The 
SD was compared between the methods using a linear model. 
The outcome variable (within participant-SD) was log-
transformed to account for the non-normal distribution.

For the MARS-G questionnaire, mean and SD for each 
app and survey section were calculated. The internal consis-
tency of the survey sections was evaluated using Cronbach’s 
alpha. Survey scores were compared with a two-sided paired 
t-test. P < .05 were considered statistically significant. R 
version 4.1.221 was used for statistical analysis.

Results

In total, 26 meals in three different sizes were measured, 
resulting in 78 distinct plates. Fifty-three adults with T1D 
participated in the study, resulting in 318 patient estimations 
(six per participant) and 159 estimations using each app. The 
average meal energy content was 286 kcal (range = 73-827 
kcal) and consisted of 29.0 g CHO (range = 6.9-100.1 g), 
11.7 g fat (range = 1.7-49.2 g), and 14.4 g protein (range = 
1.8-37.2 g). A photo of all study meals is included in 
Supplementary Appendix B.
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Carbohydrate Content Estimation Accuracy

Results of all accuracy metrics are reported in Table 1. Bland-
Altman-type plots for each method are shown in Figure 1. 
The absolute error of the patient estimation was 21.0 ± 21.5 
g (95% confidence interval [CI] = 15.7 to 26.3) (71.0 ± 
72.1%), whereas the absolute error of the estimation was 
24.0 ± 36.5 g (95% CI = 17.8 to 30.2) (81.2 ± 123.4%) for 
Calorie Mama and 13.1 ± 11.3 g (95% CI = 6.9 to 19.3) 
(44.3 ± 38.2%) for SNAQ. The absolute estimation error by 
SNAQ was significantly lower compared with the partici-
pants’ estimation error (P = .017) and the Calorie Mama 
estimation error (P = .003). The CHO estimation error of the 
patients and Calorie Mama did not differ significantly (P = 
.562). Although the errors of SNAQ were distributed around 
zero (Bias = −1.8 ± 16.5 g, [95% CI = −7.1 to 3.6]), patients 
and Calorie Mama tended to overestimate the CHO content 
(Bias = 15.7 ± 16.2 g [95% CI = 9.6 to 21.8] and 13.6 ± 
16.6 g [95% CI = 5.2 to 22.0], respectively). Calorie Mama 
displayed the highest proportion of clinically relevant esti-
mation errors (>10 g CHO) with 60.4%, followed by the 
patients with 45.0% and SNAQ with 37.7%.

Figure 2 illustrates the participant-specific SD in com-
parison to the mean SD of the two apps. Seventy-seven per-
cent of the patient estimated more consistently than SNAQ 
and 83% estimated more consistently than Calorie Mama. 
There was no significant difference in the consistency of the 
estimation error between the patient and the two apps (P = 
.99). When randomly selecting one of the three meal sizes for 
the calculation of the within-participant SD (to account for 
possible influence of the study design), similar results were 
observed.

Estimation Accuracy for Energy, Protein,  
and Fat Content for Both Apps

A table summarizing the results of the estimation accuracy of 
energy, protein, and fat content for Calorie Mama and SNAQ 
can be found in Supplementary Appendix F. Calorie Mama 
yielded an absolute energy content error of 154 ± 157 kcal 
(53.9 ± 54.8%) and SNAQ of 133 ± 109 kcal (46.5 ± 
38.2%). This difference in absolute error was not found to be 
statistically significant (P = .194).

Table 1.  Carbohydrate Estimation Errors.

Method

Absolute error Bias LoA
Estimation error 
>10 g CHO

Absolute value, g, 
mean (SD)

Relative value, %, 
mean (SD)

Absolute value, g, 
mean (SD)

Relative value, %, 
mean (SD) Absolute value, g Relative value, %

Participants 21.0 (21.5) 71 (72.7) 15.7 (16.2) 53.1 (54.8) (-72.8, 104.2) 45.0
Calorie Mama 24.0 (36.5) 81.2 (123.4) 13.6 (16.6) 46 (56.1) (-91.9, 119.1) 60.4
SNAQ 13.1 (11.3) 44.3 (38.2) -1.8 (16.5) -6.1 (55.8) (-52.1, 48.5) 37.7

LoA: 95% limits of agreement; SD: standard deviation.

Figure 1.  Bland-Altman plot illustrating the level of agreement between the estimated and reference carbohydrate content of the meals 
for each method. Bias (solid black line) and 95% limits of agreement (dashed lines) were determined using a linear mixed-effects model 
to account for the nested data structure. The gray solid lines represent the range for clinically relevant estimation errors (±10 g CHO).
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Figure 2.  Within-participant SD of relative signed errors 
against the average SD of the two applications. Statistical analysis 
revealed that the difference in the mean SDs between the 
participants and the applications was not statistically significant.

Figure 3.  Mean functionality and subjective quality scores of the 
two applications assessed using the Mars-G questionnaire. Error 
bars represent the standard deviations.
*** indicates a P-value of less than 0.001.

Nutritional Database Sensitivity Analysis for 
SNAQ

As expected, the absolute error was reduced with the 
alignment of the nutritional databases (11.1 ± 9.1 g [38.8 
± 31.8%] vs 13.1 ± 11.3 g [44.3 ± 38.2%], P = .033). 
The detailed results of the sensitivity analysis for the 
accuracy of nutrient content estimation of SNAQ when 
using the identical nutritional database than the reference 
method (LogiMen) are illustrated in Supplementary 
Appendix G.

Usability Results

The MARS-G questionnaire was completed by 49 partici-
pants. Four participants were not able to independently 
operate the apps, either due to impairment of sight and/or 
dexterity, and were therefore not deemed eligible for 
usability rating. The questionnaire’s section on subjective 
quality consists of four items with a Cronbach’s α of 0.8, 
the functionality section likewise contained four items  
(α = 0.76). Both sections had a maximum possible score 
of five.

The mean score for the subjective quality was higher for 
SNAQ compared with Calorie Mama (3.6 ± 1.7 vs 2.7 ± 
1.2, P < .05). Regarding the functionality of the apps, SNAQ 
received likewise higher scores compared with Calorie 
Mama (4.3 ± 0.7 vs 3.7 ± 0.4, P < .05). Results are visual-
ized in Figure 3.

Discussion

This study compared the CHO estimation skills of people 
with T1D against the CHO estimation accuracy of two com-
mercial food analysis apps—Calorie Mama and SNAQ. 
SNAQ resulted in more accurate meal CHO content estima-
tions than estimations by individuals with T1D, whereas 
Calorie Mama, requiring users to modulate a proposed stan-
dard portion size for quantification, did not outperform the 
estimation skills of people with T1D. The superiority of the 
estimation accuracy of SNAQ underscores that the magni-
tude of CHO error is critically influenced by the performance 
of food quantity estimation. However, although accuracy 
was significantly better, error consistency was not improved 
using SNAQ. This may be an essential point, as postprandial 
glucose control may largely depend on the consistency of the 
estimation errors rather than the overall accuracy of the esti-
mates (ie, a constant relative deviation from the actual con-
tent could be compensated by adjusting carbohydrate-to-insulin 
factors).

In a previous study, where we evaluated the accuracy of 
SNAQ in terms of food quantity estimation,9 we observed 
absolute errors in CHO of 14.8 ± 10.9%. This is consider-
ably smaller than the absolute errors of 44.3 ± 38.2% 
observed in this study (or 38.8% when using the same nutri-
tional database). However, it is important to note that in this 
earlier study, we tested SNAQ on test meals that were less 
complex than the meals used in this study. Another relevant 
design difference consists of the focus on food quantity esti-
mation only (items that were wrongly detected were cor-
rected by the study team) in the previous study, whereas in 
this study, the app was used according to real-life conditions. 
Although the relative absolute errors reported in the previous 
study, where slightly higher for cooked meals (18.2 ± 
14.7%), values were still substantially smaller than the 
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estimation error in the present evaluation. These findings 
reveal that the performance of SNAQ is critically dependent 
on the complexity of the meal (eg, multiple components, 
mounted above one another), the adequacy of the recognized 
items, the match of the nutritional database as well as the 
bulk density with actual food macronutrient composition and 
density. Consequently, the selection of test meals has a rele-
vant impact on the performance assessment and should be 
critically appraised when drawing conclusions to real-life 
settings. In addition, food scenarios in real-life settings may 
be further complicated by variability in lighting conditions.

Evaluations of other image-based food analysis systems 
relying on artificial intelligence (AI)-empowered techniques 
have been described in the scientific literature. A study eval-
uating the accuracy of the commercial app Foodvisor, that 
estimates meal macronutrient content based on a food recog-
nition algorithm and detection of food surface area derived 
from a single picture, reports a mean absolute estimation 
error of 13.9 ± 12.4 g (58 meals with an average CHO con-
tent of 94 g were tested).22 In a study with a similar design as 
the present investigation, a research prototype allowing for 
both automated food recognition and quantification, was 
evaluated on the basis of 60 cooked meals obtained from a 
hospital restaurant and yielded a mean absolute error of 26.2 
± 18.7% (12.3 ± 9.6 g).23 The same research prototype even 
generated better results in an earlier study with a reported 
CHO estimation error of 10% (6 ± 8 g).24 However, unlike 
the SNAQ app evaluated in this study, the tested research 
prototype of these former studies requires the user to capture 
the meal from two different viewing angles, which may 
affect the usability of the system. Overall, significant differ-
ences in study design and experimental conditions (most 
notably the different complexity of the meals studied) make 
a fair comparison unrealistic.

Findings of the CHO estimation skills of people with T1D 
previously reported in the literature are variable, likely 
reflecting heterogeneity in study design and populations. 
Brazeau et al5 assessed CHO estimation accuracy of adults 
with T1D on the basis of 72-hour food records and found a 
mean relative error of 20.9 ± 9.7%, corresponding to abso-
lute values of 15.4±7.8 g. In our study, we found consider-
ably higher relative errors (71 ± 72.7%). However, absolute 
errors were comparable (15.4 ± 7.8 g vs 15.7 ± 16.2 g), 
considering that the average meal CHO content was 29 g in 
this study compared with 72 g in the study by Brazeau et al. 
One may note here that an average meal CHO content of 29 
g in this study is on the low side for a standard meal. In addi-
tion, the study participants in Brazeau et al estimated their 
everyday meals, which may be easier to estimate due to 
familiarity. The participants in our study were confronted 
with meals, which may not be typical of their usual diet. 
Another study evaluated the CHO estimation accuracy of 19 
individuals with T1D by confronting them with a total of 60 
different meals, resulting in 114 estimations.23 The reported 

absolute error of 54.8 ± 72.3% (27.9±38.2.g) was compa-
rable than the error observed in this study.

We acknowledge several limitations of this study. The 
average CHO content in the evaluated meals was low. Due to 
the inability to trace this data from both commercial apps, no 
information on the manual adjustments of the food recogni-
tion and quantity by the users and their relevance for the 
overall estimation error could be provided by this work. 
However, the main interest of this study was to report on the 
accuracy of commercial apps when used in line with real-life 
settings, which always reflects net results of a user-app inter-
action. All three meal sizes were presented simultaneously to 
the participants, potentially influencing their estimations. A 
sensitivity analysis was conducted to mitigate any impact on 
the consistency of the errors. However, we cannot com-
pletely rule out a possible effect on the magnitude of the 
errors. Nevertheless, we believe the impact on the overall 
results to be marginal. Finally, test meals may not be reflec-
tive of the participants’ usual meal choices and portion sizes, 
thereby resulting in larger deviations of their CHO 
estimates.

Still, findings yielded by the present work provide impor-
tant insights into the accuracy of two commercial image-
based CHO estimation apps. Despite the relatively good 
accuracy of SNAQ compared with patients’ estimations, the 
efficacy on glucose control, acceptability, and perceived ben-
efits requires clinical evaluation. This is reinforced by the 
participants expressing hesitancy to use such an app on daily 
basis, mainly due to concerns of extra time investments. It 
should be mentioned that, the available evidence for the 
importance of accurate CHO quantification on glucose con-
trol is not overwhelmingly high (see Bell et al25), particularly 
in view of emerging automated insulin delivery systems 
which may provide forgiveness for imprecisions in CHO 
counting. Possible deployments outside everyday use may 
include its application for carbohydrate counting refresher 
courses and nutrition literacy training, optimization of 
carbohydrate-insulin and correction factors, management 
of unusual meals, and dietary intake assessments.

Conclusions

SNAQ may provide effective CHO estimation support for 
people with T1D, particularly those with large or inconsis-
tent carbohydrate estimation errors. Its impact on glucose 
control remains to be evaluated.

Abbreviations
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of agreement; SD, standard deviation; T1D, type 1 diabetes.
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