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Abstract: Immunoglobulin E (IgE) plays a critical role for the immune system, fighting against
parasites, toxins, and cancer. However, when it reacts to allergens without proper regulation, it can
cause allergic reactions, including anaphylaxis, through a process initiated by effector cells such as
basophils and mast cells. These cells display IgE on their surface, bound to the high-affinity IgE
receptor FcεRI. A cross-linking antigen then triggers degranulation and the release of inflammatory
mediators from the cells. Therapeutic monoclonal anti-IgE antibodies such as omalizumab, disrupt
this process and are used to manage IgE-related conditions such as severe allergic asthma and
chronic spontaneous urticaria. Interestingly, naturally occurring anti-IgE autoantibodies circulate at
surprisingly high levels in healthy humans and mice and may thus be instrumental in regulating
IgE activity. Although many open questions remain, recent studies have shed new light on their role
as IgE regulators and their mechanism of action. Here, we summarize the latest insights on natural
anti-IgE autoantibodies, and we compare their functional features to therapeutic monoclonal anti-IgE
autoantibodies.
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1. The Induction of IgE Responses

Immunoglobulin E (IgE) antibodies are thought to be employed by the immune system
to fight against a variety of opponents including parasites, toxins, and cancer [1–5]. In
contrast, when IgE is produced in response to allergens in the absence of proper control
mechanisms, it can trigger pathological type I hypersensitivity reactions including severe
anaphylaxis [6–9]. Several aspects of the IgE response are still poorly understood, such
as the mechanisms of IgE mutation, class-switching, and IgE memory formation, which
have been summarized and discussed by others [10–12]. IgE responses are induced upon
antigen presentation in the presence of IL-4- and IL-13-producing T cells, which stimulates
the differentiation of B cells into plasma cells that produce IgE. A specific focus has been
on T follicular helper and regulatory cells as critical regulators of IgE induction and the
inflammatory potency of IgE responses [13–16]. It has to be noted that IgE induction alone
is not sufficient for driving inflammatory potency. IgE is in competition with IgG, which can
counteract and suppress IgE-mediated inflammatory effects [17,18]. Thus, allergen-specific
IgG may block IgE-dependent effects. In turn, a lack of IgG blocking antibodies may result
in increased allergic inflammation [19].

Interestingly, IgG does not only compete with IgE for specific antigen binding, but
can also directly bind to IgE, thereby controlling IgE function. These natural IgG anti-IgE
autoantibodies have long been observed and investigated but are still not fully understood
today. In contrast, basic and translational research has been focused on the generation and
application of therapeutic monoclonal anti-IgE antibodies that can suppress IgE-mediated
inflammation and thus treat allergic diseases. In this review, we summarize the latest
insights on the mechanism-of-action of natural anti-IgE antibodies, and how they compare
to monoclonal therapeutic anti-IgE antibodies. We propose that the study of natural
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anti-IgE antibodies may help us to better understand the functional differences between
current therapeutic anti-IgE antibodies and potentially allow for us to even further optimize
them. Moreover, this knowledge may translate into the development of polyclonal anti-IgE
vaccines as alternatives to current monoclonal antibody approaches.

2. Two Major IgE Receptors FcεRI and FcεRII (CD23)

The IgE Fc receptors are critical components in regulating IgE functionality. There
are two main types of IgE receptors: the high-affinity IgE receptor (FcεRI) and low-affinity
IgE receptor (FcεRII or CD23). FcεRI is primarily found on the surface of mast cells
and basophils, and to a lesser extent on other cells such as eosinophils, monocytes, and
dendritic cells. Mast cells and basophils, the key initiators of IgE-dependent allergic
reactions, express tetrameric FcεRI consisting of one α-, one β-, and two γ-chains. Other
cell types express a trimeric form of FcεRI lacking the β-chain, altering FcεRI signaling
and function [20]. FcεRI binds to IgE with high affinity. In FcεRI-bound state, IgE can
persist for long periods despite its very short serum half-life. Cross-linking of FcεRI by
antigen-bound IgE leads to cell activation, which triggers the release of histamine and
other inflammatory mediators, responsible for the symptoms of allergic reactions such as
asthma, hives, and anaphylaxis [21–23]. IgE is the most heavily glycosylated antibody and
recent studies have unveiled the functional importance of this glycosylations, in particular,
a highly conserved high-mannose glycosylation located at N394 in human IgE and N384
in mouse IgE [24–26]. This glycosylation site has been shown to be instrumental in FcεRI
binding and activation [27]. Another study demonstrated the importance of IgE sialylation
in determining allergic pathogenicity [28].

CD23 (FcεRII) is expressed on a broader range of cells, including B cells, follicular
dendritic cells (FDCs),macrophages, and eosinophils. CD23 has a lower affinity for IgE com-
pared to FcεRI and serves multiple functions. Surprisingly, while CD23 is a lectin, its bind-
ing of IgE in humans requires calcium but occurs independently of glycans [29–31]. Func-
tionally, CD23 can regulate IgE synthesis, clear serum IgE levels, internalize IgE immune
complexes (IgE-ICs), and regulate antigen presentation and immune responses [32–34]. IgE
is not only a strong trigger of immediate inflammation but also a strong trigger of adaptive
immune responses. An understudied aspect of IgE biology is its immunogenicity and
its function in shaping secondary immune responses, thus acting as a “natural adjuvant”
that promotes antigen-specific T cell and antibody responses. IgE-ICs have been shown to
induce strong T cell proliferation as well as boost antigen-specific IgG responses [35–37].

However, the exact mechanism by which IgE facilitates antigen presentation is still
not entirely clear. Evidence suggests that the low-affinity IgE receptor CD23 expressed in B
cells has a regulatory role in the process [32]. In certain systems, IgE–antigen complexes
are directly internalized by B cells and utilized for the activation of T cells [37–39]. Other
studies propose that CD23 is more important for the absorption of IgE–antigen complexes
and their clearance and transport, whereas antigen presentation occurs independent of
CD23 [40–42].

Besides membrane IgE Fc receptors, IgE function may be regulated by soluble IgE
receptors. Soluble CD23 (sCD23) can be measured in circulation and has been used as
a biomarker of disease activity in a variety of conditions, including allergy, cancer, and
autoimmunity [43,44]. Soluble FcεRI (sFcεRI) is mostly detected in complex with IgE and
elevated serum sFcεRI has recently been used as biomarker in IgE-mediated diseases [45].
Galectin-3 (εBP) is a soluble IgE receptor that binds to IgE and may block FcεRI activation
by promoting IgE:FcεRI complex internalization [43,46,47]. Galectin-9 appears to block
antigen access to IgE, thereby preventing cell degranulation [47]. Overall, the biological
role of the different types of soluble IgE receptors is still a matter of investigation.

3. Anti-IgE Therapy with Omalizumab: Blocking FcεRI Function

Anti-IgE therapy is a targeted treatment approach used primarily to manage and
mitigate allergic diseases by neutralizing IgE. Omalizumab is currently the only licensed
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monoclonal antibody that selectively binds to IgE. Omalizumab binds to free IgE, prevent-
ing it from interacting with IgE receptors FcεRI and CD23, thereby inhibiting the allergic
cascade before it starts. Moreover, it does not cross-link FcεRI-bound IgE but rather acceler-
ates IgE dissociation from FcεRI. These mechanisms help reduce the frequency and severity
of IgE-mediated reactions, making omalizumab an effective treatment for conditions such
as severe allergic asthma, chronic spontaneous urticaria (CSU), and chronic rhinosinusitis
with nasal polyps (CRSwNP) [48–54].

The development of anti-IgE therapy represents a significant advancement in the
treatment of allergic diseases. Continued research is focused on improving the efficacy
of these therapies in terms of reducing injection doses and treating non-responders. In-
terestingly, total IgE levels predict treatment success with omalizumab in CSU [55–57].
Another area of research is the application for omalizumab beyond its current indications.
A promising recent trial has demonstrated utility for omalizumab in treating food allergies,
specifically in preventing allergic reactions to accidentally exposed food allergens, but
future studies will need to validate those findings [58–60]. Evidence is growing that IgE
could be involved in autoimmune diseases such as in bullous pemphigoid (BP) or systemic
lupus erythematosus (SLE), which has sparked the evaluation of omalizumab in those
conditions [61–63]. Another indication for omalizumab could be as an adjuvant compound
in specific allergy immunotherapy to improve the safety of allergen injections [64–66].

4. Omalizumab: Still without Competition?

A variety of alternatives to omalizumab have been developed, but most have so far not
advanced in clinical trials. Other excellent reviews have summarized the current and future
landscape of novel therapeutic anti-IgE antibodies and other anti-IgE molecules in allergy
to which we hereby refer [67–70]. As interesting potential competitors to omalizumab,
we here mainly focus on two emerging monoclonal anti-IgE antibodies: ligelizumab and
UB-221 [71–74]. Ligelizumab, the most clinically advanced alternative to omalizumab, has
shown efficacy in phase III studies for CSU [75], whereas for UB-221, phase II studies are
currently ongoing for CSU (NCT05298215).

Mechanistically, all anti-IgE monoclonals have the ability of blocking IgE:FcεRI interac-
tion without triggering a cross-link, but interestingly, their effect on the IgE interaction with
CD23 is more diverse. As previously mentioned, omalizumab blocks IgE binding to both
FcεRI and CD23. In contrast, ligelizumab exhibits a higher degree of overlap with FcεRI,
has a higher affinity for IgE, and inhibits the interaction of FcεRI and IgE more efficiently.
However, ligelizumab seems to allow for more CD23 interaction than omalizumab, as it
can recognize CD23-bound IgE [76]. UB-221 is distinct from omalizumab and ligelizumab,
as it fully allows for the interaction of IgE with CD23 and even enables its targeting [72,77].
UB-221 can recognize CD23-bound IgE and preformed complexes of UB-221:IgE can cross-
link CD23 [72]. Thus, the more IgE antibodies bind to UB-221, the more they are directed
towards CD23, directing IgE to a non-inflammatory pathway by clearing IgE from the
serum [32]. Whether ligelizumab or UB-221 can outperform omalizumab in any indication
remains to be determined. Ligelizumab has demonstrated safety and efficacy in CSU, but
despite initial hope that it could outperform omalizumab, recent clinical trials did not
support this hypothesis [73–75]. A phase III trial to evaluate the use of ligelizumab in food
allergy is currently ongoing (NCT05678959). In summary, further investigations are needed
to fully understand the clinical value of these novel alternatives to omalizumab.

5. Natural Anti-IgE Autoantibodies: Friends or Foes?

Natural anti-IgE autoantibodies have been described a long time ago [78–82]. How-
ever, they are still a mysterious entity today. Over the years, a variety of publications in mice
and humans have investigated natural anti-IgE. Given their polyclonal nature, a puzzling
question that still occupies researchers is their ability or inability to trigger FcεRI cross-
linking and anaphylaxis. Given that these antibodies occur in healthy individuals and thus
likely fulfil a physiological role; it is difficult to imagine that they trigger degranulation. In
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turn, elevated anti-IgE levels are often observed in pathological contexts such as atopic der-
matitis or urticaria [83–85]. Studies using in vitro degranulation assays have observed that
natural anti-IgEs can be anaphylactogenic or suppressive dependent on the setup [85–89].
In contrast, in vivo studies have rather interpreted natural anti-IgE autoantibodies as neg-
ative regulators of IgE-dependent inflammation [90–92]. Potential explanations for this
discrepancy could be the kinetics and concentrations of in vivo-released anti-IgE compared
to in vitro stimulation. Other explanations could be the presence of other cell types and/or
IgE-regulating co-factors that suppress anaphylaxis in vivo. For IgE itself, the anti-IgE
epitope and affinity have also been shown to be important aspects to consider [93,94]. Our
own research has pointed towards IgE glycosylation as a key regulator.

6. Natural Anti-IgE Autoantibodies: Role of IgE Glycans

We have shown that anti-IgE autoantibodies induced in healthy normal mice im-
munized with IgE-allergen immune complexes are glycan-specific. Specifically, the same
conserved IgE mannose region that is essential for FcεRI binding is recognized by natu-
ral anti-IgE [92]. We then evaluated how this immunogenicity of IgE-allergen IC shapes
secondary responses in an allergic model. While anti-allergen IgG responses were ele-
vated in these mice, anti-IgE antibodies were likewise increased. This led to a reduction
in IgE levels and significantly reduced allergy and systemic anaphylaxis in mice [92]. The
removal of glycans from IgE significantly disrupted its ability to promote neutralizing
IgG anti-IgE autoantibody response, thus reducing serum and basophil IgE levels and
suppressing allergy [95]. Of note, human IgG anti-IgE autoantibodies, are likewise mostly
glycan-specific [92]. Our findings suggest that anti-IgE autoantibodies modify the Fc recep-
tor pathway as IgG-IgE complexes are increasingly bound and absorbed by low-affinity
receptors CD23 and FcγRs while binding to FcεRI is suppressed (Figure 1).
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The binding of IgE by natural anti-IgEs suppresses FcεRI targeting by favoring the targeting of low-
Figure 1. Natural IgG anti-IgE in the regulation of FcεRI. Free IgE binds to FcεRI with high affinity.
The binding of IgE by natural anti-IgEs suppresses FcεRI targeting by favoring the targeting of
low-affinity IgE receptors due to increasing avidity interactions. Moreover, the binding to FcγRs is
unlocked by the presence of IgG. Created with BioRender.

Most recently, we translated these findings into a more clinically feasible approach
and developed an anti-IgE vaccine based on virus-like particles (VLP) displaying IgE-Cε

fragments [96]. Similar to IgE–allergen ICs, this vaccine reduced IgE levels and allergic
symptoms in mice without causing any side effects [96]. Overall, our research suggests
that FcεRI and natural anti-IgEs compete for the same conserved single IgE mannose glyco-
sylation site [77,97–99]. Hence, glycan specificity could be a key attribute for suppressive
function of natural anti-IgEs. The competition between FcεRI and natural anti-IgE autoanti-
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bodies for the same conserved mannose on IgE could likewise be a good explanation for
their non-anaphylactogenic nature (Figure 2). Nevertheless, other mechanisms might be at
play, especially for non-glycan-specific anti-IgE autoantibodies.
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Figure 2. IgE mannose competition as a regulator of FcεRI sensitization. Free IgE binds to FcεRI in
mannose-dependent fashion (N394 in human IgE and N384 in mouse IgE) leading to sensitization.
The majority of natural anti-IgE autoantibodies recognize the same mannose region. Thus, IgE
binding to FcεRI is blocked by natural anti-mannose IgE antibodies. For FcεRI-bound IgE, access
to mannose epitopes is blocked, which may prevent the anaphylactic responses to natural anti-IgE
autoantibodies. Created with BioRender.

7. A Mechanistic Comparison of Natural and Therapeutic Anti-IgE Antibodies

Natural anti-IgE autoantibodies are overall still understudied but recent results from
humans and mice demonstrate a striking uniformity of glycosylations as essential regulators
of IgE function [24,25]. Still, it is important to note that these studies primarily involve a
polyclonal response, and non-glycan-specific anti-IgE autoantibodies may also be present.
Although it is difficult to compare a polyclonal response to monoclonal antibodies, we
showed that IgE recognition by omalizumab is in fact dependent on the same N394 mannose
structure on IgE as the majority of natural anti-IgE antibodies [100]. In contrast, omalizumab
blocks CD23 interaction, which is not the case for most natural anti-IgEs. In fact, polyclonal
natural anti-IgE antibodies favor CD23 binding, which is an important contributor to the
absorbance/and serum clearance of IgG-IgE complexes. Ligelizumab is closer to natural
anti-IgE antibodies than omalizumab in terms of its interaction with CD23, while its glycan
dependency is not yet known. Nevertheless, it does not seem to enhance the targeting of
CD23. In contrast, the final anti-IgE, UB-221, is very similar to natural anti-IgEs in terms of
CD23 binding and may even be enhanced by its presence. However, we do not yet know
the glycosylation dependency of this antibody (Table 1).

Table 1. A comparison of natural versus therapeutic anti-IgE antibodies.

Omalizumab Ligelizumab UB-221 Natural Anti-IgE

Clonality Monoclonal Monoclonal Monoclonal Polyclonal

In vivo FcεRI
interaction Inhibition Inhibition Inhibition Inhibition

In vitro FcεRI
interaction Inhibition Inhibition Inhibition Inhibition/activation

CD23 interaction Inhibition Partial Inhibition Promotes binding Promote binding

IgE-glycan-dependent Yes ? ? Mostly yes
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8. Lessons from Anti-IgE on the Role of CD23 in Immunopathology

The different mechanistic and functional interaction of those three monoclonal anti-IgE
antibodies and natural anti-IgE antibodies with CD23 could allow for us to speculate on
the role of CD23, which is still not fully understood. However, the simultaneous binding
of Fcγ receptors should not be ignored and could also explain the clinical differences
in those antibodies [101]. The recent findings on ligelizumab and UB-221 suggest that
allowing for CD23 interaction may not be problematic in CSU. It has even been argued that
CD23-mediated IgE clearance could be a beneficial feature of anti-IgE therapy [72]. In mice,
CD23 is important for the non-inflammatory clearance of IgG-IgE complexes via natural
anti-IgE autoantibodies [92,95]. The specific advantage of omalizumab in allergic asthma
raises the question about the importance of CD23 blockade in this condition. Studies
using CD23-blocking antibodies have proposed that CD23 is involved in allergic airway
inflammation [102,103].

In contrast, CD23-deficient mice develop increased allergic airway inflammation,
demonstrating that CD23 expression is not required [102–105]. A potential reason for these
contradicting results could be the effect of CD23-blocking antibodies and the experimental
setup. Future studies will need to consider the cell-specific expression of CD23, as it
can be expressed in a variety of cells including B cells, FDCs, epithelial cells, and even
airway smooth muscle cells [102,106–110]. Moreover, two CD23 isoforms exist, for example
monocyte-related cells express CD23b but not CD23a while B cells constitutively express
more CD23a [111–113]. Although the difference between the two CD23 isoforms is only a
few amino acids in the intracellular domain, CD23a targets IgE complexes to an endocytosis
and recycling pathway whereas CD23b targets IgE complexes to a phagocytic degradative
pathway [41,112–116].

Overall, whether CD23 blockade is an important feature for omalizumab in the treat-
ment of allergic asthma remains to be determined. It needs to be emphasized that the effect
of IgG-IgE complexes and their interaction with CD23 and Fcγ receptors have largely not
been investigated in the context of allergic asthma.

9. The Functional Effects of IgG-IgE Complexes: The Interesting Case of IgE
Clone SPE-7

We have begun to understand that natural anti-IgE autoantibodies downregulate
IgE levels because IgG-IgE complex formation accelerates the engagement of low-affinity
Fc receptor and hence serum clearance. Nevertheless, the biological effects of IgG-IgE
complexes compared with free IgE or free IgG on various Fc receptor-expressing immune
cells remain to be studied in more detail. However, interestingly, some of these effects may
have been studied inadvertently. We recently noticed that one of the most studied mouse
IgE monoclonals, the hybridoma-produced IgE clone SPE-7 contains mouse IgG that forms
complexes with IgE [117]. Over the years, SPE-7 has shown some interesting functional
characteristics compared to other IgE clones. SPE-7 was thought to have “cytokinergic”
function, the ability to activate signaling in mast cells in absence of a cross-linking antigen,
resulting in a variety of effects including histamine/leukotriene release, cytokine release,
and an increase in mast cell survival [118–121]. In other studies, SPE-7 was shown to
engage IgG receptors [122,123]. We have now shown that many of these distinct features
for SPE-7 are removed by purifying the IgG-IgE complexes from the preparation. Similarly,
we observed increased CD23 binding by non-purified SPE-7, which is in line with previous
findings on natural anti-IgE autoantibodies. An interesting difference between IgE SPE-7
and classical IgE–antigen activation in mast cells was reported to be the signaling kinetics,
which were slower for SPE-7. Additionally, histamine and leukotriene release was lower.
Interestingly, the survival of mast cells was increased, a feature not observed with classical
IgE–antigen activation (Figure 3) [120,121]. The extent to which all these mechanisms occur
in vivo remains to be determined.
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shown to trigger slower signaling, a lower release of granules, but increased mast cell survival [121].
Created with BioRender.

10. Therapeutic IgE Antibodies against Cancer: Considering Natural Anti-IgE

Therapeutic monoclonal antibodies of the IgE isotype have emerged as a promising
area of research in cancer treatment. Unlike conventional therapies that focus on sup-
pressing or modulating immune responses, monoclonal IgE antibodies in cancer therapy
leverage the potent immune-activating properties of IgE to target and destroy cancer cells. It
is thought that the binding of IgE to its receptors can lead to rapid and robust cell-mediated
cytotoxicity against tumors. While the use of therapeutic IgE antibodies in cancer is still
largely experimental, several preclinical studies have shown promising results. Moreover,
studies have demonstrated that IgE therapeutics do not induce type I hypersensitivity
reactions, thereby providing evidence for the safety of IgE antibody immunotherapy for
cancer [124–128].

As mentioned previously, natural anti-IgE antibodies are present in individuals with-
out any external intervention. In the context of cancer therapy, therapeutic IgE antibodies
might interact with these natural anti-IgE antibodies, which may influence the effectiveness
and outcomes of therapy. Monitoring patients receiving IgE-based cancer therapies for the
presence of anti-IgE antibodies might help to predict and manage impacts on treatment
efficacy. Further research is needed to determine the role of natural anti-IgE antibodies in
monoclonal IgE anti-cancer therapy.

11. Conclusions

In conclusion, anti-IgE therapies have shown promise in treating IgE-driven diseases
by clearing serum IgE and disrupting IgE interactions with FcεRI without triggering the
allergic reaction. Interestingly, therapeutic anti-IgE antibodies have variable effects on
CD23 interaction. Recent studies have highlighted the physiological role of natural anti-IgE
antibodies, which neutralize IgE and reduce serum and FcεRI-bound IgE levels. These
natural anti-IgE antibodies recognize conserved mannose structures on IgE and facilitate
CD23 and FcγR interaction, which contributes to the rapid serum clearance of IgG-IgE
complexes. The future study of natural anti-IgE antibodies and IgG-IgE complexes may
offer valuable insights into physiological IgE regulation which could enable an optimization
of anti-IgE therapies for improved efficacy and clinical impact in a variety of IgE-mediated
immunopathological conditions.
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