Panahipour, Layla; Micucci, Chiara; Gelmetti, Benedetta; Gruber, Reinhard (2024). In Vitro Bioassay for Damage-Associated Molecular Patterns Arising from Injured Oral Cells. Bioengineering, 11(7) MPDI 10.3390/bioengineering11070687
|
Text
bioengineering-11-00687-v2.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (1MB) | Preview |
Gingival fibroblasts are a significant source of paracrine signals required to maintain periodontal homeostasis and to mediate pathological events linked to periodontitis and oral squamous cell carcinomas. Among the potential paracrine signals are stanniocalcin-1 (STC1), involved in oxidative stress and cellular survival; amphiregulin (AREG), a growth factor that mediates the cross-talk between immune cells and epithelial cells; chromosome 11 open reading frame 96 (C11orf96) with an unclear biologic function; and the inflammation-associated prostaglandin E synthase (PTGES). Gingival fibroblasts increasingly express these genes in response to bone allografts containing remnants of injured cells. Thus, the gene expression might be caused by the local release of damage-associated molecular patterns arising from injured cells. The aim of this study is consequently to use the established gene panel as a bioassay to measure the damage-associated activity of oral cell lysates. To this aim, we have exposed gingival fibroblasts to lysates prepared from the squamous carcinoma cell lines TR146 and HSC2, oral epithelial cells, and gingival fibroblasts. We report here that all lysates significantly increased the transcription of the entire gene panel, supported for STC1 at the protein level. Blocking TGF-β receptor 1 kinase with SB431542 only partially reduced the forced expression of STC1, AREG, and C11orf96. SB431542 even increased the PTGES expression. Together, these findings suggest that the damage signals originating from oral cells can change the paracrine activity of gingival fibroblasts. Moreover, the expression panel of genes can serve as a bioassay for testing the biocompatibility of materials for oral application.
Item Type: |
Journal Article (Original Article) |
---|---|
Division/Institute: |
04 Faculty of Medicine > School of Dental Medicine > Department of Periodontology |
UniBE Contributor: |
Gruber, Reinhard |
Subjects: |
600 Technology > 610 Medicine & health |
ISSN: |
2306-5354 |
Publisher: |
MPDI |
Language: |
English |
Submitter: |
Pubmed Import |
Date Deposited: |
29 Jul 2024 10:03 |
Last Modified: |
29 Jul 2024 10:12 |
Publisher DOI: |
10.3390/bioengineering11070687 |
PubMed ID: |
39061769 |
Uncontrolled Keywords: |
AREG C11orf96 DAMPs STC1 alarmins gingival fibroblast injured oral epithelial cells necrosis oral squamous carcinoma cells periodontitis |
BORIS DOI: |
10.48350/199328 |
URI: |
https://boris.unibe.ch/id/eprint/199328 |