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A B S T R A C T

Antibiotic resistance is one of the major concerns in veterinary and human medicine and poses a considerable
threat to both human and animal health. It has been shown that over- or misuse of antibiotics is one of the
primary drivers of antibiotic resistance. To develop the surveillance of antibiotic use, Switzerland introduced the
"Informationssystem Antibiotika in der Veterinärmedizin" (IS ABV) in 2019, mandating electronic registration of
antibiotic prescriptions by all veterinarians in Switzerland. However, initial data analysis revealed a considerable
amount of implausible data entries, potentially compromising data quality and reliability. These anomalies may
be caused by input errors, inaccuracies, incorrect or aberrant master data or data transmission and make analysis
impossible. To address this issue efficiently, we propose a two-stage anomaly detection framework utilizing
machine learning algorithms. In this study, our primary focus was on cattle treatments with either single or group
therapy, as they were the species with the highest prescription volume. However, not all outliers are necessarily
incorrect; some may be legitimate but unusual antibiotic treatments. Thus, expert review plays a crucial role in
distinguishing outliers, that are correct from actual errors. Initially, relevant prescription variables were
extracted and pre-processed with a custom-built scaler. A set of unsupervised algorithms calculated the proba-
bility of each data point and identified the most likely outliers. In collaboration with experts, we annotated
anomalies and established anomaly thresholds for each production type and active substance. These expert-
annotated labels were then used to fine-tune the final supervised classification algorithms. With this method-
ology, we identified 22,816 anomalies from a total of 1,994,170 prescriptions in cattle (1.1 %). Cattle with no
further specified production type had the most (2 %) anomalies with 7758 out of 379,995. The anomalies were
consistently identified and comprised prescriptions with too high and too low dosages. Random Forest achieved a
ROC-AUC score of 0.994, (95 % CI: 0.992, 0.995) and a F1-Score of 0.962 (95 % CI: 0.958, 0.966) for single
treatments. The versatility of this framework allows its adaptation to other species within IS ABV and potentially
to other prescription-based surveillance systems. If applied regularly to uploaded prescriptions, it should reduce
input errors over time, improving the validity of the data in the long term.

1. Introduction

One of the main issues in veterinary and human medicine is anti-
biotic resistance, which poses a considerable threat to both human and
animal health (Prestinaci et al., 2015; Laxminarayan et al., 2013).
Mechanisms for antibiotic resistance have existed and evolved over a
long period of time, enabling bacteria to rapidly adapt to external se-
lective pressures (Giedraitienė et al., 2011; Perry et al., 2016). It has

been shown that over- or misuse of antibiotics creates a selective envi-
ronment, and is one of the primary drivers of antibiotic resistance
(Bronzwaer et al., 2002; Goossens et al., 2005; Van De Sande-Bruinsma
et al., 2008; Caneschi et al., 2023).

Surveillance of antimicrobial use (AMU) and resistance is essential to
guide appropriate interventions. Several European countries have
implemented monitoring systems to investigate the use of antibiotics in
veterinary medicine (Sanders et al., 2020; European Medicines Agency,
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2013). Previously, AMU in Switzerland was merely monitored through
the Veterinary Antibiotics sales figures (FSVO, 2020a). Although the
sales figures for antibiotics in Switzerland showed an overall decreasing
trend, it was not possible to identify the species or specific animal sectors
for which the antibiotics were used. The development of AMR is not
mainly determined by the amount of active substances administered to a
population but also by the number of treated animals and other factors
(Caneschi et al., 2023).

To improve the surveillance of AMU in Switzerland, the Federal Food
Safety and Veterinary Office (FSVO) has introduced the «Informa-
tionssystem Antibiotika in der Veterinärmedizin» (IS ABV) (FSVO,
2020b). Since October 2019, every veterinarian in Switzerland must
register all antibiotic prescriptions electronically in a centralized data-
base. prescription is both dispensed to the animal owner and used by the
veterinarian.

Although the implementation of the IS ABV was a significant
advancement, it has revealed several challenges and issues. In 2020
initial analyses of the data showed that there was a considerable amount
of implausible data entries leading to enormous amounts of active
substance. This indicated that there were systemic or human errors in
data entry and transmission process, compromising the reliability and
accuracy of the data. With 1,768,959 prescriptions across all species
from 2019 until the end of 2020, the FSVO was only able to identify the
most anomalies, which were characterized by obvious errors resulting in
a disproportionately high quantity of prescribed antibiotic substance per
animal (FSVO, 2021). As such anomalies could be due to erroneous in-
puts distributed over several data fields, we were interested in a flexible
data-driven method over fixed rules.

To address this problem, we propose a two-stage detection frame-
work that utilizes a combination of several machine learning algorithms
and is designed to identify potential anomalies.

Unsupervised learning uses algorithms to identify patterns or struc-
tures in datasets without any external guidance or labeled information
(Amruthnath and Gupta, 2018). In contrast to supervised learning,
where the algorithm is provided with a first labeled dataset to predict
the outcomes of new/the next datasets, unsupervised learning allows the
model to explore the underlying data structure without being given any
specific task or instruction (Sarker, 2021). One major disadvantage of
unsupervised learning is that there are not many adequate ways to
evaluate performance when limited labels are available. However, an
initial unsupervised approach for anomaly or outlier detection could still
be a compelling method in identifying and flagging outliers given the
scarcity of labeled data. Traditionally, outliers or anomalies are data
points that differ significantly from the majority of the data and can
indicate errors, different underlying mechanisms, or uncommon
behavior (Aggarwal, 2017). In the context of the IS ABV system, we are
interested in identifying outliers that are indicative of input errors in a
variety of input fields, application inaccuracies or instances of severe
over- or under-dosage respectively. Nevertheless, it is important to note
that not all identified outliers result from errors. Certain outliers may be
genuine data points that represent legitimate but rare instances of an
antibiotic treatment. Hence, it is crucial to have an expert review of any
identified outliers to determine whether they are genuine data points or
not.

The objective of this study is to present a two-stage framework that
aims to support and enhance human expertize in identifying potential
outliers rather than replacing it. In the discovery stage, unsupervised
algorithms initially computed the probability of each data point to be an
outlier and determine the most likely outliers. Together with experts we
then annotated anomalies and established anomaly thresholds per active
substance and production type. In the detection stage we employed
supervised methods to refine the anomaly detection system which ulti-
mately led to a more robust and reliable outlier detection.

2. Methods

2.1. Data collection

In Switzerland, veterinarians have a choice between two methods for
submitting their prescriptions to IS ABV. They can either manually enter
the prescriptions through a website (variant 2), or they can connect their
practice management software to the ISABV server-interface (variant 1).
Variant 1 is substantially more common and accounts for 94.6 % of all
prescriptions over the past three years. IS ABV data are available from
the FSVO in an anonymized form for research purposes upon request,
which we made for the first time in an electronic form on 15 April 2022
(see data availability).

We aimed to capture a comprehensive representation of outliers and
therefore included prescriptions from several years. We extracted the
data on January 17th, 2023, which contained prescriptions from
January 1st, 2020, up to January 16th, 2023. Within the specified
timeframe, every prescription issued by veterinary practices and clinics
registered in IS ABV was included.

In this study we concentrated on the farm animal species that
received the highest number of prescriptions, namely cattle. Our focus
was on the most prevalent and national important animal livestock
species (FSVO, 2020b). A total of 1,994,170 unique cattle prescriptions
were included which involved 8 distinct cattle production types
(Table 1). The selected data accounts for 73.8 % of all farm animal
prescriptions administered in the past three years.

For livestock, in IS ABV there are four possible prescription types:
single treatment (ST), oral group treatment (GT) and dispensing on stock
(DoS). DoS is a specific practice in Switzerland where veterinarians can,
under certain conditions, provide antibiotics to farmers, who can then
apply it them themselves whilst prophylactic use is forbidden. It is
important to note that DoS prescriptions, unlike the three others, do not
include information about the production type and number of animals
treated, and were therefore excluded. GT are prescriptions that are
exclusively done manually (variant 2) over the web interface and
contain orally applied antibiotic treatments for groups of 10 or more
animals. ST are all other antibiotic prescriptions that are not defined as
DoS or GT. Up until September 2021, ST could only contain one animal
per prescription. Since then, ST can also be used for multiple animals.
Furthermore, a single ST prescription can contain multiple preparations
and one preparation can contain multiple active substances. The pro-
duction types with the highest number of prescriptions (Table 1) were
dairy cows (1,138,935; 57.1 %) and cattle with no production type
specified (379,995; 19.1 %).

During the initial data pre-processing stage, we identified and
removed entries with null values from the prescription dataset (Fig. 1).
Null values in prescriptions refer to instances where the recorded
amount of antibiotics given, or the number of treated animals is zero. We
also excluded some prescriptions with rare AB which should not be used

Table 1
Prescriptions and anomalies per category of use.

Category of use Prescriptions
(%)

Prescriptions
with
Anomalies

Percent of
prescriptions
containing
anomalies

Dairy cow 1,138,935
(57.11)

10,534 0.92

Cattle with no
production type

379,995 (19.06) 7758 2.04

Rearing calves 155,693 (7.81) 1279 0.82
Veal calves 119,973 (6.02) 1240 1.03
Suckler cow 74,629 (3.74) 755 1.01
Rearing cattle 55782 (2.80) 572 1.03
Suckler calf 51,069 (2.56) 442 0.87
Beef cattle 18,094 (0.91) 236 1.31
Total 1,994,170 (100) 22,816 1.14
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on cattle and/or have less than 5 prescriptions within the past 5 years.

2.2. Feature engineering and data preparation

To identify anomalies, we established the variable given amount per
animal and day (GAAD). This variable considers the quantity (mg) of
antibiotic active ingredients given per animal and the duration of the
treatment (days). By normalizing the amount of antibiotics based on the
number of animals and treatment duration we were able to compare
different prescriptions with each other.

We applied the natural logarithmic transformation of (x + 1) to the
GAAD. The dataset was then separated by prescription type (ST and GT).
GAAD was analyzed in four different groups by production type, prep-
aration, and active substance. The first groups GAAD by production type
and preparation id (product identification key). The second groups
GAAD per preparation id. The third groups GAAD by production type
and active substance, and the fourth groups GAAD per active substance.
GAAD was normalized per group using z-transformation. With a custom
scaler multiple z-transformations (Lynn, 1986) were conducted to create
four variables which distinguish the log transformed GAAD (Xi) per
group (g) on different levels:

Zg =
Xi − μg

σg

The custom scaler is based on the z-score from scipy.stats (Virtanen
et al., 2020) and the BaseEstimator as well as the TransformerMixin from
scikit-learn (Pedregosa et al., 2011).

Evaluation and analysis were conducted using Python (van Rossum,
1995; version 3.9.18) with Jupyter Notebook (Kluyver et al., 2016;
version 6.5.4) and R (version 4.2.1) with R Studio (RStudio, 2015;
version 2023.09.0). All computations were done with an AMD Ryzen 7
3700×8-Core Processor, 32 GB of RAM, and an NVIDIA GeForce GTX
3080 graphics card.

2.3. First stage analyses

We used the python library called PyOD (Zhao et al., 2019) which
offers a convenient wrapper for the most common unsupervised anom-
aly detection algorithms and is based on scikit-learn (Pedregosa et al.,
2011). For each of the two data sets (ST and GT), five unsupervised al-
gorithms were implemented.
Empirical Cumulative Outlier Detection (ECOD) uses empirical

cumulative distribution functions to identify anomalies (Li et al., 2022).
ECOD estimates the distribution of the input data by computing the
empirical cumulative distribution per dimension and then estimates tail
probabilities for each data point and computes an outlier score.
Gaussian Mixture Model (GMM) is a probabilistic model that as-

sumes that the data is generated from a mixture of Gaussian distribu-
tions (Aggarwal, 2017). To detect anomalies, it starts by randomly
selecting subsets of the data, then for each random subspace it estimates
the probability density using a gaussian mixture model. Geometric
averaging is performed to get an overall probability density from which
then an outlier score is calculated. Prescriptions which have a low
probability density compared to the overall distribution are flagged as
anomalies.
Histogram-Based Outlier Score (HBOS) is an anomaly detection

algorithm that utilizes histograms to calculate outlier scores (Goldstein
and Dengel, 2012). The algorithm partitions the data into bins for each
dimension, then it constructs a histogram for each dimension which
counts the number of data points that fall within each bin. The proba-
bility that a prescription occurs in each histogram is then used to
compute an outlier score.
Isolation Forest (IForest) identifies anomalies directly by applying a

tree structure to isolate every data point (Morales et al., 2020). The al-
gorithm randomly selects a subset of data points from the dataset and
creates a tree structure called isolation tree. Each isolation tree is con-
structed by recursively partitioning the data points based on random

Fig. 1. Flowchart of the data extraction and the two-stage anomaly detection process. *Number of observations is higher than number of prescriptions because one
prescription can contain more than one preparation with more than one active substance.
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attribute splits until all data points are isolated. Based on the average
path length across all isolation trees it then calculates an outlier score.
Principal Component Analysis (PCA) is an established statistical

technique used for reducing the dimensionality of data (Daga et al.,
2020). PCA can also be used for detecting outliers by utilizing a robust
principal component classifier (Shyu et al., 2003). It constructs an
intrusion predictive model using the major and minor principal com-
ponents. The implemented version assumes that the data follows a
multivariate Gaussian distribution and that outliers are defined as points
with low probability.

2.3.1. Parameter tuning first stage
For most unsupervised anomaly detection methods, it is necessary to

manually set a contamination factor which determines the percentage of
points in the data that are considered anomalous. The contamination
parameter per model and species was based on previously discovered
anomalies and known prescription issues in certain production types
and preparations. Anomalies that were already tagged consisted only of
a few instances with very high dosages. To detect known outliers as well
as identify novel prescriptions with insignificant dosages, we iteratively
adjusted the initial parameter settings until convergence no longer
improved, or satisfactory results were achieved. For the first stage we
only included the four GAAD variables as describe in Data preparation.
The resulting anomaly scores were then combined and assessed using a
soft (probability) and hard (binary) voting ensemble. This resulted in a
table which ranked the anomalies from most probable to least probable.
In collaboration with experts from the FSVO, we evaluated the pre-
scriptions and established specific GAAD based thresholds for each
production type and active substance. Together with manual adjust-
ments and corrections per preparation and production type, everything
that exceeded these thresholds of the soft and hard votes was a novel
anomaly and served as additional labels for the second stage. To sum-
marize, in this study an anomaly is defined as any observation that ex-
ceeds the expert guided thresholds and thus has a GAAD that is outside
the normally expected range.

2.4. Second stage analyses

By combining established and newly labeled prescriptions with
anomalies, we were able to apply two supervised models:
Random Forest is an ensemble learning method that combines the

predictions of multiple decision trees into an unified outcome (Ho,
1995). It uses both bagging and variable randomness to create an un-
correlated forest of decision trees. Random Forest is designed to address
the problem of overfitting and reduces the variance in decision trees. We
implemented the Random Forest classifier from scikit learn (Pedregosa
et al., 2011).
XGBoost is also an ensemble learning method and stands for

Extreme Gradient Boosting (Chen and Guestrin, 2016). It combines
multiple weaker models and applies a gradient boosting technique,
which sequentially builds a predictive model by fitting each new model
to the residual errors of the previous predictions.

2.4.1. Parameter tuning second stage
To achieve an impartial estimate, we split the labeled data into 80 %

training-validation set and a 20 % holdout set (Fig. 1). To ensure an
equal distribution of classes (inlier and outlier) in both sets, we imple-
mented a stratified split based on the labeled anomalies. In addition to
our five initial unsupervised models, we implemented two common
supervised models, Random Forest and XGBoost. We also reintroduced
active substance and production type as “one hot encoded” categorical
variables (Supplement Table 3). To fine-tune the hyperparameters of the
supervised algorithms, an initial random and then an extensive grid
search was conducted on the training-validation set using stratified 10-
fold cross-validation (Supplement Table 5; Supplement Table 6).
Missing values generated by the z-transformation within cross-

validation and training steps were imputed with 0. We optimized the
hyperparameters from the initial unsupervised models by assessing the
performance of each hyperparameter combination in every fold and
selecting the configuration that yielded the best F1-Score. To avoid
introducing data leakage, the unsupervised models were re-trained, re-
scaled and had their hyperparameters re-adjusted on the train-
validation set.

2.5. Model evaluation

To compare the models’ performances on the holdout set we
employed the following techniques: ROC-AUC (Bradley, 1997), Preci-
sion, Recall, F1-Score, MCC (Baldi et al., 2000) and AP (Zhang and
Zhang, 2009). The evaluation metrics are described in more detail in the
supplement. Confidence intervals (95 %) for eachmetric were generated
using bootstrap resampling (n = 1000) on the holdout set.

2.6. Post-hoc analysis

Post-hoc analysis was performed to assess the importance of indi-
vidual variables for the model prediction using SHAP. SHAP has a
theoretical foundation in coalitional game theory and can provide
contribution explanations and analyze the model’s output on a global
and a local scale (Lundberg and Lee, 2017). Here SHAP is used to
quantify the relative importance of variables contributing towards
anomaly. An average higher (positive) SHAP indicates a higher impact
on the model’s prediction of an anomaly. SHAP values and plots were
produced with the SHAP library (Lundberg and Lee, 2017) on the
holdout set using shap.TreeExplainer. SHAP utilizes a game-theoretic
approach to model explanation, assessing the individual contribution
of each variable to the overall prediction for a single observation.

Model calibration is an essential practice that ensures predictive
models’ reliability and interpretability (Van Calster et al., 2019). It ad-
justs the output probabilities of the supervised models to better reflect
the true underlying probabilities of the anomalies. Model calibration
was implemented from scikit-learn (Pedregosa et al., 2011) using Platt
scaling (Platt, 2000) and isotonic regression (Niculescu-Mizil and Car-
uana, 2005). The Brier Score (Winkler, 1994) and Log Loss (Vovk, 2015)
assess the agreement between predicted probabilities and actual classi-
fication results, with a lower score indicating better calibration. Both
metrics are used to evaluate the performance of a classification model.

3. Results

3.1. First stage - discovery

In the first stage and with the previous labels we discovered and
classified 22,816 prescriptions as anomalies. An example of the algo-
rithms’ abilities to distinguish anomalies is shown in a two-dimensional
representation in Fig. 2. The remaining contour plots can be found in
Supplement Fig. 1 and Supplement Fig. 2.

Out of a total of 1,994,170 cattle prescriptions, 1.14 % of them had
an anomaly. 22,599 anomalies were found in prescriptions with single
treatment and 217 anomalies were found in prescriptions with group
treatments. The production type dairy cows exhibited most anomalies
with 10,534 out of 1,138,935 prescriptions (0.92 %) (Table 1). The
lowest number of anomalies were found in beef cattle with 236 out of
18,094 (1.31 %) prescriptions. Cattle with no production type had the
highest proportion of anomalies with 7758 anomalies out of 379,995
(2.04 %) prescriptions. The lowest relative percentage of anomalies
were found in rearing calves with 572 out of 55782 (0.82 %) pre-
scriptions. Suckler calves had the second lowest proportion of anomalies
with 755 out of 74,629 (0.87 %) prescriptions.

The active substance class with most anomalies (Supplement
Table 1) was penicillin (11,093) followed by aminoglycosides (5560).
Relatively, prescriptions containing macrolides had the highest

G.-A. Schnidrig et al.
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percentage of anomalies with 799 out of 45,008 prescriptions (1.78 %).
The lowest number of anomalies with 5 out of 795 (0.63 %) was found in
Polymyxins which were also the active substance class with lowest
percentage.

The preparation categories with the highest number of anomalies
(Supplement Table 2) were injection preparations (13,830) and udder
injectors (4255). Relatively, the most anomalies (2.5 %) were found in
tablets, capsules and bolus followed by premix for medicated feeding
with 2.35 %. The lowest percentage of anomalies were found in dry cow
injectors (0.56 %) and in udder injectors for lactation (0.97 %).

3.2. Second stage - detection

In the second stage we test the models’ ability to detect anomalies on
20 % of unseen data, which serves as a proxy for future prescriptions.
For single treatment in cattle ST Random Forest achieved the highest
ROC-AUC score of 0.994 (95 % CI: 0.992, 0.995) (Table 2). The unsu-
pervised method with ST GMM also achieved the same score of 0.994
(95 % CI: 0.992, 0.995) (Supplement Table 4). The lowest ROC-AUC
score of 0.939 (95 % CI: 0.933, 0.992) was obtained by ST HBOS
(Supplement Table 4). ROC-AUC scores lack variance (0.993–0.999)
across all GT models expect for HBOS with a score of 0.964 (95 % CI:
0.933, 0.992).

The highest F1-Score, so the best trade-off between recall and pre-
cision, in single treatments in cattle was achieved by ST Random Forest
with 0.962 (95 % CI: 0.958, 0.966). ST HBOS and ST ECOD obtained the
lowest F1 scores of 0.848 (95 % CI: 0.840, 0.856) and 0.856 (95 % CI:
0.849, 0.863) (Supplement Table 4). The best F1-Score in group treat-
ments for cattle was obtained by GT XGBoost with a score of 0.993 (95 %
CI: 0.977, 1.000). The comparatively lowest trade-off between the pre-
cision and recall was achieved by GT ECOD and GT HBOS with an F1-
Score of 0.966 (95 % CI: 0.934, 0.993) and 0.956 (95 % CI: 0.917,

0.986). We did not observe any major deviations between MCC and F1-
Scores across both treatments and all models (Supplement Table 4).

3.2.1. Precision-recall curve
The precision-recall plot provides a representation of the trade-off

between precision and recall for each model. As shown in Fig. 3, the
x-axis signifies recall and the y-axis denotes precision across different
thresholds. Generally, all models in cattle ST show a high precision and
recall trade-off. The best performing model is ST Random Forest with an
average precision (AP) of 0.997. The lowest AP was obtained by ST
HBOS with 0.921. All curves for cattle group treatments show a nearly
perfect match and only GT ECOD obtained a slightly different AP of
0.996.

3.2.2. Post-hoc analysis
The mean absolute SHAP value measures the average expected

impact of each variable on the model output, considering all possible
combinations of other variable. The degree to which each variable
contributes towards the model’s prediction of an anomaly is shown in
Fig. 4 and Fig. 5. For ST Random Forest all four GAAD variables were the
most influential variables. Independent of group, purple data points
(which represent GAAD values near 0) in both beeswarm plots (Fig. 4
and Fig. 5) have all low SHAP values. For single treatments Penicillin
Procaine and Cefalexin were the most impactful active substances. The
most influential production type for ST Random Forest was cattle with
no production type. For GT XGBoost Doxycycline and Amoxicillin were
the most influential variables. The groups of GAAD ranked in 3rd to 6th
in their mean absolute SHAP value. Veal calves were the most important
production type in GT XGBoost.

3.2.3. Model calibration
In Supplement Fig. 3 and Supplement Table 7 it is shown that

Fig. 2. Contour plots visualize the anomaly decision across two dimensions. The contour lines on the plot represent decision boundaries of the respective algorithms;
IForest for the single treatments (ST) on the left and PCA for the group treatments (GT) on the right. The x-axis represents normalized GAAD (Given Amount per
Animal and Day) grouped by production type and preparation. The y-axis represents the normalized GAAD grouped by production type and active substance. The
color gradient represents the normalized anomaly score of each point. Darker color indicates a greater likelihood of being an outlier.

Table 2
Predictive performance on the unseen holdout set of the supervised models divided into single treatment (ST) and group treatments (GT). 95 % confidence intervals are
shown in parentheses.

Model ROC-AUC (95 % CI) Precision (95 % CI) Recall (95 % CI) F1-Score (95 % CI) MCC (95 % CI)

ST RandomForest 0.994 (0.992, 0.995) 0.938 (0.932, 0.944) 0.988 (0.985, 0.991) 0.962 (0.958, 0.966) 0.962 (0.958, 0.966)
ST XGBoost 0.991 (0.990, 0.993) 0.902 (0.894, 0.909) 0.984 (0.980, 0.987) 0.941 (0.936, 0.945) 0.941 (0.937, 0.946)
GT RandomForest 1.000 (1.000, 1.000) 0.972 (0.927, 1.000) 1.000 (1.000, 1.000) 0.986 (0.962, 1.000) 0.986 (0.962, 1.000)
GT XGBoost 1.000 (1.000, 1.000) 0.986 (0.955, 1.000) 1.000 (1.000, 1.000) 0.993 (0.977, 1.000) 0.993 (0.977, 1.000)
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applying calibration with isotonic regression slightly improved ST
Random Forests’ brier and log loss to 0.000343 (-0.0003) and 0.001232
(-0.0019). Isotonic regression also increased the precision of ST Random
Forest to 0.977 (+0.0391) and the F1-Score to 0.978 (+0.0149) while it
decreased the ROC-AUC to 0.989 (Supplement Table 7). For the GT
XGBoost we improved the brier and log loss to 0.00018 (-0.0013) and
0.00065 (-0.0336) respectively (Supplement Table 8). Isotonic regres-
sion increased the precision and the F1-Score to 0.986 (+0.0137) and to
0.993 (+0.0070).

4. Discussion

This study demonstrates that implementing the proposed two-staged
anomaly detection framework can identify novel anomalies as well as
reliably detect future outliers in data collected with the Swiss veterinary
antibiotic surveillance system. Introducing population scaling

transformations led to high F1-Scores on unseen data for single and
group treatments. Both supervised models showed high rates of preci-
sion and recall across different thresholds and treatment types. The
modified given amount per animal and day (GAAD) per preparation vari-
able was among the top contributing variables for the identification of
anomalies.

Similar to the Prescribed Daily Dose (PDD) (Merlo et al., 1996), the
given amount per animal and day (GAAD) considers the actual amounts of
prescribed medication rather than recommended doses. This variable
enables us to detect potential outliers or deviations from the actually
prescribed dosages seen in Swiss practices. Applying a logarithmic
transformation to GAAD also helps align the scale by compressing larger
values and the z-transformation standardizes the data by expressing
each data point in terms of its distance from the mean in standard de-
viations (Kumpulainen et al., 2009). Prescriptions exhibiting extreme
z-scores on any level are anticipated outliers that deviate considerably

Fig. 3. Precision-recall curves of each model divided into single treatment (ST) on the left and group treatments (GT) on the right. AP is the average prescrion under
the precision-recall cruve.

Fig. 4. The ten highest-contributing variables of ST Random Forest, determined through SHapley Additive Explanations (SHAP) values. On the left, a bar plot
displays the mean absolute SHAP-values per variable. On the right, a SHAP beeswarm plot is shown where each dot represents an observation. Positive SHAP values
indicate the change in the model’s prediction towards an anomaly. Color indicates the original value of the variable; red indicates a high value and blue a low value.
Variables are ranked according to the mean absolute SHAP values for all observations.
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from the group mean.
The algorithms for the detection (Stage 1) were carefully selected to

address the requirements of scaling to large datasets while maintaining
speed. They were chosen to represent various types of detection
methods, including linear model (PCA), probabilistic (GMM), probabi-
listic (ECOD), proximity-based HBOS, and ensemble-based Isolation
Forest. Other common algorithms such as KNN, OCSVM, and LOF were
initially considered but did not scale well with large amounts of data.
OCSVM notoriously struggles with large datasets (Qiao et al., 2023),
while KNN (Mucherino et al., 2009) and LOF (Breuniq et al., 2000),
being proximity-based algorithms, were not able to effectively capture
the distribution in the data. In the examples shown in Fig. 2 we observe
that IForest ST and GMM GT draw different decision boundaries.
However, we see in all plots (Supplement Fig. 1 and Supplement Fig. 2) a
lowered outlier probability around the center (0,0) and increased outlier
probability the further away the points are from the center. This scat-
tering shows that all selected algorithms draw the desired decision
boundary further away from the center. The combination of probabili-
ties and votes ensures the continuity of the anomaly scores while
allowing for a consensus-level evaluation. The results of the imple-
mented voting classifier presented a list and a ranking of potential
anomalies. This order enabled us, in collaboration with the experts, to
identify previously undetected anomalies and define anomaly thresh-
olds for each active substance, preparation, and production type
manually.

The category “cattle with none of the specified production types” had
the relative highest number of prescriptions with anomalies and was the
production type with the 2nd highest number of prescriptions. Imple-
mented as a residuary category, the frequent use of this group is indic-
ative of its use instead of the specified production types. We suspect that
veterinarians who do not care about entering the correct production
type are also more likely to make also other inputs in a careless way. In
contrast, in all specified production categories, the percentage of pre-
scriptions with anomalies was almost level (0,82–1.31). The product
category with the highest error rate was “tablets, capsules, and bolus”

where veterinarians presumably prescribed a whole pack containing
multiple e.g. tablets but just recorded a “One” as count, meaning one
tablet. This might be a handling error or a transfer error of their practice
software which unit they report (input variant 1). Although pre-
scriptions of the category “premix for medicated feeding” are almost
entirely entered directly in the IS ABV form (input variant 2 mandatory
for oral group treatments) and thus no transfer errors can occur, the
category has the 2nd highest percentage of anomalies. This is most likely
because it contains the most input fields and thus, if a veterinarian
makes a mistake in any of this fields, it can quickly falsify the GAAD of
this prescription. An example of this error is when a veterinarian pre-
scribes an entire premix for medicated feeding as a single treatment for
one animal. Both types of udder injectors had the least relative number
of anomalies given that data input, application and indication of this
preparation type is most straightforward. For injection preparations
veterinarians often did not state the appropriate number of animals
treated, which led to a very high GAAD. For the active ingredient classes
macrolides, especially Tulathromycin (2.3 %) and Tylosin (1.8 %)
preparations had the most anomalies.

Reasons for anomalies could either be the amount of antibiotics, the
duration of the treatment or the number of animals treated. With pre-
scription data alone we can state that their ratio differs substantially
from what is common, compared to other prescriptions and expert ex-
pectations. We and the experts at the FSVO suspect that a mistake made
by many veterinarians and veterinary nurses is to keep the number of
animals treated at one, albeit the actual number is higher. The default
setting for the number of animals treated in single treatments is one and
if unadjusted in the system could potentially lead to errors in the pre-
scription. Another possibility is that the anomalies are simple data entry
errors, which could be the result of inadequate staff training or simple
negligence of the veterinarian. Anomalies may also represent systematic
errors in data collection or transmission. However, in most cases, it is
neither possible nor feasible to identify the main reason for each
anomalous prescription from the data alone. Irrespective of the nature of
the anomaly, if it is sufficiently different from the Swiss average, the

Fig. 5. The ten highest-contributing variables of GT XGBoost, determined through SHapley Additive Explanations (SHAP) values. On the left, a bar plot displays the
mean absolute SHAP-values per variable. On the right, a SHAP beeswarm plot is shown where each dot represents an observation. Positive SHAP values indicate the
change in the model’s prediction towards an anomaly. Color indicates the original value of the variable; red indicates a high value and blue a low value. Variables are
ranked according to the mean absolute SHAP values for all observations.
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prescription should be flagged as an anomaly.
While the unsupervised method is great for discovery, the anomaly

cutoff (vote) is based on the contamination factor, which is an inherently
flawed concept for a planned live detection of anomalies in the IS ABV
prescription system and can be difficult to determine (Perini et al.,
2022). The number of incorrect prescriptions varies from year to year,
and relying on a fixed percentage and an unsupervised approach it is
likely to lead to under- or over-estimation of anomalies over time. To
address this, our approach incorporates a supervised step to ensure more
accurate and adaptive anomaly detection. Both supervised models (ST
Random Forest and ST XGBoost) demonstrate a clear advantage over the
unsupervised methods (Fig. 3). HBOS was the most sensitive to the
different thresholds of the Precision-Recall curves. No clear difference is
visible in the other algorithms for the Precision-Recall curves in group
treatments. It is important to note, that input variant 2 must be used to
send prescriptions of oral group therapies. Thus, over all input quality
seems much better when every input is checked and directly entered in
the IS ABV form. We find a strong difference in the separation between
anomalies of single treatments and the anomalies of group treatments,
which are much more distant and do not transition seamlessly (Fig. 2).
This clear data separation benefits the GT algorithms in detecting
anomalies and raises the question if such a machine learning approach is
even necessary for group treatments in cattle or if a simple benchmark
limit does the job.

In ST Random Forest we observe that the four most contributing
variables are all the GAAD groups (Fig. 4). The GAAD per preparation
had the most impact on ST Random Forest. Interestingly it ranked higher
in ST Random Forest and in GT XGBoost than GAAD per production type
and preparation. We would expect that the highest degree of informa-
tion (GAAD per production type and preparation) would provide the
most impact. GAAD per active substance type is a broader comparison of
active substances and its high impact suggests that the population
comparison with the different GAAD groups helps to detect anomalies.
After the GAAD groups, the categorical variable Penicillin-Procaine is
the 5th most important variable for ST Random Forest. Penicillin-
Procaine is the active substance with the most anomalies (7747). Cat-
tle with no production type and dairy cows are the most prevalent
production type in the single treatment. Their relatively larger sizes
seem to have high impact in SHAP variable contribution. In XGBoost the
GAAD groups were not the most important variables. Doxycycline and
Amoxicillin had the most prescriptions (96 and 58) with anomalies in
group treatments and had the highest impact on determining anomalies.
With the reduced number of prescriptions and anomalies in group
treatments, the categorical active substance seems to have more impact
on the determination of anomalies than the GAAD groups.

In our approach, we gave more weight to the minority class in
training, which biased the predictions towards the minority class
(Supplement Fig. 3). Even after isotonic calibration the ST Random
Forest has a bend towards the bottom right corner which indicates an
overestimation of risks in ST Random Forest (Van Calster et al., 2019).
For GT XGBoost we do not achieve a stable calibration as the curve has a
sigmoidal shape (Supplement Fig. 4). GT XGBoost is underconfident at
high probabilities and overconfident when predicting low probabilities.
A slight overestimation is the preferred state of the models because it
prioritizes the detection of true anomalies, even if this leads to more
false positives but emphasizes sensitivity over specificity.

Even though stage 1 delivers a more streamlined way of anomaly
annotation, it still requires a considerable amount of human resources
and time. We think that just relying on the unsupervised algorithms or
the subsequent voting classifier is not sufficient to reliably identify
anomalies in a prescription-based system. We reckon that our approach
provides a helpful structure and supplementary information for expert
labeling. Significant time savings will be achieved once the supervised
algorithms can be applied to the system on a regular basis. Our method
will be used for future prescriptions from 2024 and will allow the FSVO
to give veterinary practices rapid feedback on the quality of their

submissions, so that they can act accordingly.

5. Conclusion

Our approach is effective in detecting antibiotic prescriptions that
deviate significantly from expected patterns in the Swiss veterinary
population. By identifying outliers, we can pinpoint potential errors,
anomalies, or cases of inappropriate antibiotic use, enabling veterinar-
ians and practices to take measures to correct their inputs. The proposed
two-stage anomaly detection is a valuable and effective tool to prevent
future prescription errors in the Swiss veterinary antibiotic surveillance
system ISABV.
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Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer, J., Harrington, J.,
Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M.,
Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J.,
Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T.,
Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S.,
Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T.,
Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y.,
2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat.
Methods 17, 261–272. 〈https://doi.org/10.1038/s41592-019-0686-2〉.

Vovk, V., 2015. The fundamental nature of the log loss function. Lect. Notes Comput. Sci.
(Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma. ) 9300, 307–318.
https://doi.org/10.1007/978-3-319-23534-9_20.

Winkler, R.L., 1994. Evaluating probabilities: asymmetric scoring rules. Manag. Sci. 40,
1395–1405.

Zhang, E., Zhang, Y., 2009. Average precision. In: LIU, L., ÖZSU, M.T. (Eds.),
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