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A B S T R A C T

Accurate quantification of snow cover facilitates the prediction of snowmelt runoff, the assessment of freshwater
availability, and the analysis of Earth’s energy balance. Existing fractional snow cover (FSC) data, however, often
suffer from limitations such as spatial and temporal gaps, compromised accuracy, and coarse spatial resolution.
These limitations significantly hinder the ability to monitor snow cover dynamics effectively. To address these
formidable challenges, this study introduces a novel data fusion framework specifically designed to generate
high-resolution (1 km) daily FSC estimation across vast regions like North America, regardless of weather
conditions. It achieved this by effectively integrating the complementary spatiotemporal characteristics of both
coarse- and fine-resolution FSC data through a multi-stage processing pipeline. This pipeline incorporates
innovative strategies for bias correction, gap filling, and consideration of dynamic characteristics of snow cover,
ultimately leading to high accuracy and high spatiotemporal completeness in the fused FSC data. The accuracy of
the fused FSC data was thoroughly evaluated over the study period (September 2015 to May 2016), demon-
strating excellent consistency with independent datasets, including Landsat-derived FSC (total 24 scenes;
RMSE=6.8–18.9 %) and ground-based snow observations (14,350 stations). Notably, the fused data outperforms
the widely used Interactive Multi-sensor Snow and Ice Mapping System (IMS) daily snow cover extent data in
overall accuracy (0.92 vs. 0.91), F1_score (0.86 vs. 0.83), and Kappa coefficient (0.80 vs. 0.77). Furthermore, the
fused FSC data exhibits superior performance in accurately capturing the intricate daily snow cover dynamics
compared to IMS data, as confirmed by superior agreement with ground-based observations in four snow-cover
phenology metrics. In conclusion, the proposed data fusion framework offers a significant advancement in snow
cover monitoring by generating high-accuracy, spatiotemporally complete daily FSC maps that effectively cap-
ture the spatial and temporal variability of snow cover. These FSC datasets hold substantial value for climate
projections, hydrological studies, and water management at both global and regional scales.

1. Introduction

Accurate and repeated observations of snow cover are of utmost
importance for effective water resource management and reliable cli-
matic forecasting (Lettenmaier et al., 2015; Li et al., 2022; Qin et al.,
2020; Rittger et al., 2016; Shugar et al., 2021; Xiao et al., 2020). The
snowpack, as a vital reservoir of solid water, plays a critical role in
maintaining a balanced water supply for ecosystems and human society
(Barnett et al., 2005; Sturm, 2015). However, this delicate balance is

susceptible to disruptions arising from alterations in snow proportion
and snowmelt timing (Berghuijs et al., 2014). Seasonal snow cover
anomalies stand as one of the most prominent and unmistakable con-
sequences of global climate change, with far-reaching implications for
various sectors, particularly in basins heavily dependent on snowmelt
runoff, such as irrigated agriculture and food production (Musselman
et al., 2021; Qin et al., 2020). Amidst the backdrop of escalating water
demand and the occurrence of extremely high temperatures, accurate
forecasting of snowmelt runoff has become more crucial than ever. The
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recent drought conditions in western North America have further
highlighted the urgent demand to develop innovative approaches that
ensure continuous and accurate observations of snow cover under all
weather conditions (Hedrick et al., 2018).

Station observations and in-situ measurements have traditionally
been the primary methods for acquiring snowpack information. How-
ever, advanced remote sensing techniques have transformed satellite
remote sensing into a powerful alternative for providing large-scale
spatial snow cover observations (Dietz et al., 2012; Xiao et al., 2018).
Optical satellite sensors, including the Landsat series (Dozier, 1989;
Girona-Mata et al., 2019), Sentinel-2 series (Gascoin et al., 2019),
Moderate Resolution Imaging Spectroradiometer (MODIS) (Kuter et al.,
2018; Painter et al., 2009), Visible Infrared Imaging Radiometer Suite
(VIIRS) (Riggs et al., 2017; Rittger et al., 2020a), and Advanced Very
High Resolution Radiometer (AVHRR) (Hao et al., 2021; Zhou et al.,
2013), have been extensively used to monitor snow cover since the mid-
60 s and remain the primary data source for snow cover mapping
(Gafurov and Bárdossy, 2009). However, these optical satellite sensors
often lack snow cover information under overcast and dark conditions,
particularly in polar regions, restricting their ability to provide year-
round snow cover observations. Several approaches have been pro-
posed to address this limitation for cloud removal and data gap filling in
optical-based snow cover area products (e.g., Dozier et al., 2008; Huang
et al., 2018; Jing et al., 2022; Xing et al., 2022). For instance, Dozier
et al. (2008) introduced the space–time cube method to fill fractional
snow cover (FSC) product gaps by incorporating temporal and spatial
information and applying a set of rules to exclude clouds from MODIS
snow cover data (Gafurov and Bárdossy, 2009; López-Moreno et al.,
2020). Another approach, the Hidden Markov random field (HMRF)
algorithm, has been developed to generate a cloud-free binary snowmap
in basins (Huang et al., 2018). To obtain cloud-free FSC area data, Wang
et al. (2018) successfully replaced cloud pixels in the MODIS snow cover
data with FSC values from the geostationary satellite data and employed
a temporal interpolation method to handle any remaining cloudy pixels.
Aside from binary and fractional snow cover, Jing et al. (2022)
employed a spatiotemporal adaptive fusion method with an error
correction approach to produce cloud free MODIS Normalized Differ-
ence Snow Index (NDSI) data, a commonly used measure of snow cover
distribution. Additionally, Rittger et al. (2021) developed a downscaling
method that enhances the spatiotemporal resolution (daily, 30 m) for
estimating snow cover area by combining Landsat data and MODIS
product. Similarly, previous work has also employed the Enhanced
Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM)
method to fuse clear-sky NDSI data from MODIS-Landsat or Landsat-
Sentinel image pairs, achieving higher spatial resolution (Bousbaa
et al., 2022; Gao et al., 2022).

In contrast to optical data, passive microwave (PM) data offer a
distinct advantage in detecting large-scale snow cover distribution
under all weather conditions due to their lower atmospheric interfer-
ence. Microwave signals exhibit a heightened sensitivity to variations in
snow cover properties, enabling the retrieval of specific snow charac-
teristics using coarse-resolution PM brightness temperature data (Dietz
et al., 2012). Several studies have utilized this data to generate binary
snow cover maps (Grody and Basist, 1996; Liu et al., 2018; Xiao et al.,
2018). However, only a limited number of investigations have explored
the estimation of FSC from PM brightness temperature data (Xiao et al.,
2022a, 2021). Employing PM brightness temperature data to determine
snow cover areas poses substantial challenges and uncertainties. For
example, PM brightness temperature data may fail to detect thin or
patchy snow cover and misclassify non-snow scatterers like precipita-
tion, frozen ground, and cold desert areas (Foster et al., 2011; Grody and
Basist, 1996; Xiao et al., 2022a). Additionally, the coarse spatial reso-
lution of PM brightness temperature data restricts the applicability of
their derived products to regional or local-scale assessments.

To overcome the limitations of single-sensor data and provide fine-
resolution, spatially complete snow cover information in near real-

time, a collaborative data fusion approach becomes indispensable.
Numerous studies have successfully retrieved snow cover properties by
leveraging complementary information from optical and passive mi-
crowave sensors, highlighting the advantages of multi-sensor synergy
for snow cover mapping (Bergeron et al., 2014; Foster et al., 2011; Gao
et al., 2010; Romanov, 2017; Romanov et al., 2000). When cloud-free
optical images are available, researchers generally favor optical data-
derived products due to their superior spatial resolution, which instills
greater confidence in snow cover identification (Gao et al., 2010; Yang
et al., 2014). Hence, a common fusion method utilizes optical-based
snow cover information under clear-sky conditions and supplements it
with PM-based data during cloudy or dark periods (Foster et al., 2011;
Huang et al., 2016; Liang et al., 2008). For instance, geostationary op-
tical satellite data can be integrated with polar-orbiting microwave
satellite data for snow cover monitoring (Yang et al., 2014). PM-based
snow depth products can also be converted to binary snow cover and
used to fill the remaining gap pixels after applying a spatiotemporal
model (Hao et al., 2021). Deng et al. (2015) employed AMSR-E snow
water equivalent products to classify cloudy pixels as snow or snow-free
when mapping cloud-free FSC. These approaches undoubtedly expand
the snow-covered area depicted on the blended binary map.

While numerous studies have explored the integration of optical and
PM data for snow cover estimation, practical implementations in FSC
estimation of such fusion methods remain limited. This study focuses on
developing a novel data fusion framework for producing daily and
spatially complete FSC data at a 1 km resolution for the North American
region. The proposed framework leverages the complementary spatio-
temporal characteristics of both coarse- and fine-resolution FSC data. To
demonstrate the practical performance of the framework in FSC esti-
mation, we employed coarse-resolution and fine-resolution FSC datasets
from our previous works (Xiao et al., 2022a, 2022b). Section 2 provides
an overview of these datasets, details on the Landsat data, ground snow
measurements for validation, and the Interactive Multi-sensor Snow and
Ice Mapping System (IMS) used for comparison. Section 3 delves into the
processes involved in the proposed data fusion framework, including the
employed pipelines and evaluation measures used for FSC estimations
assessment. Section 4 presents a comprehensive analysis of the evalua-
tion results, highlighting the effectiveness of the proposed framework.
Section 5 discusses the uncertainties and limitations inherent to the data
fusion framework and its estimations of fused FSC.

2. Datasets

Table 1 provides a comprehensive overview of the datasets employed
in this study, including two primary sources of FSC data (derived from
optical and PM satellite imagery), land cover types, Landsat-derived
snow cover data, two types of ground observations for validation pur-
poses, and the Interactive Multi-sensor Snow and Ice Mapping System
(IMS) data for comparative analysis of the fused FSC results.

Table 1
Multisource data for input, validation, and comparison during the period from
September 2015 to May 2016.

Sources Data name Spatial/ temporal
resolution

Variable

Input data Passive microwave data-
based FSC (PM_FSC)

6.25 km/daily FSC

Optical data-based FSC
(MODIS_FSC)

500 m/daily

Auxiliary MCD12Q1 500 m/yearly Land cover
types

Validation 14,350 ground sites Point/daily Snow depth
3000 ground sites
Landsat 8 (OLI) based FSC 30 m FSC

Comparison IMS 1 km Snow cover
extent

X. Xiao et al.
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2.1. Coarse- and fine-resolution FSC data pairs

2.1.1. Coarse-resolution FSC data: Passive microwave data-based FSC
The coarse-resolution PM-based FSC data were derived from daily

PM brightness temperature data at three frequencies (19-, 37-, and 91-
GHz) for both horizontal and vertical polarization, enabling effective
capture of surface snow cover information under all weather conditions
(Xiao et al., 2022a). The PM brightness temperature data, provided at an
enhanced resolution by the National Snow and Ice Data Center (NSIDC)
(Brodzik et al., 2016), are accessible through the website https://nsidc.
org/data/NSIDC-0630/versions/1.

Savoie et al. (2009) noted that atmospheric effects can lead to an
underestimation of approximately 17 % in the snow cover area,
particularly when using high-frequency channels. Further, microwave
radiation can be influenced by complex terrain (Li et al., 2014) and
forest cover (Guglielmetti et al., 2007; Roy et al., 2012). To address these
challenges, we employed a radiative transfer model to isolate snowpack
signatures in satellite-observed brightness temperature, thereby miti-
gating the impacts of the atmosphere, topography, and forests. Subse-
quently, a machine learning method was utilized to develop an FSC
retrieval model based on the processed PM brightness temperature data
for North America. This model incorporated variations in soil properties
(moisture and temperature), land cover types, vegetation coverage,
geographical location, and additional snow-related variables to mini-
mize uncertainties in FSC estimations (Xiao et al., 2022a). The resulting
PM-based FSC estimation product, referred to as PM_FSC, has a resolu-
tion of 6.25 km and has undergone error reduction in non-snow scatters.
For more details, please refer to Xiao et al. (2022a).

2.1.2. Fine-resolution FSC data: Optical data-based FSC
In contrast to PM data, optical remote sensing images provide high-

resolution data for monitoring surface snow cover distribution. Previous
studies have shown that the standard MODIS FSC estimation algorithm,
based on snow cover products (MY/OD10A1), generally performs better
over non-vegetated areas but exhibits significant discrepancies in
forested areas (Hall and Riggs, 2007; Maurer et al., 2003; Parajka et al.,
2012). Snow cover in forested regions is consistently underestimated,
especially in dense forests and at high viewing angles (Rittger et al.,
2020b; Xin et al., 2012). To address this shortcoming, Xiao et al. (2022b)
developed an integrated FSC retrieval model based on the Extremely
Randomized Trees method, which enhances FSC estimation in
vegetation-covered areas using MODIS seven-band surface reflectance
data (500 m) and additional auxiliary data. This FSC inversion model
considerably reduces estimation errors and uncertainties associated
with varying viewing geometries and vegetation cover, generating FSC
products at 500 m spatial resolution over Norther America (referred to
as MODIS_FSC). The effectiveness of canopy adjustment in character-
izing ground-level snow distribution has been demonstrated. However,
it is crucial to recognize that canopy adjustment requires further vali-
dation and development of a robust function through additional in-situ
measurements and fine-resolution observations (Liu et al., 2008; Raleigh
et al., 2013; Rittger et al., 2020b; Xiao et al., 2022b). Consequently, this
analysis excludes MODIS_FSC estimations with significant errors and
uncertainties (i.e., pixel viewing angle exceeding 60◦).

2.2. Ground snow depth observations

Although there is limited spatial representation of ground-based
snow observations in coarse-spatial resolution imagery, in-situ observa-
tions remain the most authentic and reliable standard for validating
snow cover detection. This study gathered in-situ snow depth observa-
tions from 14,350 sites compiled by the Global Historical Climatology
Network-Daily, Version 3 (Menne et al., 2012) (https://www.nce-i.
noaa.gov/access/metadata/landingpage-/bin/iso?id = gov.noaa.ncdc:
C00861).

A comprehensive collection of snow depth observations from 14,350

sites was used to evaluate the snow cover mapping capability of various
snow cover area datasets. To specifically assess the accuracy of daily
continuous snow dynamics, a subset of approximately 3,000 sites was
selected from the initial set of 14,350 sites, ensuring they possessed
complete daily measurement records from September 2015 to May
2016. This subset was chosen to capture daily dynamic characteristics of
snow cover over time. Notably, during the study period, 12,083 out of
14,350 sites in the initial collection and 2,578 out of 3,000 sites in the
selected subset showed snow records (snow depth > 0 cm). This
observation highlights that a substantial portion of the stations recorded
snowfall during the study period. The presence of snow at these sites
reinforces the credibility and relevance of the validation process for our
study’s objectives.

2.3. Landsat OLI images

This study used Landsat images as reference snow cover observations
to assess the fused FSC estimations. Carefully selected 24 scenes of
Landsat 8 Level 1 T land surface reflectance data acquired during the
study period from September 2015 to May 2016 (Fig. 1 right) were
obtained from the United States Geological Survey (USGS). These scenes
underwent a comprehensive screening procedure to ensure minimal
cloud cover (<1%) and extensive fractional snow coverage over large
areas, adhering to established guidelines (Kuter et al., 2018; Wulder
et al., 2012; Xiao et al., 2022b). Landsat images were visually inspected
individually to exclude those with substantial areas of cloud cover or
snow-free conditions. Table A of the Appendix provides comprehensive
information about these 24 Landsat scenes. Binary snow cover maps (30
m) were generated using the SNOWMAP algorithm (Hall et al., 1995),
while a cloud mask was produced using the Fmask algorithm (Qiu et al.,
2019). Subsequently, by averaging the snow pixel counts within a 750-m
radius circle centered on each MODIS pixel, Landsat reference FSC maps
(referred to as LandsatFSC) were generated at a 500 m resolution
(Dobreva and Klein, 2011; Xiao et al., 2022b). For consistency, FSC
values were rescaled to a range of [0, 1].

2.4. IMS snow cover extent products

In this study, we utilized IMS snow cover extent products as a
reference to evaluate the effectiveness of our fused FSC estimations in
mapping daily snow cover. The IMS, developed by combining multi-
source remote sensing data (visible, infrared, and microwave spectra)
with other ancillary information, provides binary daily full-spatial
coverage snow cover extent maps for the Northern Hemisphere (Hel-
frich et al., 2007). Daily IMS data with three resolutions (1, 4, and 24
km) were acquired from the NSIDC website, spanning back to 1997. IMS
data has undergone extensive validation and has been extensively used
in various studies (Chen et al., 2012; Liu et al., 2018; Qiu et al., 2021),
consistently demonstrating high accuracy in snow cover classification
(>80%) for the continental United States. This study employed the 1 km
resolution IMS data from September 2015 to May 2016. The availability
of all relevant data primarily drove the selection of this specific study
period.

3. Methodology

3.1. Data fusion framework

Fig. 2 illustrates the workflow diagram of our proposed data fusion
framework. This framework addresses the challenge of generating
spatiotemporally continuous and fine-resolution FSC data (daily, 1 km)
across a continent. It achieves this by employing a multiple-step
approach. Given the impossibility of acquiring spatially complete and
continuously valid satellite observations over large continental areas,
the initial preprocessing is to address missing data in the original FSC
grid cells by implementing a spatiotemporal gap-filling method.

X. Xiao et al.
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Subsequently, a novel composited data fusionmethod is applied for each
1-km grid cell, incorporating information from both satellite FSC data
sources. Following with that, a post-processing method as additional
refinement step is applied to finally generate a spatiotemporally com-
plete FSC estimation map across the North America region. The effec-
tiveness of this framework in estimating snow cover area is evaluated
utilized both fine- (MODIS_FSC, 500 m) and coarse-resolution FSC
satellite-based data (PM_FSC, 6.25 km).

Initial preprocessing involved several steps for both MODIS_FSC and
PM_FSC data over the North American region. Firstly, MCD12Q1 data
was used to identify and eliminate water body pixels. Then, we cleanse
the invalid observation labels within both FSC satellite-based data,
including scanning strip, cloud, shadow, and polar night labels. Both
MODIS_FSC data and PM_FSC data exhibit significant data gaps. These
missing values limit the possibility of directly using these datasets within
any data fusion method to achieve spatially complete FSC data. There-
fore, the third is to implement the spatiotemporal neighborhood cube
method (see Section 3.2) for addressing these missing values in both
datasets without sacrificing accuracy. While this gap-filling process
effectively recovered missing values in PM_FSC data, a substantial pro-
portion of invalid pixels (>20 %) remained in the gap-filled MODIS_FSC
data (see Fig. A, Appendix).

To address potential uncertainties inherent in both FSC data, the
fourth pre-processing step was employed. Our analysis, along with
previous studies (Rittger et al., 2020b; Wang et al., 2021), revealed
substantial uncertainties for optical-based FSC values below 0.15.
Therefore, following Painter et al. (2009) that assigned all FSC values
below 0.15 as 0, we designed experiments to test the influence of this
uncertainties in MODIS_FSC on the fused FSC results (Section 4.1),
processing or not FSC values below 0.15. Subsequently, we resampled
the processed 500 m MODIS_FSC data to a 1 km spatial resolution
(MODIS_FSC_1km) using the aggregation method, which is consistent
with common practices in previous FSC studies (Czyzowska-Wisniewski
et al., 2015; Dobreva et al., 2011; Kuter et al., 2022; Xiao et al., 2022b).
Our analysis employed a 1 km resolution instead of 500 m resolution for
two key reasons: mitigating errors of MODIS_FSC data and data
compatibility with the resolution of IMS snow cover extent products
(binary; 1 km). Additionally, to ensure the implement with MOD-
IS_FSC_1km data for the following pixel-by-pixel data fusion, the 6.25

km PM_FSC data was resampled to 1 km spatial resolution using the
nearest neighbor resampling method (Long et al., 2019).

To mitigate potential inconsistencies between the two input images,
a straightforward local bias correction, which is a linear scaling method,
was employed using valid values from MODIS_FSC_1km to adjust the
systematic biases of the PM_FSC data (Eq. (1) (Long et al., 2020).
Building on Li and Long (2020) and Yu et al. (2023), who emphasized
the importance of reducing systematic bias between data sources for
obtaining accurate fusion outcomes, we opted for a 3*3 window of 6.25
km pixels for bias correction. This choice balances data fusion accuracy
and data processing efficiency, encompassing an area approximately
equivalent to 19*19 individual 1 km pixels. Equation (1) details the bias
correction method applied to the pixels (FSC(x, y)PM) of the coarse-
resolution image. This method utilizes the mean values (μ) of its all
corresponding neighboring pixels from both the coarse- (FSC

(
xi, yi

)

PM)
and fine-resolution (FSC

(
xi, yi

)

MODIS) images within the processing
window to obtain corrected the FSC value (FSC(x, y)́PM), resulting in
PM_FSC_1km. At the date of t, FSC

(
xi, yi, t

)
represents the FSC values of

neighboring pixels in both the coarse-resolution (PM_FSC, denoted by
PM subscript) and fine-resolution (MODIS_FSC, denoted by MODIS
subscript) data within the processing window (a 19*19 grids of 1 km
pixels centered on FSC(x, y, t)).

FSC(x, y, t)́PM = FSC(x, y, t)PM+ μ
(
FSC(xi, yi, t)MODIS

)
− μ

(
FSC(xi, yi, t)PM

)

(1)

In the data fusion stage, an advanced data fusion method (i.e.,
ESTARFM) was implemented to integrate spatiotemporal information
from both FSC datasets. However, its application in large-scale snow
cover studies faces two key limitations. Firstly, achieving complete
cloud-free input FSC data derived from optical satellite images across
whole North America region is practically impossible. Secondly, the
inherently dynamic and ephemeral nature of snowpack makes esti-
mating today’s snow properties using images captured from months
before or after unreliable, as pointed out by Gafurov and Bárdossy
(2009). To address these limitations, we first implemented the proposed
gap filling method (Section 3.2) to mitigate missing data in two input
FSC data caused by various factors (as described above). Secondly, we
employed a novel composited ESTARFMmethod. This method leverages

Fig. 1. A map showing the selected snow depth measurements sites (left: 14,350 sites for assessing snow cover mapping capability; right: 3,000 sites for analyzing
daily dynamic characteristics of snow cover) over North America and Landsat validation scenes (right).

X. Xiao et al.
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the strengths of ESTARFM by combining results from four separate runs.
Each run considers images within a 5-day window centered on the
predicted date tp (tp − 2, tp − 1, tp, tp + 1, tp + 2) (see the discussion in
section 5.3). Several studies have shown the effectiveness of leveraging
snow cover information from adjacent time steps (short-term) to recover
missing data (Gafurov and Bárdossy, 2009; Gao et al., 2010; Xiao et al,
2018). We initially employed image pairs of fine-resolution (F) and
coarse-resolution (C) from the nearest neighboring days

(
tp ± 1

)
with

ESTARFM to predict the fused FSC value. If a valid value cannot be
obtained in the previous step, we iteratively employed ESTARFM
method using three additional image pairs combinations: (Ctp − 1,Ftp − 1,Ctp ,
Ctp+2,Ftp+2), (Ctp − 2,Ftp − 2,Ctp ,Ctp+1,Ftp+1), and (Ctp − 2,Ftp − 2,Ctp ,Ctp+2,Ftp+2).
Processing these combinations are further depicted in Fig. 2 and Eq. (2).
By capitalizing ESTARFM’s inherent data fusion capabilities and incor-
porating information from a wider temporal window, our composited
method improves the accuracy and the reliability of the final fused FSC
results and fortifies the integrity of the fused product. In section 4.4, we
incorporated an analysis to offer a more granular understanding of how
our data fusion method progressively reduces data gaps.

F
(
tp
)
=

⋃tp − 1

m=tp − 2

⋃tp+2

n=tp+1
ESTARFM

(
Ctm , Ftm ,Ctp ,Ctn , Ftn

)
,m, n

= tp − 2, tp − 1, tp+1, tp+2 (2)

Transitioning to the post-processing stage, a series of post-processing
procedures was implemented on the fused FSC data derived from data
fusion to augment data completeness further. During this stage, we
applied the proposed spatiotemporal neighborhood cube method again,
but with both a 5 × 5 × 3 cube and a 5 × 5 × 5 cube, to further reduce
the proportion of data gaps in the Fused_FSC_1km data. However, in
some particular instances, the temporally expanded 5 × 5 × 5 cube may
not contain any valid pixels, rendering the spatiotemporal neighborhood
cube method ineffective. To address these rare cases, the PM_FSC_1km
data was used to fill the remaining data gaps, ultimately achieving a
spatiotemporal continuity FSC dataset. This data fusion framework en-
ables the generation of gapless, daily FSC data at 1 km resolution across
North American. The entire data processing pipeline was executed on a
2.40 GHz Intel Xeon server.

Fig. 2. Workflow diagram for generating spatiotemporally complete fractional snow cover (FSC) data at a 1 km spatial resolution.

X. Xiao et al.
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3.2. Spatiotemporal neighborhood cube for gap filling

A spatiotemporal information cube method was developed to miti-
gate the presence of data gaps in the FSC data referring to the work of
Huang et al. (2018) on binary snow cover. This gap filling method in-
tegrates snow cover area information from neighboring pixels across
both space and time dimensions. The weighted sum of the values and
distances of all pixels within the spatiotemporal neighborhood cube
determined the central invalid pixel’s value. Fig. 3a illustrates an
example of a 3 × 3 × 3 spatiotemporal neighborhood cube at time t,
comprising a given central pixel and 26 neighborhood pixels in a 3 × 3
spatial domain and a 3-day temporal domain (before the day (t − 1),
current day (t), after day (t + 1)). The calculation of the given central
pixel’s value within a 3 × 3 × 3 spatiotemporal neighborhood cube is
expressed as Eq. (3). In cases no valid pixels (0 ≤ FSC≤1) are available
when executing a 3× 3× 3 spatiotemporal neighborhood cube, the cube
is first expanded spatially to a 5 × 5 × 3 spatiotemporal neighborhood
cube to ensure adequate valid data coverage (Fig. 3b). If the 5 × 5 × 3
spatiotemporal neighborhood cube still lacks valid pixels, the cube is
further extended temporally to a 5 × 5 × 5 spatiotemporal neighbor-
hood cube to enhance valid data availability (Fig. 3c). Otherwise, the
given central pixel is assigned an invalid value.

FSCcenter =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑1

− 1

∑1

− 1

∑1

− 1

Dis(x, y, t) × FSC(x, y, t)
∑n

i=1Dis(x, y, t)
, for3× 3× 3cube

∑2

− 2

∑2

− 2

∑1

− 1

Dis(x, y, t) × FSC(x, y, t)
∑n

i=1Dis(x, y, t)
, for5× 5× 3cube

∑2

− 2

∑2

− 2

∑2

− 2

Dis(x, y, t) × FSC(x, y, t)
∑n

i=1Dis(x, y, t)
, for5× 5× 5cube

(3)

Dis(x, y, t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2 + kt2

√
(4)

The position of (x, y, t) in Eq. (3) corresponds to the relative position
with respect to the “central pixel” (Fig. 3); (x, y) denotes the spatial

location, while t represents the time. These coordinates take discrete
values relative to the “central pixel” (±2, ±1, and 0). FSC(x, y, t) deno-
ted the FSC value at the specific position (x, y, t). The spatiotemporal
weight assigned to each valid pixel is inversely proportional to its dis-
tance from the central pixel. Dis(x, y, t) represents the 3D Euclidean
distance between the “central pixel” and its neighborhood pixels. In Eq.
(4), k denotes the weight assigned to the temporal distance relative to
the spatial distance and was set to 3 according to Huang et al. (2018).

3.3. ESTARFM

The Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM) (Gao et al., 2006) is a well-established data fusion method
applicable to homogeneous and heterogeneous conditions. To further
enhance its predictive power in heterogeneous landscapes, Zhu et al.
(2010) developed the ESTARFM, a widely employed technique for
integrating diverse data sources to generate fine-resolution, highly ac-
curate estimations. Five available images is necessary for the ESTARFM
method, consisting of a coarse-resolution FSC image (Ctp ) at time tp, as
well as two pairs of FSC image consisting of fine-resolution (Ftm ) and
corresponding coarse-resolution (Ctm ) images, and fine-resolution (Ftn )
and corresponding coarse-resolution (Ctn ) images, captured at time tm
and time tn, respectively. ESTARFM assumes a linear relationship be-
tween the fine- and coarse-resolution image pairs at any given time. The
fine-resolution images serve as a baseline for determining the absolute
FSC value at time tp, whereas coarse-resolution images provide temporal
variation information of FSC. By employing a linear spectral mixing
model (Eq. (5), the fused FSC value at time tp can be predicted by using
two pairs of fine-resolution FSC data and coarse-resolution FSC data at
time tm and time tn. The calculation of the fine-resolution FSC value at

the central pixel (F
(
xw/2, yw/2, tp

)
) incorporates FSC information from

all similar pixels within the search window by considering both their
spatial weight (Wivi) and temporal weight (Tk), as detailed in Eq. (6).
Fig. B provides a visual representation of this entire calculation process
for the central pixel’s FSC value. To simplify the ESTARFM method, Eq.

Fig. 3. The spatiotemporal cubic neighborhood schematic. t denotes time; (a) default 3 × 3 × 3 spatiotemporal cube; (b) spatially extended 5 × 5 × 3 spatiotemporal
cube; (c) spatially and temporally extend 5 × 5 × 5 spatiotemporal cube.

X. Xiao et al.



ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 419–441

425

(5) and Eq. (6) can be condensed into Eq. (7), which takes as inputting
five images captured at times tm, tp, and tn (i.e., Ctm ,Ftm ,Ctp ,Ctn ,andFtn ).

F
(
xw/2, yw/2, tp

)
= Tm × Fm

(
xw/2, yw/2, tp

)
+Tn × Fn

(
xw/2, yw/2, tp

)
(5)

Fk
(
xw/2, yw/2, tp

)
= F

(
xw/2, yw/2, tk

)
+

∑N

i=1
Wivi

×
(
C
(
xi, yi, tp

)
− C(xi, yi, tk)

)
, (k = m, n) (6)

F
(
tp
)
= ESTARFM

(
Ctm , Ftm ,Ctp ,Ctn , Ftn

)
(7)

where F and C represent the FSC data at fine- and coarse- resolutions,
respectively. The central pixel within the search window is denoted as
(
xw/2, yw/2

)
, where w indicates the window size. N represents the

number of similar pixels, and
(
xi, yi

)
represents their respective location.

The similar pixels were identified within the searching window (See Eq.
(8) based on the standard deviation of FSC values (σ) and the land cover
classes (b), which was set as 4 classes based on our previous study (Xiao
et al., 2021). The conversion factor vi of similar pixel i is derived by
regressing the fine-resolution FSC value against the corresponding
coarse-resolution FSC values of the similar pixels falling within the same
coarse-resolution pixel. Weight Wi describes the contribution of similar

pixel i to the central pixel’s FSC value
(
xw/2, yw/2

)
. It is determined by

considering the relative location of the similar pixel i to the central pixel
and the snow cover distribution similarity between fine-resolution FSC
(Fk) and coarse-resolution FSC (Ck) values (Eqs. (9)–(12). The temporal
weights Tk (Eq. (13) are calculated by measuring the magnitude of
changes in the coarse-resolution FSC (Ck) between time tk (k =m, n) and
the prediction time tp. For more detailed this calculation procedure
explanation and method description, please refer to Zhu et al. (2010).
⃒
⃒
⃒F(xi, yi, tk) − F

(
xw/2, yw/2, tk

) ⃒
⃒
⃒ ≤ 2σ/b (8)

Wi = (1/Di)/
∑N

i=1
(1/Di) (9)

Di = (1 − Ri) × di (10)

Ri =
E[(Fi − E(Fi) )(Ci − E(Ci) ) ]

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Fi)

√
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(Ci)

√ (11)

di = 1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xw/2 − xi

)2
+
(
yw/2 − yi

)2
√

/(w/2) (12)

Tk =
1/

⃒
⃒
⃒
∑w

j=1
∑w

l=1C
(
xj, yl, tk

)
−
∑w

j=1
∑w

l=1C
(
xj, yl, tp

) ⃒⃒
⃒

∑
k=m,n

(
1/

⃒
⃒
⃒
∑w

j=1
∑w

l=1C
(
xj, yl, tk

)
−
∑w

j=1
∑w

l=1C
(
xj, yl, tp

) ⃒⃒
⃒

) (13)

The ESTARFM method was originally designed for surface reflec-
tance data fusion of satellite imagery with different resolutions. How-
ever, its principles, such as the assumed linear relationship between fine
and coarse resolution data, similarity pixel identification thresholds, and
calculation of spatial and temporal weights, hold applicability for
broader data fusion tasks. Notably, the ESTARFM has demonstrated
success in data fusion tasks involving variable with gradual temporal
changes, such as surface temperature, water vapor, soil moisture,
vegetation index (Normalized Difference Vegetation Index, NDVI), and
snow index (NDSI) (Bousbaa et al., 2022; Kong et al., 2021; Li and Long,
2020; Long et al., 2020, 2019; Nietupski et al., 2021; Yu et al., 2023; Zhu
et al., 2010). These variables exhibit smooth and continuous variations
over time, aligning with the core assumption of the ESTARFM method.

However, FSC variable exhibits inherent variability due to abrupt
changes caused by snowfall events or rapid snowmelt. This character-
istic raises concerns about the suitability of the ESTARFM method for
generating high-resolution and spatiotemporally complete FSC data.

The capability of ESTARFM to handle this variability of FSC remains
under investigation. Several limitations hinder the applications of
ESTARFM method for sub-pixel snow cover area estimation, especially
across vast regions. Firstly, systematic biases between data sources can
be potentially introduced by differences in retrieval algorithms, obser-
vation sources (e.g., sensor types), and observation geometry.
ESTARFM’s prediction accuracy heavily relies on the quality and
comparability of the coarse- and fine-resolution datasets. Secondly,
spatial gaps in input data (either coarse- or fine-resolution data) can lead
to missing values in the fused product. This has limited previous appli-
cations to smaller or mid-latitude regions with better data availability.
Finally, unique snow characteristics present distinct interpretations for
zero values (snow-free) and non-zeros values (snow-covered), unlike the
prior predictor variables typically used with ESTARFM. Additionally,
the dynamic and ephemeral nature of snow cover makes using data from
months before or after highly unreliable for estimating current snow
properties. Consequently, addressing these challenges become crucial
for successfully applying the ESTARFM method to map snow cover area
across large regions.

Hence, our primary objective is to adapt the ESTARFM algorithm to
better capture spatiotemporal dynamics of snow cover and to generate
high-resolution, daily FSCmapping across vast areas. To overcome these
limitations and enhance fusion accuracy, we implemented the following
strategies: 1) We employ Eq. (1) to adjust systematic biases within
coarse-resolution input data using corresponding fine-resolution input
data within each processing window. This ensures uncertainty consis-
tency of input data and minimizes errors in the final fused FSC values
(refer to Eq. (1). 2) To address data gaps, a spatiotemporal neighborhood
gap-filling method (detailed in Section 3.2) is used to reconstruct
missing information in both coarse- and fine-resolution input images.
Moreover, a novel composite ESTARFM method (illustrated by Eq. (2)
strengthens the integrity of the fused FSC product. 3) To minimize errors
arising from input data selection and account for rapid snow cover
changes, we incorporate snow cover information from adjacent days (±2
days) into data fusion process (see Eq. (2), rather than relying on data
from distant timepoints. This study presents a groundbreaking data
fusion framework by pioneering the use of a modified ESTARFM algo-
rithm for both spatial and temporal fusion of FSC data. Our framework
tackles the specific challenges associated with applying ESTARFM to
snow cover mapping, enabling the generation of spatially and tempo-
rally complete FSC data for North America. Section 5.3 delves deeper
into the application of ESTARFM algorithm in snow cover study.

3.4. Evaluation of fractional snow cover results

3.4.1. Statistical metrics for evaluating the fractional and binary values
To evaluate the fused FSC estimations, we utilized Landsat reference

FSC and employed the correlation coefficient (R), mean absolute error
(MAE), and root-mean-square-error (RMSE) as statistical metrics (Xiao
et al., 2021). These three metrics were also used to evaluate the ability of
snow cover products to capture snow cover evolution when using snow
cover-phenology metrics (see Section 3.6.2) throughout the entire snow
cover season.

In another evaluation, to establish a direct comparison between the
FSC and the snow depth observations, both snow depth values and FSC
values were converted into binary values, where the snow depth
threshold of 2 cm and the FSC threshold of 0.3 were used to binarize a
value as either snow-covered (1) or snow-free (0) (Xiao et al., 2021),
respectively. Specifically, the description can be formulized by SC=1 if
FSC≥0.3 or snow depth ≥ 2 cm. The binarized snow cover results were
evaluated using six accuracy metrics (Xiao et al., 2021): overall accuracy
(OA), precision, recall, specificity, F1_score, and Cohen’s kappa coeffi-
cient (Cristea et al., 2017). The optimal values for OA, F1_score, and
Kappa were 1, with 0 representing the worst performance.
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3.4.2. Snow-cover phenology metrics for characterizing daily snow
dynamics

The evaluation and validation conducted in Section 3.4.1 focused on
the overall performance without considering the daily dynamic char-
acteristics of snowpacks. However, this study produces the daily FSC
data with spatially complete snow cover distribution information. There
is a lack of fine-resolution continuous snow observations apart from
ground-based snow depth measurements. To comprehensively assess the
daily dynamic performance of daily snow cover data, i.e., the fused FSC
data and IMS snow cover extent product, this section employs a novel
evaluation method using snow-cover phenology metrics (Fig. 4).
Ground-based snow depth daily observations from 3000 sites served as a
reference benchmark for these metrics.

Fig. 4 provides a visual depiction of the snow-cover phenology
metrics definition employed in this study, which includes snow cover
duration, snow onset date, snow end date, and snow cover days (Chen
et al., 2015; Klein et al., 2016). In this context, a snow cover year was
defined as the period from September of a given year to June of the
following (Fig. 4). The snow onset date was identified as the first day of
the first five consecutive days period with snow cover. Conversely, the
snow end date was determined as the first day after the last five
consecutive days period without snow cover. Furthermore, the snow
cover duration represents the number of days between the onset and end
dates of snow cover. The total number of snow days from the snow onset
date to the snow end date was defined as snow cover days.

4. Results

4.1. Accuracy evaluation of the fused fractional snow cover

The selected Landsat-FSC derived data (referred to as LandsatFSC)
under clear-sky conditions were employed to assess the performance of
the fused FSC (FusedFSC) and the fine-resolution input data (i.e.,
MODIS_FSC_1km) at a 1 km spatial resolution. It should be noted that
the MODIS_FSC_1km data is derived from the original MODIS_FSC (500
m) data through a multi-step process. Evaluation results using nine of 24
Landsat scenes are presented in this section (Table 2 and Figs. 5 and 6),
while the remaining evaluation results for 15 scenes are provided in the
Appendix (Table B and Fig. C).

As input data of the data fusion model, MODIS_FSC_1km data
demonstrate strong performance in FSC estimation, exhibiting high
correlation with LandsatFSC (R=0.64–0.92) and low errors
(MAE=8.7–16.7 %, RMSE=9.9–18.9 %), as depicted in Fig. 6. The
overall performance of MODIS_FSC_1km is characterized by low errors
(MAE=12.6 %, RMSE=15.1 %; Table 2). These evaluation results

confirm that the input data (MODIS_FSC_1km) exhibit reliable overall
accuracy with low errors with reference to LandsatFSC. By employing
two input FSC datasets, the daily continuous FusedFSC was generated
through the proposed data fusion framework. Evaluation results of
FusedFSC data on nine Landsat scenes (Table 2 and Fig. 5) reveal a
comparable accuracy to MODIS_FSC_1km, with high correlation
(R=0.62–0.94) and low errors (MAE=8.5–15.0 %, RMSE=9.8–17.0 %).
Further assessment of 15 Landsat scenes further underscores the supe-
rior performance of FusedFSC data in estimating FSC, with low bias
(RMSE=6.8–18.9 %; Table B1 in the Appendix). Cases of comparisons
between MODIS_FSC_1km and FusedFSC on nine scenes (Table 2 and
Figs. 5–6) illustrate the slightly improved accuracy of FusedFSC in
capturing spatial variation in FSC compared to MODIS_FSC_1km. Eval-
uation conducted on 24 Landsat scenes demonstrates the effectiveness of
the proposed data fusion framework in generating daily continuous FSC
estimates with high accuracy under clear-sky conditions.

Our analysis compares FusedFSC and MODIS_FSC_1km data and
finds that they exhibited comparable performance in FSC estimation.
However, studies by Rittger et al. (2020b) and Wang et al. (2021) sug-
gest that estimation errors tend to be higher for low FSC values,
particularly those below 0.15. Therefore, we investigated the impact of

Fig. 4. Diagram of snow-cover phenology metrics, spanning from September of a given year to June of the following year, including snow cover duration, snow onset
date, snow end date, and snow cover days.

Table 2
Summary of accuracy metrics for the fused fractional snow cover data
(FusedFSC) and the fine-resolution input data (MODIS_FSC_1km) using the nine
Landsat scenes FSC data as the reference data. (a)-(i) denote the ID of Landsat
scenes (cf. Table A in the Appendix).

ID of Landsat scene Data name R MAE RMSE

All nine scenes FusedFSC 0.91 11.6 % 14.1 %
MODIS_FSC_1km 0.91 12.6 % 15.1 %

(a) FusedFSC 0.73 15.0 % 17.3 %
MODIS_FSC_1km 0.71 16.7 % 18.9 %

(b) FusedFSC 0.94 9.8 % 13.2 %
MODIS_FSC_1km 0.92 11.9 % 15.3 %

(c) FusedFSC 0.93 13.3 % 17.0 %
MODIS_FSC_1km 0.92 14.8 % 18.3 %

(d) FusedFSC 0.91 12.4 % 13.9 %
MODIS_FSC_1km 0.90 13.5 % 15.0 %

(e) FusedFSC 0.91 13.7 % 15.9 %
MODIS_FSC_1km 0.91 13.5 % 15.8 %

(f) FusedFSC 0.87 13.5 % 15.9 %
MODIS_FSC_1km 0.85 14.8 % 16.9 %

(g) FusedFSC 0.71 8.5 % 9.8 %
MODIS_FSC_1km 0.71 8.7 % 9.9 %

(h) FusedFSC 0.62 9.5 % 11.0 %
MODIS_FSC_1km 0.64 9.7 % 11.0 %

(i) FusedFSC 0.88 9.7 % 11.8 %
MODIS_FSC_1km 0.86 10.9 % 13.0 %
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processing or not FSC values below 0.15 assigned as 0 on FusedFSC data.
Three Landsat scenes with varying degrees of snow cover fraction (low,
moderate, and high) were selected for the analysis (Fig. 7). Table 3 and
Fig. 8 present the results of comparing FusedFSC data and LandsatFSC
data.

The first to third rows of Fig. 7 display the snow cover distribution as
measured by LandsatFSC, MODIS_FSC, and FusedFSC, respectively. The
last row describes the error of FusedFSC compared to LandsatFSC, where
green and purple represent positive and negative biases, respectively.
Our analysis revealed that overestimation pixels are predominantly
located in areas with lower FSC (blue), while underestimation pixels are
consistent with the presence of higher FSC (red). When FSC values below
0.15 in MODIS_FSC data were processed by assigning them to 0,
FusedFSC data exhibits lower errors (Table 3; RMSE: 16.0 % vs. 15.3 %,
15.4 % vs. 15.0 %). Moreover, the spatial distribution of snow cover in
FusedFSC more closely resembled that of LandsatFSC data. Fig. 8 further
illustrates the difference between processing and not processing FSC
values below 0.15 for MODIS_FSC and FusedFSC. The impact of pro-
cessing low FSC values was pronounced in the Landsat scene with a
higher proportion of patch snow (Scene ID: 03303220160122; Table 3;
first column of Fig. 8). In contrast, the Landsat scene with relatively few
low FSC values (Scene ID: 07701320160415) showed minimal changes

in the fused result when processing or not processing these values (third
column of Fig. 8; RMSE: 9.9 % vs. 9.9 %; MAE: 8.7 % vs. 8.7 %). These
findings suggest that processing FSC values below 0.15 contributes to
improved consistency and robustness of the FusedFSC estimation. By
removing these potential erroneous values, the data fusion framework is
better able to capture the true spatial distribution of snow cover and
provide more accurate estimates of FSC.

4.2. Validation analysis based on ground-based observations

4.2.1. Snow cover mapping capability
While the evaluation and analysis of FusedFSC data primarily rely on

clear-sky Landsat imagery, ground-based snow depth observations offer
valuable insights into surface snow cover distribution under diverse
weather conditions. Therefore, we employed a total of 1,835,823 snow
depth observational records from 14,350 sites collected between
September 2015 and May 2016 to assess the performance of FusedFSC
data and IMS snow cover extent products. Table 4 and Fig. 9 present the
binarized snow validation results in terms of accuracy metrics for 14
land cover types classified according to the MOD12Q1 Annual Interna-
tional Geosphere-Biosphere Programme (IGBP) classification scheme.
Due to the limited availability of ground observation records, accuracy

Fig. 5. Scatter plot of Landsat reference fractional snow cover (x-axis) versus the fused fractional snow cover (FusedFSC, y-axis) for the nine scenes (cf. Fig. C in the
Appendix and Table 3), with a 1:1 line shown. (a)-(i) denote the ID of Landsat scenes (cf. Table A in the Appendix). FSC is a unitless variable.
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metrics for the broadleaf evergreen forest and permanent snow ice
classes are not included.

The OA and Kappa coefficient values for the binarized FusedFSC
range from 0.84 to 0.98 and 0.68 to 0.88, respectively, while those for
IMS data span from 0.86 to 0.96 and 0.70 to 0.82. As evident from
Table 4 and Fig. 9, the binarized FusedFSC demonstrates slightly supe-
rior accuracy, with an OA of 0.92 compared to 0.91 for IMS. This
enhanced accuracy was corroborated by a higher Kappa coefficient of
0.80 for FusedFSC, compared to 0.70 for IMS. Moreover, the binarized
FusedFSC data exhibit lower commission errors (CE) and omission errors
(OE), with values of 0.19 and 0.10, respectively, compared to 0.21 and
0.12 for IMS products. In terms of snow cover mapping during the period
from 2015 to 2016, IMS data surpassed FusedFSC only for evergreen
needleleaf forest types, with higher OA (0.86 for IMS vs. 0.84 for
FusedFSC) and Kappa (0.71 for IMS vs. 0.68 for FusedFSC). Overall, the
binarized FusedFSC consistently outperformed IMS snow cover products
for most land cover types in accurately identifying snow cover.

4.2.2. Daily dynamic characteristic of snow cover using snow-cover
phenology metrics

The FusedFSC and IMS data provide comprehensive and continuous
daily snow cover information. While the preceding section examined the

spatial accuracy of these datasets, this section employed ground-based
snow depth measurements from 3,000 continuous daily observation
sites to assess the reliability of these two products in characterizing the
temporal dynamics of snow cover over a daily time series. Four snow-
cover phenology metrics (Fig. 4) were calculated within a snow cover
year for the ground-based measurements from 3,000 sites, FusedFSC
data, and IMS products. Figs. 10 and 11 depict the error distributions
and associated summary accuracies for these four snow-cover phenology
metrics, comparing FusedFSC and IMS data against a reference bench-
mark established using ground-based phenology metrics. The analysis
revealed that the error distributions of the binarized FusedFSC data were
relatively concentrated near zero (Fig. 10), indicating high precision.
Additionally, FusedFSC data consistently demonstrated lower errors
(RMSE and MAE) and higher correlation (R) for four phenology metrics
compared to IMS data (Fig. 11). Among the four metrics (Fig. 10), the
error density of snow onset date was found to be highest around zero,
suggesting both daily snow cover products were highly accurate in
describing the onset of snow cover. This observation is further supported
by the RMSE values for snow onset date, snow end date, snow cover
duration, and snow cover days (Fig. 11). For FusedFSC, the RMSE values
are 16.2, 17.3, 24.9, and 18.8 days, respectively, compared to 16.7,
21.2, 29.8, and 25.2 days for IMS data. Based on this comprehensive

Fig. 6. Scatter plot of Landsat reference fractional snow cover (x-axis) versus the MODIS_FSC_1km fractional snow cover (y-axis) for the nine scenes (cf. Fig. C in the
Appendix and Table 3), with a 1:1 line shown as well. (a)-(i) denote the ID of Landsat scenes (cf. Table A in the Appendix). FSC is a unitless variable.
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assessment, it is evident that the binarized FusedFSC data provide a
more accurate and consistent representation of daily snow cover dy-
namics compared to IMS data, closely aligning with ground-based
observations.

4.3. Spatiotemporal distribution of the fused fractional snow cover across
North America

We conducted a comparative analysis of the spatial performance
between MODIS_FSC_1km and FusedFSC at the fusion unit (1 km) in
three Landsat scene regions (Fig. 12) and across North America (Fig. 13).
The comparison dates were chosen on the 15th of every month from
September 2015 to May 2016. Despite incorporating a gap-filling
method (Section 3.2), MODIS_FSC_1km snow cover maps in Figs. 12
and 13 still displayed a considerable number of no-data pixels (>30 % of
the entire study area) on most days, hindering spatiotemporal snow
cover analysis. Conversely, FusedFSC in Figs. 12 and 13 present com-
plete spatial features and accurately capture the distribution of snow
cover. Moreover, FusedFSC convincingly aligns with the spatial pattern
of MODIS_FSC_1km within each Landsat scene region under clear-sky
conditions, indicating the effectiveness of the proposed data fusion
framework in estimating FSC. Fig. 14 further depicts the data integrity
percentage of FusedFSC data, illustrating the contributions of the data
fusion framework, encompassing various methods, to achieve spatial
completeness. The results clearly revealed that the composited

Fig. 7. The influence analysis of MODIS_FSC_1km accuracy on the fused fractional snow cover (referred to as FusedFSC) compared to three LandsatFSC scenes. In this
case, the values of MODIS_FSC below 0.15 were assigned as 0.

Table 3
Summary of accuracy metrics demonstrating the influence of MODIS_FSC ac-
curacy on the fused FSC against the Landsat reference FSC for three scenes. The
“Not processing” (NP) column denotes that the FSC values below 0.15 of the
fine-resolution input data (MODIS_FSC_1km) were not processed, while the
“Processing” (P) column denotes that these values were assigned as 0.

03,303,220,160,122 03,702,420,151,201 07,701,320,160,415

NP P NP P NP P

R 0.91 0.92 0.90 0.90 0.71 0.71
MAE 13.5 % 11.9 % 14.3 % 13.5 % 8.7 % 8.7 %
RMSE 16.0 % 15.3 % 15.4 % 15.0 % 9.9 % 9.9 %
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ESTARFM method, using five days of data, significantly contributes to
more than two-thirds (68.1 %) of the complete data. The remaining data
gaps (31.9 %) require a postprocessing approach for filling. In com-
parison to the ESTARFM method, the composited ESTARFM method,
with two additional days of data, effectively reduces the substantial
proportion of missing information by 10%. Based on our comprehensive

evaluation results, FusedFSC unequivocally demonstrates the remark-
able performance of the proposed data fusion framework in producing
spatially complete and temporally continuous FSC data across North
America.

Fig. 8. The difference with and without processing the values of MODIS_FSC_1km below 0.15 for MODIS_FSC_1km and the fused FSC (referred to as FusedFSC) in
three Landsat scenes (cf. Fig. 7). Negative values (depicted in blue) indicate that the results of the “Processing” approach are lower than those of the “Not processing”
approach, and vice versa. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Validation results for snow cover mapping capability of binarized snow cover derived from fused fractional snow cover (FusedFSC) data and the IMS snow cover extent
data. The evaluation of the snow cover mapping capability of FusedFSC and IMS data was conducted across 14 land cover types using a comprehensive dataset of
1,835,823 snow depth measurement records gathered from 14,350 ground observation sites. The number of ground snow depth records available for the evergreen
broadleaf forests type is limited and, therefore, not displayed in the table. The abbreviations ENF (evergreen needleleaf forests), NDF (deciduous needleleaf forests),
DBF (deciduous broadleaf forests), CS (closed shrublands), OS (open shrublands), PW (permanent wetlands), CNVM (cropland or natural vegetation mosaics), and UBL
(urban and built-up lands) are provided for reference.

Land cover types Data name OA Precision Recall Specificity F1_score Kappa

All samples FusedFSC 0.92 0.81 0.90 0.93 0.86 0.80
IMS 0.91 0.79 0.88 0.92 0.83 0.77

ENF FusedFSC 0.84 0.79 0.84 0.84 0.81 0.68
IMS 0.86 0.90 0.75 0.94 0.82 0.71

DNF FusedFSC 0.93 0.90 0.95 0.92 0.93 0.87
IMS 0.88 0.93 0.78 0.95 0.85 0.75

DBF FusedFSC 0.92 0.80 0.78 0.96 0.79 0.74
IMS 0.92 0.75 0.86 0.94 0.80 0.75

Mixed Forests FusedFSC 0.90 0.79 0.91 0.90 0.85 0.78
IMS 0.90 0.80 0.89 0.90 0.84 0.77

CS FusedFSC 0.86 0.72 0.91 0.83 0.81 0.70
IMS 0.87 0.83 0.77 0.92 0.79 0.70

OS FusedFSC 0.98 0.86 0.93 0.98 0.89 0.88
IMS 0.96 0.79 0.84 0.97 0.81 0.79

Woody savannas FusedFSC 0.93 0.85 0.92 0.93 0.89 0.83
IMS 0.91 0.84 0.88 0.93 0.86 0.80

Savannas FusedFSC 0.94 0.87 0.93 0.95 0.90 0.86
IMS 0.93 0.85 0.90 0.94 0.87 0.82

Grassland FusedFSC 0.93 0.85 0.91 0.93 0.88 0.83
IMS 0.90 0.80 0.88 0.91 0.84 0.77

PW FusedFSC 0.92 0.78 0.95 0.90 0.86 0.80
IMS 0.90 0.83 0.78 0.94 0.81 0.74

Croplands FusedFSC 0.93 0.74 0.92 0.93 0.82 0.78
IMS 0.91 0.69 0.92 0.91 0.79 0.73

UBL FusedFSC 0.92 0.73 0.88 0.93 0.80 0.75
IMS 0.91 0.69 0.86 0.92 0.76 0.71

CNVM FusedFSC 0.93 0.72 0.91 0.93 0.80 0.76
IMS 0.91 0.67 0.91 0.92 0.77 0.72

Barren FusedFSC 0.94 0.75 0.96 0.94 0.84 0.81
IMS 0.93 0.73 0.93 0.93 0.81 0.77
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5. Discussion

5.1. Uncertainties in the input fractional snow cover datasets

To leverage the strengths of both optical-based FSC data, charac-
terized by high spatial resolution, and PM-based FSC data, less suscep-
tible to clouds or atmosphere interference, we developed a data fusion
framework that effectively combines these two datasets, resulting in
spatially and temporally complete fused FSC estimates. However, some
errors have been observed in the fused FSC data (see Sections 4.1 and
4.2), which are potentially attributable to uncertainties in the input FSC
data. These uncertainties could potentially arise from 1) the temporal
offset of data acquisitions between the PM and MODIS Terra, 2) the
variations in reference data used for estimating FSC from PM andMODIS
data (Xiao et al., 2022a, 2022b), and 3) the inherent differences in FSC
retrieval algorithms employed by the respective satellite sensors. As
Chen et al. (2020) highlighted, uncertainties between coarse- and fine-
resolution input images can substantially impact the results obtained

through the data fusion method.
Specifically, when using optical remote sensing data, the obstruction

of tree canopies and the variation in the visible proportion of ground
snow under forests with viewing geometry contribute to inconsistencies
between observed FSC and actual snow cover in forested areas (Rittger
et al., 2020b). To address these limitations, previous studies have un-
dertaken excellent works in analyzing the influence of forest cover and
developing canopy correction methods (Kostadinov et al., 2019; Muhuri
et al., 2021; Raleigh et al., 2013; Rittger et al., 2020b; Stillinger et al.,
2023). Nonetheless, based on previous testing results (Xiao et al.,
2022b), the direct application of canopy correction methods may not
always yield the desired improvements under all combinations of
viewing geometrics and fractional vegetation cover conditions. There-
fore, the MODIS_FSC data used in this study excluded all cases exhibiting
dense vegetation coverage and large viewing zenith angles (>60◦).

Unlike optical-based FSC, passive microwave-based FSC data inver-
sion is influenced by various factors, including forest cover, atmospheric
conditions, and soil moisture, all of which can affect microwave

Fig. 9. Overview of accuracy metrics for validating snow cover product (FusedFSC and IMS) using ground snow depth measurements (cf. Table 4). The number of
ground snow depth records available for the evergreen broadleaf forests type is limited and, therefore, not displayed in the figure. The abbreviations ENF (evergreen
needleleaf forests), NDF (deciduous needleleaf forests), DBF (deciduous broadleaf forests), CS (closed shrublands), OS (open shrublands), PW (permanent wetlands),
CNVM (cropland or natural vegetation mosaics), and UBL (urban and built-up lands) are provided for reference.
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radiation signals (Khazaei et al., 2023; Qiu et al., 2021; Roy et al., 2012;
Shahroudi and Rossow, 2014; Xiao et al., 2022a). In PM_FSC data gen-
eration, Xiao et al. (2022a) utilized a series of empirical parameters to
characterize the propagation and attenuation of microwave radiation
(19-, 36-, and 91-GHz) in forested areas through a radiational transfer
model, accounting for atmospheric, forest, and topographic influence.
However, these empirical parameters possess inherent limitations,
resulting in high uncertainties in PM_FSC estimates due to the simplified
radiational transfer model (Langlois et al., 2011; Roy et al., 2012). The
scattering of microwave radiation caused by variations in soil moisture
further complicates the isolation of the snowpack signal (Schattan et al.,
2019; Shahroudi and Rossow, 2014). Therefore, Xiao et al. (2022a)
developed an FSC retrieval model using passive microwave brightness
temperature data, incorporating soil moisture variation information
provided by ERA5 reanalysis data.

Apart from the above discussion, the accuracy of FSC estimates
derived from optical and passive microwave data both rely on the var-
iations of surface land cover types. Hence, it is crucial for researchers to
account for this influence factor when developing a robust retrieval
model (Xiao et al., 2022a, 2022b). Additionally, for snow on glaciers,
conventional methods for snow cover mapping encounter challenges in

distinguishing between snow and ice on glaciers and on land, owing to
their similar spectral signature properties (Rastner et al., 2019). How-
ever, our previous and current studies have not explicitly considered this
distinction between snow and ice on glaciers, potentially resulting in
uncertainties in snow cover estimates.

5.2. Evaluation of the fused fractional snow cover

This study comprehensively evaluated the fused FSC estimates using
a substantial amount of ground-based snow depth data and Landsat
images encompassing diverse land cover types. Snow depth measure-
ments from in-situ observations are the only source capable of providing
daily dynamic observations that serve as a reference benchmark for
systematical evaluation. Assessing daily dynamic characteristics is
pivotal in evaluating retrieval results for temporally continuous data. In
contrast to the previous studies on FSC estimation (Czyzowska-Wis-
niewski et al., 2015; Dobreva and Klein, 2011; Kuter et al., 2022, 2018),
this study introduced an evaluation approach employing snow-cover
phenology metrics to assess the daily dynamic characteristics of snow
evolution in comparison to snow depth measurements. Our evaluation
of the period from September 2015 to May 2016 reveals that FusedFSC

Fig. 10. Violin plots illustrating the error distributions of four snow-cover phenology metrics — snow cover duration, snow onset date, snow end date, and snow
cover days — for the fused fractional snow cover data (FusedFSC) and IMS data, compared against snow depth observations from 3,000 sites. The median values of
the error distributions are denoted by white dots, while the gray boxes depict the interquartile range. Thin gray lines indicate the 5th and 95th percentiles. The unit of
measurement for all metrics is days.
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outperforms IMS snow cover extent data in terms of overall RMSE and R
(Figs. 13 and 14), demonstrating its superior ability to depict the daily
dynamic characteristics of snow cover. Furthermore, this study deviates
from previous studies that directly used IMS snow cover extent data to
analyze snow-cover phenology changes (Chen et al., 2015).

The evaluation datasets used faced some limitations owing to the
uneven spatial distribution, with the majority of validation data
concentrated in the American region and limited data available in
Canada. In the context of Landsat reference data, one filtering criterion
employed in this study was selecting scenes with cloud cover of less than
1 %, resulting in a significant reduction in the number of available
Landsat images. To address these limitations, further research could
incorporate additional data from other studies. Vionnet et al. (2021)
recently released a comprehensive snow water equivalent dataset
spanning a long-time series from 1928 to 2020, combining manual and
automated Canadian snowpack observations. Additionally, lidar-based
snow depth data have been extensively employed to monitor regional
snow cover distribution (Painter et al., 2016) and serve as evaluation
reference data (Kostadinov et al., 2019; Stillinger et al., 2023; Xiao et al.,
2024). These datasets represent a valuable addition to the snow cover
data pool, providing more ground snow cover observations across
Canada and various regional basins. Potential options for enhancing the
evaluation include allowing for a higher cloud cover percentage (>1%)
in Landsat scenes and incorporating some Sentinel-2 data. Nevertheless,
it is crucial to implement a transform function to harmonize the
reflectance values between Landsat and Sentinel-2 sensors, which can
help mitigate uncertainties when using these satellite data sources
(Claverie et al., 2018; Zhang et al., 2018).

5.3. Challenges in applying ESTARFM method

The ESTARFM method (Zhu et al., 2010) initially excels at down-
scaling MODIS surface reflectance and generating high spatiotemporal
continuity data. However, it requires spatially complete input data, lead
to missing values in the output if any gaps exist. Consequently, previous
ESTARFM applications have primarily focused on smaller regions due to
the difficulty of acquiring spatially complete imagery across vast areas
like North America (Li and Long, 2020; Long et al., 2020; Zhu et al.,
2010). Specifically, directly using the unprocessed MODIS_FSC data
(data integrity = 38.6 %; Fig. A panel c) with ESTARFM method would
result in the data integrity (percentage of pixels with valid values) of the
fused FSC data no more than 50% across North America. That highlights

the near practical impossibility of achieving complete cloud-free input
FSC data derived from optical satellite images over such a large region
using the traditional ESTARFM method. To overcome this limitation,
our solution is to integrate a novel spatiotemporal information cube
method and the composited ESTARFM method into the data fusion
framework (Fig. 2; Section 3.1). This framework mitigates the influence
of data gaps and enables the generation of spatiotemporally complete
FSC data across North America.

Previous ESTARFM applications typically employed a great time
interval (e.g., > 30 days or > 60 days) between reference days (day tm
and day tn in Eq.6) used for input data selection (Li and Long, 2020; Long
et al., 2020, 2019; Zhu et al., 2010). However, FSC data present unique
challenges. Unlike continuous and consistent predictor variables studied
in previous ESTARFM applications, FSC data can include both zero
values (snow-free) and non-zero values (snow-covered), with vastly
different interpretations. The inherently dynamic and ephemeral nature
of snow cover makes estimating current snow properties using data from
months before or after highly unreliable. Rapid snowmelt within a few
days can lead to significant errors in FSC estimation if snow-free infor-
mation is included (Gafurov and Bárdossy 2009; Li et al., 2023).
Therefore, established selection methods from previous studies are un-
suitable for snow cover applications. Conversely, shallow snow infor-
mation exhibits a strong correlation with snow cover information on
adjacent days (e.g.,± 2 day s or± 3 day s) (Xiao et al., 2020). To address
this, the composited ESTARFM method incorporates data from adjacent

± 2 days within the data fusion framework (Eq. (2) for generating the
fused FSC results.

6. Conclusion

This study presents a novel data fusion framework for estimating FSC
by effectively overcomes the limitations of traditional satellite based
FSC estimation. By leveraging the complementary strengths of coarse-
and fine-resolution FSC data, this proposed framework achieves the
generations of high-accuracy, spatial completeness, and temporally
continuous daily FSC products at a 1-km resolution across vast regions
like North America. The thoroughly evaluation demonstrates the
framework’s superior performance in estimating FSC. The fused FSC
data exhibits excellent agreement with independent data (24 scenes of
Landsat-based FSC; RMSE 6.8 %-18.9 %). Additionally, the fused FSC
data surpasses the mapping capabilities of IMS snow cover extent data,
evidenced through OA ranging from 0.84 to 0.98, F1_score ranging from
0.79 to 0.93, and Kappa coefficient ranging from 0.68 to 0.88.
Furthermore, the fused FSC data captures daily time-series dynamics of
snow cover with greater fidelity compared to the widely used IMS
products, as evidenced by snow-cover phenology metrics. These ad-
vancements hold significant value for environment applications. In
conclusion, the proposed data fusion framework has paved the way for
generating high-resolution (1-km), high-accuracy, and spatiotemporally
continuous daily FSC data for North America. Beyond North America,
the framework’s potential extends to global snow cover monitoring. Its
all-weather functionality and adaptability to utilize reanalysis data or
satellite products make it a versatile tool for generating consistent and
comprehensive for global snow cover datasets. These data hold signifi-
cant value for applications such as hydrological forecasting, climate
projections, and various environmental studies. This fosters a deeper
understanding of cryosphere processes and their role in the Earth
system.
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Fig. 12. Comparison of snow cover spatial distribution between MODIS_FSC_1km and FusedFSC results (1 km) on the 15th day of every month from September 2015
to May 2016. The MODIS_FSC_1km for three Landsat scene regions (path/row: 033032, 037024, and 077013) are displayed in the first, third, and fifth columns,
respectively. The FusedFSC results are displayed in the second, fourth, and sixth columns. The blank areas represent missing values due to various reasons.

X. Xiao et al.



ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 419–441

435

Fig. 13. Spatial distributions of snow cover (1 km) for FusedFSC data and MODIS_FSC_1km data across North America on the 15th day of every month from
September 2015 to May 2016. The dates are shown at the bottom of the subplots. The blank areas denote missing values due to various reasons.
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Appendix

Table A
The information from nine Landsat 8 OLI surface reflectance scenes was used for the evaluation of fractional snow cover estimates.

Landsat scene ID WRS-path/row Date Acquired ID in Figures. and Tables

03303120160106 033/031 January 6, 2016 (a)
03303220160122 033/032 January 12, 2016 (b)
03603520160111 036/035 January 11, 2016 (c)
03702420151201 037/024 December 1, 2015 (d)
07101720160421 071/017 April 21, 2016 (e)
07201620160412 072/016 April 12, 2016 (f)
07701320160415 077/013 April 15, 2016 (g)
07701420160415 077/014 April 15, 2016 (h)
07801320160422 078/013 April 22, 2016 (i)
01602320160506 016/023 May 6, 2016 (1)
02603020151204 026/030 December 4, 2015 (2)
03303220160122 033/032 January 22, 2016 (3)
03903320151113 039/033 November 13, 2015 (4)
04202020160410 042/020 April 10, 2016 (5)
04301420160519 043/014 May 19, 2016 (6)
04302520160401 043/025 April 1, 2016 (7)
04302720151125 043/027 November 25, 2015 (8)
04303320160316 043/033 March 16, 2016 (9)
05202220160331 052/022 March 31, 2016 (10)
06301520160312 063/015 March 12, 2016 (11)
06301720151004 063/017 October 4, 2015 (12)
07101320151012 071/013 October 12, 2015 (13)
07301820160318 073/018 March 18, 2016 (14)
07601320160424 076/013 April 24, 2016 (15)

Fig. 14. Data integrity percentage of FusedFSC data after employing three data processing steps. ESTARFM3days denotes the input data from only three consecutive
days

(
tp ± 1

)
. ESTARFM5days denotes the input data includes three additional image pairs combinations: (Ctp − 1,Ftp − 1,Ctp ,Ctp+2,Ftp+2), (Ctp − 2,Ftp − 2,Ctp ,Ctp+1,Ftp+1), and

(Ctp − 2, Ftp − 2,Ctp ,Ctp+2, Ftp+2).
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Table B
FusedFSC Summary of accuracy metrics for the fused fractional snow cover data (FusedFSC)
using 15 Landsat scenes FSC data as the reference data.

ID of Landsat scene R MAE RMSE

All scenes 0.96 8.3 % 10.2 %
01602320160506 0.81 5.6 % 8.9 %
02603020151204 0.97 2.9 % 6.8 %
03303220160122 0.92 9.7 % 13.6 %
03903320151113 0.96 5.5 % 10.3 %
04202020160410 0.95 8.2 % 11.2 %
04301420160519 0.80 7.7 % 9.4 %
04302520160401 0.91 12.5 % 15.9 %
04302720151125 0.85 14.1 % 18.9 %
04303320160316 0.98 3.4 % 7.4 %
05202220160331 0.90 11.7 % 15.7 %
06301520160312 0.68 12.8 % 14.8 %
06301720151004 0.97 8.0 % 11.9 %
07101320151012 0.91 11.4 % 15.0 %
07301820160318 0.97 8.0 % 9.7 %
07601320160424 0.93 9.7 % 11.5 %

Fig. A. Impact of applying gap-filling on MODIS_FSC Data (500 m). Panels (a) and (b) show original and gap-filled MODIS_FSC data (500 m; November 17, 2015),
respectively. Panel (c) displays data integrity percentages before and after gap-filling.

X. Xiao et al.



ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 419–441

438

Fig. B. Schematic diagram of the ESTARFM method for predicting fractional snow cover (FSC) value of the central pixel.
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Fig. C. Scatter plot of Landsat reference fractional snow cover (x-axis) versus the fused fractional snow cover (FusedFSC, y-axis) for the nine scenes, with a 1:1 line
shown. (1)-(15) denote the ID of Landsat scenes (cf. Table A in the Appendix). FSC is a unitless variable.
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