
Citation: Ramphal, Y.; Tegally, H.; San,

J.E.; Reichmuth, M.L.; Hofstra, M.;

Wilkinson, E.; Baxter, C.; CLIMADE

Consortium; de Oliveira, T.; Moir, M.

Understanding the Transmission

Dynamics of the Chikungunya Virus

in Africa. Pathogens 2024, 13, 605.

https://doi.org/10.3390/

pathogens13070605

Academic Editor: Lawrence S. Young

Received: 15 June 2024

Revised: 9 July 2024

Accepted: 16 July 2024

Published: 22 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Review

Understanding the Transmission Dynamics of the Chikungunya
Virus in Africa
Yajna Ramphal 1, Houriiyah Tegally 1, James Emmanuel San 2 , Martina Larissa Reichmuth 3, Marije Hofstra 1 ,
Eduan Wilkinson 1 , Cheryl Baxter 1 , CLIMADE Consortium †, Tulio de Oliveira 1,4,* and Monika Moir 1,*

1 Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking,
Stellenbosch University, Stellenbosch 7600, South Africa; 26700689@sun.ac.za (Y.R.);
houriiyah@sun.ac.za (H.T.); marijeh@sun.ac.za (M.H.); ewilkinson@sun.ac.za (E.W.); cbaxter@sun.ac.za (C.B.)

2 Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; sanemmanueljames@gmail.com
3 Institute of Social and Preventive Medicine (ISPM), University in Bern, 3012 Bern, Switzerland;

martina.reichmuth@unibe.ch
4 KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal,

Durban 4001, South Africa
* Correspondence: tulio@sun.ac.za (T.d.O.); monikam@sun.ac.za (M.M.)
† CLIMADE Consortium author list and affiliations in Supplementary Materials.

Abstract: The Chikungunya virus (CHIKV) poses a significant global public health concern, especially
in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks,
challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the
dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis.
Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data,
providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV
in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with
certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic
outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which
is markedly different from inferred transmission dynamics in East Africa, where the virus is often
introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage
from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement
between these two regions. Understanding the history and transmission dynamics of outbreaks is
crucial for effective public health planning. Despite advances in surveillance and research, diagnostic
and surveillance challenges persist. This review and secondary analysis highlight the importance
of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and
improve public health outcomes.

Keywords: Chikungunya virus; Africa; transmission dynamics; epidemiology; genomic distribution;
genomic surveillance

1. Introduction

The Chikungunya virus (CHIKV) is an arthritogenic, enveloped, positive-strand
RNA Alphavirus, belonging to the family Togaviridae, that is responsible for the febrile
Chikungunya illness. Clinical studies from the eighteenth and nineteenth centuries, along
with molecular clock analyses of contemporary CHIKV genomes, suggest that this virus
existed for 300 to 500 years before the first isolation in 1953 [1,2]. The virus is globally
widespread in tropical and subtropical regions and is transmitted by Aedes mosquito
species, with Ae. albopictus and Ae. aegypti being the primary vectors for transmitting
CHIKV to humans [3–6]. CHIKV is classified into four lineages: East–Central–South Africa
(ECSA), Asian, Indian Ocean lineage (IOL), and West African (WA). Recent investigations
have shown that the distribution of Ae. albopictus has expanded to locations with lower
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temperatures, raising concerns about the potential for CHIKV transmission in new climatic
environments [5,6].

The Chikungunya fever outbreak in the Newala district of Tanzania in 1952 and
1953 holds notable significance, as it suggests some of the earliest documented cases in
humans and marks the first isolation of the virus [4,7,8]. The term “Chikungunya” is
derived from the Kimakonde language, signifying “to bend up” or “to become contorted”,
which encapsulates the severe joint pain and altered posture, hallmark symptoms of the
disease [6,8]. The outbreak was characterized by a high prevalence of cases, accompanied by
reports of febrile illness and incapacitating joint pain of varying severity [6,7]. Nineteenth-
century records document an epidemic termed Kidenga pepo in Zanzibar during 1823, a
Swahili term denoting “a sudden cramp-like seizure caused by an evil spirit”, spreading
to the Americas and West Indies in 1827 [9]. Prior to this, evidence points to an earlier
epidemic spanning from 1779 to 1785, affecting Egypt, the Arabian Peninsula, India, and
Southeast Asia [9,10].

CHIKV infections vary widely in severity, from mild to severe symptoms, with 3–28%
of cases being asymptomatic [11]. The principal indicators include acute fever and profound
joint pain [12]. Concomitant symptoms during the acute phase of the disease encompass
myalgia, headache, fatigue, and gastrointestinal disturbances. Within a few days following
the onset of fever, individuals may develop a maculopapular rash spanning the trunk,
limbs, and face [5,13]. While the majority of cases recover within weeks, some individuals,
particularly those with underlying health conditions, may exhibit self-limiting prolonged
joint pain and fatigue. Severe complications, although rare, can include neurological
and cardiovascular manifestations [5]. High rates of mother-to-child transmission have
been observed during outbreaks in India, the Americas, and Réunion Island, leading to
neonatal disease with significant impacts on infant health. Recent evidence from a cohort
study in Nigeria (2019–2022) has highlighted significant associations between CHIKV
infections during pregnancy and adverse birth outcomes [14,15]. The arthritic symptoms
of Chikungunya fever can persist for several years [3]. Factors like age, duration of
infection, joint pain, and swelling adversely impact the health and quality of life, leading to
pervasive absenteeism and economic losses. For example, in the Réunion Island outbreak
of 2005–2006, the total medical expenditure of the chikungunya epidemic was estimated to
be EUR 43.9 million, with direct healthcare expenses and the loss of productivity estimated
at EUR 26.5 million and EUR 17.4 million, respectively [16,17].

Clinical presentation of CHIKV infection may vary depending on the geographic
location of the epidemic. This variability may be attributed to factors such as genetics,
comorbidities, pre-existing immunity to CHIKV, and socioeconomic status of the affected
communities [13]. For instance, Paixåo et al. (2018) [18] investigated the association of
CHIKV genotype heterogeneity with disease severity. The study found considerable
variability in the prevalence of self-reported chronic symptoms with CHIKV lineages. The
prevalence of chronic disease was significantly higher in IOL (52%) followed by the Asian
(39%) and ECSA (14%) lineage.

In low-resource socioeconomic settings, the prevalence of undifferentiated febrile
illness (UFI) outbreaks poses a significant diagnostic challenge [19]. Over the last decade,
many African nations, including Gabon, Nigeria, Kenya, the Democratic Republic of Congo,
and Sudan, have witnessed substantial outbreaks of febrile diseases [20]. These epidemics
are frequently associated with long-term disabilities and high case fatality rates [21,22]. A
systematic review and meta-analysis by Nooh et al. (2023) [22] revealed that the aetiology
of febrile illness is unknown in more than 60% of febrile patients in East Africa, with CHIKV
identified as the most prevalent causative pathogen in the analysed studies.

Understanding the epidemiology, clinical impact, and socioeconomic implications
of CHIKV in Africa is vital for effective disease management and control. The Climate
Amplified Diseases and Epidemics (CLIMADE) consortium, from which this work stems,
was established to develop approaches to predict, track, and control diseases such as
CHIKV in the regions most impacted by climate change (https://climade.health/africa,
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accessed on 5 June 2024). This initiative, with global collaborators, aims to form a pan-
African coalition to create localised knowledge and technologies to fill crucial knowledge
gaps in disease transmission, improve the genomic representation of climate-amplified
diseases, and develop sustained genomic sequencing capacities [23].

The transmission dynamics and burden of CHIKV in low-resourced regions in Africa
remain poorly understood. Our study combines a literature review with phylogenetic
and phylodynamic analyses of publicly available genomic data to provide insights into
the spatiotemporal movement within and out of the African continent. We review and
synthesize the current knowledge on CHIKV in Africa, aiming to elucidate the genetic
diversity and evolutionary dynamics while identifying factors contributing to the spread
of infection, and highlighting existing burdens and knowledge gaps. We hypothesize that
heterogeneous transmission dynamics across different regions in Africa have driven the
widespread circulation of CHIKV.

2. Cases, Outbreaks, and Current Burden in Africa

Since its discovery in 1953, Africa has witnessed numerous CHIKV outbreaks, with an
estimated 70% of the population residing in high-risk areas for arboviral infections [24].
Suspected CHIKV cases are defined by the presence of acute high fever (>38.5 ◦C) and
severe joint pain. Laboratory confirmation requires CHIKV isolation, RNA detection by
RT-PCR, CHIKV-specific IgM antibodies, or an increase in IgG antibodies over time [25].
Outbreaks can be substantial in areas with high mosquito vector activity and favourable
environmental conditions for viral transmission [26].

Figure 1 illustrates the distribution and surveillance of CHIKV in Africa based on
the following data sources: World Health Organization African Regional Office (WHO-
AFRO) CHIKV reported cases since 2018 (https://www.afro.who.int/health-topics/disease-
outbreaks/outbreaks-and-other-emergencies-updates, accessed on 28 April 2024), publicly
available genomic data (https://www.ncbi.nlm.nih.gov/nuccore, accessed on 15 January
2024), case and outbreak data from the published literature. Figure 1 highlights the dispari-
ties between reported cases and genomic data. Ethiopia and Chad reported over 50,000 and
30,000 suspected cases in 2019 and 2020, respectively, without corresponding genomic data,
suggesting surveillance gaps. Additionally, the distinct differences in genotype circulation
in West, Central, and East Africa become immediately apparent.
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cases from 2018 to 2024 obtained from the WHO-AFRO weekly reports [27]. Overlaid markers in
yellow indicate the reported year of outbreaks and reported cases in parenthesis obtained from the
literature [3,6,12,13,28–60], and the coloured circles show the lineages and the number of genomes
generated in each country received from Bacterial and Viral Bioinformatics Resource Center (BV-
BRC) [61], GISAID EpiArbo database [62], and NCBI’s GenBank databases.

In Central Africa, CHIKV was first detected in 1958 in the Doruma region in the
DRC [63]. Significant outbreaks occurred in 1999 and 2000 in Brazzaville and Kinshasa,
resulting in an estimated 50,000 reported cases [60]. Outbreaks in 2011 and 2018 saw cases
reaching 8000 and 11,000, respectively. From 2002 to 2006, isolated CHIKV outbreaks
were recorded in Equatorial Guinea, Sudan, and Cameroon. Cameroon reported cases
throughout this period [12,30,64]. In 2007, Gabon experienced a CHIKV outbreak that
impacted at least 20,000 individuals in Libreville, the country’s capital and largest city. This
outbreak lasted 3 years and extended to southern areas of the country [12].

The West African region emerges as a potential hotspot for arboviral disease trans-
mission, with significant outbreaks in Senegal, Nigeria, and intermittent cases in Guinea
in 1992 and 2002, Sierra Leone in 2012–2013, and Mali and Burkina Faso in 2023–2024
(Figure 1) [6,50,65–71]. A recent study on arboviruses in Southern Mali revealed a CHIKV
seropositivity rate of 31.2% post-rainy season in 2015 [70]. Two genomes were isolated
from Cote d’Ivoire in 1981 and 1993 [71].

In East Africa, Kenya witnessed an unprecedented epidemic in 2004 spreading to
Mombasa and Lamu Island. Lamu Island reported a 75% attack rate (AR) [72,73]. By 2005,
the virus spread to the islands of Comoros, Mayotte, Seychelles, Réunion, and Mauritius.
Réunion Island alone reported an estimated 250,000 cases, affecting about 32% of the
island’s population [35]. After a 12-year hiatus in Kenya, unprecedented CHIKV outbreaks
occurred in Mandera City in 2016 and Mombasa in 2017–2018 [6,35]. In neighbouring East
African countries, Tanzania reported CHIKV infections between 2007 and 2008. Somalia
reported its first cases in 2016 and Ethiopia reported more than 50,000 suspected cases in
2019 [6]. During the nine-month epidemic in Sudan from 2017 to 2018, Kassala State and
Red Sea State collectively reported 48,763 cases [36].

Efforts were made after the 2005 outbreak on Réunion Island to differentiate between
the two epidemic waves. The second wave exhibited a notably higher AR compared to the
initial wave and a higher proportion of symptomatic cases relative to total infections. The
severity of symptoms and incidence of neuro-chikungunya was also greater during the sec-
ond wave, with a higher proportion of children discharged with disabilities. These findings
underscore the evolving nature and severity of the epidemic across distinct phases, high-
lighting the need for comprehensive surveillance and response strategies within regions of
high transmission risk and their neighbouring countries [73,74].

3. Genotype Distribution

Since the 1950s, over 110 countries have reported CHIKV outbreaks. The virus,
with origins in Sub-Saharan Africa, has spread to new territories, including Europe and
the Pacific, largely facilitated by global travel and trade [11,37,51,75,76] (Figure 2). This
widespread dissemination has led to the emergence of three monophyletic and geographi-
cally distinct genotypes [5].

CHIKV is a single-stranded, positive-sense RNA virus, which has evolved as a quasis-
pecies with geographically distinct variants [75]. Since the first identification in East Africa
in 1953, the ECSA genotype initially circulated in east, southern, and central regions of
Africa and has since spread to cause significant outbreaks in Asia and the Americas [77].
The ECSA genotype comprises three clades: Clade 1 (ancestral East and Southern Africa
strains), Clade 2 (Central African strains), and Clade 3 (Indian Ocean lineage), with origins
in Eastern Africa, disseminating to Indian Ocean islands, subsequently reaching Southeast
Asia, Oceania, and Europe (Figure 2a) [6].
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The re-emergence of CHIKV in 2004 triggered outbreaks in the Indian Ocean
basin, leading to the emergence of IOL, characterized by higher vector competence in
Ae. albopictus [78]. Genomic data suggest that IOL initially spread to the Comoros and
Réunion islands, rapidly expanding and diversifying, causing outbreaks in the Indian Ocean
islands and later spreading to India, Sri Lanka, Thailand, Malaysia, and Italy [35,77,78].

In 2013, a significant milestone in CHIKV transmission occurred when the Asian
lineage was imported into St. Martin’s Island, triggering ongoing outbreaks across the
Americas [79]. The virus subsequently spread to neighbouring countries driven by inter-
national travel, trade, and the presence of suitable mosquito vectors [80,81]. Additionally,
the ECSA lineage was introduced in the Bahia state of Brazil in 2014, resulting in over
5000 reported cases. Since then, over 3.6 million cases have been reported in the Ameri-
cas [79,82,83]. The cocirculation of the ECSA and Asian genotypes have led to outbreaks in
South America and the Caribbean islands since 2014, highlighting the global spread and
adaptability of CHIKV genotypes [83].

The WA lineage of CHIKV was first identified in 1964 in Ibadan, Nigeria, following its
isolation from a mosquito sample obtained in 1963 [68]. Subsequently, it was discovered
in Rufisque, Senegal, in 1966 [65]. The ECSA lineage has also been detected in West
Africa, isolated from a bat sample in Senegal in 1963, suggesting dissemination beyond
its geographical origin and possible spatial overlap of the two lineages. The potential
coexistence of the WA and ECSA genotypes in West Africa emphasizes the region’s complex
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CHIKV dynamics; however, this was a singular occurrence with no ECSA lineage strains
detected since [75].

4. Importance of Genomic and Epidemiological Surveillance

Genomic surveillance is crucial for understanding the transmission dynamics, evo-
lution, and epidemiology of vector-borne diseases. Traditionally, public health officials
relied extensively on epidemiological data, but advancements in whole-genome sequenc-
ing and phylogenetic methods have enhanced the ability to map transmission pathways,
detect viral strain, and characterize lineages [84]. Integrating clinical, demographic, and
epidemiological metadata with sequencing data helps to identify variables that influence
transmission patterns, viral competence, lineage prevalence, and epidemic potential of
emergence strains [3,80,85,86]. For example, during the SARS-CoV-2 pandemic, global
genomic and epidemiological surveillance revolutionized variant tracking and transmis-
sion across spatial and temporal scales and elucidated the multifactorial nature of virus
evolution [86].

Urbanization, human mobility, and climate change have facilitated the movement
of arboviruses to new regions, increasing the risk of outbreaks within previously unex-
posed populations, in turn highlighting the need for effective surveillance systems [85].
Comprehensive genetic data from each outbreak and interepidemic strains is essential for
tracking the movement of viral strains and identifying mutations that may contribute to
future outbreaks [72,86].

Since 2016, a flagship arbovirus genomic and epidemiological surveillance program in
South America has characterized CHIKV outbreaks and epidemics in Brazil [87], Uruguay [88],
Paraguay [89], and Argentina [79], demonstrating the crucial role of genomic surveillance
for vector-borne diseases. In contrast, Africa has lacked a comparable program, and
genomic data from African CHIKV cases remain limited despite the virus being endemic in
many regions. CLIMADE’s strategy for Africa includes forming a consortium to develop
locally relevant knowledge and technologies, thereby addressing major knowledge gaps
in disease transmission. Key goals include forming a pan-African coalition to assess
arbovirus susceptibility, improving genomic representation of climate-amplified diseases,
and developing long-term genomic capability and collaboration with global partners [23].

Currently, there are 393 CHIKV genomes sampled from Africa available publicly,
comprising 93 whole genomes and 300 partial gene sequences (Figure 3). Advances in
sequencing technologies have shifted from Sanger sequencing to next-generation sequenc-
ing platforms such as Illumina and Oxford Nanopore for whole-genome sequencing
(Supplementary Table S1).

Figure 3 highlights the evolving landscape of CHIKV sequencing in Africa, showing
the steady increase in genomic data generation. CHIKV sequencing efforts began in the
early 1950s, with a notable uptick observed since the early 2000s. Predominant sources
of genomic data include Aedes mosquito vectors and human hosts, while genomes have
also been isolated from bats and mice. The ECSA genotype appears consistently over
decades, with the WA genotype appearing less frequently and sporadically since the 1960s.
A notable increase in IOL genomes between 2010–2020 reflects the increase in resources
directed to sequencing efforts after major outbreaks. Continued investment in routine
genomic surveillance is crucial for the characterization and tracking of epidemic strains.
This effort provides essential information for implementing effective control and preventive
measures against CHIKV and other vector-borne diseases in Africa.
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5. Genetic Diversity and Transmission Dynamics in Africa

The transmission dynamics of CHIKV in Africa are shaped by entomological, envi-
ronmental, and sociodemographic factors [2]. Our analysis (see Supplementary Materials
for a description of the methods) reveals geographically distinct lineages, including the
WA, the ECSA, and the IOL (Figure 4), exhibiting distinct genetic fingerprints and transmis-
sion patterns [80]. Estimated evolutionary rates for each lineage varied considerably. The
highest rate was observed in the IOL of 5.31 × 10−4 substitutions per nucleotide per year
(subs/nt/y) (Figure 4a–c), followed by the ECSA, Asian, and WA lineage of 4.44 × 10−4,
4.178 × 10−4, and 2.84 × 10−4 subs/nt/y, respectively. A study conducted by Volks et al. in
2010 obtained comparable evolutionary rates, which showed a notable difference between
enzootic lineages having a lower evolutionary rate than epidemic lineages [75]. Here, we in-
cluded South American ECSA strains in the phylogenetic analysis, which likely contributed
to the difference in rates observed in the aforementioned study.

Geographic and environmental factors such as seasonality, vector abundance, and
human mobility significantly influence CHIKV evolution [2,5,90]. For instance, ECSA
sublineages 1 and 2 observed in East, Southern, and Central African clades (Figure 4a) show
long-standing regional diversity, suggestive of limited genomic exchange and localized
transmission [6,75]. Similarly, the monophyletic clustering of WA sequences (Figure 4c) and
long branching is presumptively driven by sylvatic spillover seeding sporadic outbreaks
followed by endemic circulation [77].

Genetic variation among emerging CHIKV strains may influence vector competence,
viral fitness, and adaptation to varied settings, as was evident in the 2005–2006 Réunion
Island outbreak with the acquisition of the E1:A226V mutation [80]. Initially, the Réunion
strains had E1:226A and E1:226V later in the outbreak [3,91]. Independent convergent
evolution led to the emergence of the E1:A226V amino acid substitution resulting in higher
vector competence in Ae. albopictus [39]. Similarly, sequences from Madagascar, Seychelles,
Mayotte, and Mauritius showed variations in the E1:226 amino acid, impacting local



Pathogens 2024, 13, 605 8 of 18

transmission and epidemic peaks [3]. The strain responsible for the Indian Ocean outbreak
is believed to have originated from the Kenyan Mombasa outbreak in 2004. The most recent
common ancestor (TMRCA) of the 2004 Kenyan genomes emerged in mid-2002, eventually
diverging into the two variants responsible for the Lamu and the Mombasa outbreaks [35].
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Strains collected in Central Africa between 2006 and 2019 belong to the ECSA Central
African clade (Figure 4a) containing the E1:A226V mutation. Isolates from the 2020 outbreak
in Chad clustered with the outbreak in DRC in 2019 but lacked the E1:226 mutation [92].
The presence of the E1:A226V mutation isolated from a French traveller returning from
Madagascar in 2006 suggests the circulation of Ae. albopictus-associated-virus strains
alongside Ae. aegypti-associated strains in Madagascar as early as 2006. Additionally,
adaptive mutations for transmission by Ae. albopictus, such as the E1:A98T and the epistatic
K211E mutations and several mutations in the E2 gene (D60G, R198Q, L210Q, I211T, K233E,
K252Q), enhance viral fitness [39]. The E2:L210Q has been found to enhance CHIKV
dissemination in Ae. albopictus present within sequences from the 2016–2019 outbreaks
in Cameroon of the Central African clade [93]. Phylogenetic analysis suggests that the
Central African clade containing the E1:A226V and E2:I211T mutations emerged around the
same time as the IOL via convergent evolution [12,93]. At low prevalence in ECSA viruses,
the E2:I211T is consistently present in viruses harbouring E1:A226V, with in vitro studies
suggesting that it works epistatically to facilitate the effects of E1:A226V on infectivity [39].

Genomic analyses of CHIKV strains have also identified mutations such as E1:K211E
and E2:V264A within the IOL, increasing infectivity and transmission in Ae. aegypti vectors.
These mutations emerged between 2005 and 2008, likely originating in India [43]. Detected
in the 2016 and 2018 Kenyan outbreaks, these mutations are believed to enhance the virus
fitness for Ae. aegypti with no effect on Ae. albopictus vector competence [35].

To understand CHIKV transmission heterogeneity, we examined the spatial and tem-
poral dispersal of CHIKV strains in and out of Africa using ancestral-state reconstruction
(Figure 5). Our results show notable transmission patterns observed both within Africa and
across continents. Within Africa, CHIKV spread from East Africa to Angola, South Africa,
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and Central Africa. In the late 1980s and mid-1990s, the virus exhibited transcontinental
movement, moving from Central Africa to North America and from Angola to Brazil
approximately two decades later. Concurrently, transmission from East Africa spread into
the Indian subcontinent, notably highlighting the expansion of the ECSA genotype. Further
analysis of the WA genotype showed no viral exchange between regions.
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Our analysis of the IOL (Figure 5b) reveals initial exportation from East Africa to
Comoros Island, followed by circulation to and among Réunion Island, Mauritius, Mada-
gascar, and Mayotte Island. The international movement included transmission from East
Africa into North America and the IOL to France, with subsequent spread to India between
2010 and 2015. A reintroduction event was observed from the Indian subcontinent into East
Africa, which is also supported by the literature [43], followed by circulation into Northeast
Africa after 2015.

The movement of infected individuals across borders has played a documented role
in the global dissemination of CHIKV [2]. The spread of the ECSA genotype highlights the
impact of travel, trade, and human migration on the CHIKV viral movement [94]. The first
importation of the ECSA genotype into Brazil in September 2014 was closely related to the
Angolan isolate from 1962 [94].

The IOL is thought to have evolved from the Mombasa strain of CHIKV [39], which is
associated with morbidity and mortality, later spreading to the Indian Ocean basin and Asia,
causing widespread epidemics [95,96]. The IOL outbreak led to several travel-associated
cases and the first imported case of CHIKV into France from a traveller returning from the
Comoros Islands [97]. The March 2005 outbreak on Réunion Island was traced back to a
patient returning from Comoros Island, where the outbreak had begun in January 2005.
Genetic analysis revealed that sequences from the early 2006 outbreak likely represented
the ancestral genotype of the Réunion outbreak, sharing identical polymorphic sites with
the ancestral ECSA lineage [3].

In the present study, genomic analysis shows an independent introduction of CHIKV
from India to Kenya, with the 2016 outbreak genetically similar to Indian genomes. This
is supported by the temporal introduction of the IOL from India to Kenya between 2010
and 2015, as seen in Figure 5b. The literature suggests a potential importation event across
the Somali border [35]; however, without genomic data, we cannot correctly induce the
likely route of introductions. We uncover evidence of reintroductions of the ECSA lineage
(Figure 5a) into Africa from the Indian subcontinent. The 2018–2019 CHIKV epidemic
that occurred in the eastern states of Sudan was caused by an independent introduction
of CHIKV into the region from the Indian subcontinent [36]. The 2017–2018 Mombasa
outbreaks indicate separate introductions [37]. These outbreaks spread to Eastern and
Northern African countries, including Sudan (Figure 5b) and Djibouti in 2019. Our findings
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are consistent with the prior genomic investigations suggesting distinct introduction events
with separate strains and temporal origins [43].

CHIKV transmission in West Africa typically occurs within an enzootic cycle involving
primatophilic mosquito vectors and NHPs as a presumed natural reservoir [65,98], allowing
viruses to persist in the natural environment [80]. However, the precise origin and dy-
namics of transmission of this cycle remain incompletely understood, necessitating further
investigation [98]. The two circulating genotypes in Africa showed distinct separation [99],
except for a single ECSA isolate from Senegal (Figure 4a). This separation highlights the
complex interplay of ecological factors, socioeconomic situations, and viral transmission
dynamics, supporting this study’s hypothesis that the heterogeneous nature of CHIKV
transmission drives the ongoing circulation of the virus across Africa.

6. Vectors and Transmission

To reliably interpret CHIKV transmission dynamics, it is important to consider trans-
mission routes, including the role of vectors. CHIKV primarily spreads through two main
transmission cycles: the sylvatic and urban cycles [2,100]. In the sylvatic cycle, the virus is
transmitted between nonhuman primates (NHPs) and forest-dwelling mosquitoes, occa-
sionally spilling over into humans in close proximity to the forest [100–103]. This cycle is
said to represent the ancestral state associated with periods of silence between outbreaks, at-
tributed to the generational susceptibility of NHPs. Various mosquito species act as vectors
in this cycle, including Ae. aegypti formous, Ae. africanus, Ae. luteocephalus, Ae. neoafricanus,
Ae. furcifer-taylori, Ae. dalzieli, Ae. vittatus, and Culex quinquefasciatus [6,104–106]. Spillover
of CHIKV from sylvatic cycles occurs via vector species that possess the ability to feed on
both humans and NHPs, known as bridge vectors [100,103]. Primatophilic Ae. africanus and
Ae. furcifer have been widely linked to the sylvatic transmission cycle in East–Central, West-
ern, and Southern Africa [80,100]. During the 1976 epidemic in South Africa, Ae. furcifer
was implicated as the primary vector of transmission with baboons as the likely NHP
host [107]. Aedes furcifer was also implicated as a significant bridge vector for CHIKV
transmission in West Africa [101,103]. In more rural settings, outbreaks are occasionally
detected through the implementation of adequate routine surveillance and are related to
the increase in sylvatic mosquito populations after periods of seasonal rainfall [64].

The adaptation of the virus to domesticated Aedes mosquito species, particularly
Ae. aegypti, has provided an alternate vector and facilitated the introduction of the disease
to previously unexposed human populations [108]. Aedes aegypti, also known as the
yellow fever mosquito, is a container-breeding species primarily found in urban areas. This
domesticated form is commonly found in tropical and subtropical regions in 167 countries
globally [109]. The behavioural adaptation and ecology of Ae. aegypti to urbanization and
deforestation make the species highly conducive for epidemic transmission [110,111].

The tropical ecoregions of the Afrotropical realm provide an ideal wet-dense ecosys-
tem for both sylvatic and urban populations of both the peridomestic Ae. aegypti and,
to a lesser extent, Ae. albopictus [12]. Aedes albopictus originating from Asia has spread
across Central Africa; the first documented introduction into Africa occurred in 1989 via
imported tires from Tokyo, Japan, to Cape Town, South Africa [66,112]. Its distribution has
expanded to 126 countries worldwide and into a wide range of environments due to the
species’ resilience in more temperate regions [109]. Aedes albopictus was the main vector
responsible for CHIKV transmission in the 2007 Gabonese and 2011 CAR outbreaks [111].
Aedes albopictus, known for its invasive nature, exhibits a combination of zoophilic and
anthropophilic behaviours that enable it to colonize new ecological niches and adapt to
seasonal fluctuations. This adaptability is evident in its diverse breeding habitats, oppor-
tunistic feeding behaviours, and the ability to outcompete native species regardless of
temperature conditions [24,113].

The global surge in CHIKV outbreaks and transmission has been strongly associated
with the appearance of mutations in the virus permitting enhanced viral adaptation and fit-
ness to existing and novel vectors, leading to increased transmission [92,114]. An important
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example of this adaptation is the E1:A226V mutation on the envelope 1 gene, facilitating
the transmission of CHIKV by the highly invasive Ae. albopictus mosquitoes. The E1:A226V
mutation has been detected in recent Central African CHIKV outbreaks, including the
2019 outbreak in the DRC [39,78]. The scenario of convergent evolution advocates for
the colonization by Ae. albopictus in recent years, indicating significant implications for
CHIKV transmission patterns [39]. This additionally suggests that CHIKV is adapting to
the increased presence of Ae. albopictus in Africa, leading to new territories being colo-
nized by this vector species and the potential for more frequent outbreaks in naive human
populations [39,111].

Entomological surveillance yields valuable data on vector species prevalence, abun-
dance, and behaviour, aiding in the understanding of arboviral transmission dynam-
ics [114,115]. CHIKV transmission is closely associated with the passive dispersal of vectors
via trade and migration, alongside increased environmental suitability, facilitating global
vector spread [109,111,116]. In recent decades, these vectors have expanded to several areas
previously devoid of Aedes species, with most new introductions attributed to vegetative
eggs contained in timber and tire exportation [78]. Surveillance efforts have declined,
with a 70% decrease in Aedes prevalence studies from 2009 to 2018 when compared to the
previous decade [65]. Limited ecological and entomological studies exist for Ae. aegypti
and Ae. albopictus in Guinea, Guinea-Bissau, Liberia, Sierra Leone, and Togo. Ongoing
surveillance systems are crucial in detecting and controlling outbreaks, ensuring opportune
public health responses [24,117]. Focus on routine surveillance systems and occurrence
data should be prioritized, especially within countries with limited or no available data
such as Guinea-Bissau, Togo, Chad, South Sudan, Ethiopia, Eritrea, and Somalia [114,118].

7. Challenges and Gaps in CHIKV Surveillance in Africa

Underreporting and underdiagnosis of CHIKV in Africa leads to an incomplete under-
standing of the true burden of the disease, especially in regions where multiple arboviruses
cocirculate and exhibit similar clinical manifestations [3,36]. Socioeconomic factors and
inadequate diagnostic infrastructure further exacerbate these challenges [36]. Inconsistent
and nonstandardized case and outbreak reporting across different regions reduce the reli-
ability, accuracy, and comparability of data, hindering the comprehensive assessment of
CHIKV transmission dynamics.

This study identifies significant gaps in surveillance and diagnosis, emphasizing the
need for enhanced genomic surveillance to better understand epidemiological patterns of
CHIKV and interactions with other arboviruses [34,86,119]. Prospective studies should
prioritize the identification of CHIKV isolation in potential host reservoir species, as an
enhanced understanding of the enzootic, sylvatic cycle of the virus may prevent future
outbreaks in regions where sylvatic transmission regularly occurs [120].

However, there is renewed hope of improved management and control of this infec-
tious disease with the recent approval of a live-attenuated vaccine, lxchiq (VLA1553), by
the Food and Drug Administration (FDA) in the United States, Canada, and Europe, as the
vaccine has demonstrated a high immunogenicity of 98.9% after a single dose [121]. De-
spite this progress, public health systems must continue to enhance their efforts in tracking
and controlling CHIKV outbreaks. The immunological state significantly impacts CHIKV
transmission patterns. Periodic outbreaks may develop as a result of waning immunity or
exposure to immunologically naive populations [13,69].

In Africa, neglected arboviruses like CHIKV can cause significant epidemics, yet
our understanding of its impact, distribution, and viral heterogeneity remains limited.
Historically, public health responses and resources have predominantly been directed
towards malaria prevention and control [122]. Understanding the genetic diversity of
CHIKV in Africa is essential for advising effective public health strategies for disease
surveillance and outbreak control tailored to the continent and its regions. An assessment by
the Resilience Against Future Threats through Vector Control (RAFT) research consortium
in September 2022 revealed that most African countries have inadequate capacities for
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arbovirus surveillance and control [122]. Achieving global equity in genomic sequencing is
vital for preparing for future pandemics. This goal requires targeted funding, distribution
of sequencing technologies, increased training, networking, and informed public health
policy decisions [86,119,123]. Effective leadership, collaboration, and adaption of existing
surveillance systems are all essential for successful cross-border and continental disease
control [86].

8. Conclusions

Urbanization and the rapid growth of human populations create an environment
conducive to increased CHIKV transmission risk. Our findings underscore the complex
dynamics of CHIKV transmission, highlighting its heterogeneous nature across the conti-
nent. Efforts to monitor and mitigate the movement of infected individuals are crucial in
containing the spread of CHIKV and preventing further outbreaks. However, effectively
addressing the CHIKV burden requires prioritized support for susceptible populations
within epidemic regions. This includes improving access to healthcare, implementing
effective vector control, and enhancing diagnostic measures to prevent the emergence and
re-emergence of CHIKV.

Increased data collection is essential to better understand the epidemiological back-
ground and prevalence of CHIKV in Africa. Investing in research and surveillance systems
enables the generation of comprehensive data, facilitating regional-based prevention and
control strategies. Global collaboration and data sharing are essential in addressing the
disease burden collectively. Through collaborative efforts, we can strengthen the public
health response in at-risk communities, generate essential data, and promote research that
effectively combats CHIKV in Africa. Coordinated action is indispensable to mitigate the
impact of CHIKV and other emerging infectious diseases across the continent.
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