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Abstract
Neuroaxonal dystrophy (NAD) is a group of inherited neurodegenerative disorders characterized primarily
by the presence of spheroids (swollen axons) throughout the central nervous system. In humans, NAD is
heterogeneous, both clinically and genetically. NAD has also been described to naturally occur in large
animal models, such as dogs. A newly recognized disorder in Miniature American Shepherd dogs (MAS),
consisting of a slowly progressive neurodegenerative syndrome, was diagnosed as NAD via
histopathology. Affected dogs were typically young adults and displayed an abnormal gait characterized
by pelvic limb weakness and ataxia. A combined GWAS and autozygosity mapping approach, together
with whole-genome sequencing, identi�ed the underlying genetic cause as a 1-bp deletion in RNF170 (ring
�nger protein 170), which perfectly segregates in an autosomal recessive pattern. This deletion is
predicted to create a frameshift (XM_038559916.1:c.367delG) and early truncation of the RNF170 protein
(XP_038415844.1:(p.Ala123Glnfs*11). A signi�cant LOD score of 9.70 in an extended pedigree con�rms
the linkage of the deletion variant with the canine phenotype. Several RNF170 variants have been
identi�ed in human patients with analogous clinical syndromes, indicating that this novel MAS NAD
serves as an excellent large animal model for equivalent human diseases, particularly since affected
dogs demonstrate a relatively long lifespan, which represents an opportunity for therapeutic trials. The
age of this canine RNF170 variant is estimated at approximately 30 years, before the reproductive
isolation of the MAS breed. This carries implications for the standard Australian Shepherd, the breed from
which MAS were developed.

1. Introduction
Neuroaxonal dystrophy (NAD) is a group of rare, inherited neurodegenerative diseases characterized by
the presence of swollen axons (spheroids) throughout the central, and rarely peripheral, nervous system
(Nardocci and Zorzi 2013). NAD has been described in humans (Cowen and Olmstead 1963) and
spontaneously in domestic mammalian species, including dogs (Cork et al. 1983), cats (Carmichael et al.
1993), horses (Adams et al. 1996), cattle (Hanshaw et al. 2015), and mice (Bouley et al. 2006). While all
types of NAD share the histopathological hallmark of axonal spheroids and neuronal degeneration, there
is a great clinical and genetic heterogeneity within species (Kruer 2013; Hahn et al. 2015).

In humans, multiple types of NAD are differentiated based on the clinical and morphological �ndings and
underlying genetic defects. Many of them are associated with increased iron accumulation in the basal
ganglia (globus pallidus and substantia nigra) and are therefore classi�ed as neurodegeneration with
brain iron accumulation (NBIA) (Hay�ick et al. 2018). The most common types of human NAD
encompass pantothenate kinase-associated neurodegeneration (PKAN or NBIA1; OMIM 234200), caused
by variants in the PANK2 gene; early-onset infantile neuroaxonal dystrophy (INAD; OMIM 256600) or
NBI2A, caused by variants in PLA2G6; mitochondrial kinase-associated neurodegeneration (MPAN or
NCBIA4; OMIM 614298), due to variants in C19orf12; and β-propeller protein-associated
neurodegeneration (BPAN or NBIA5; OMIM 300894) with variants in WDR45 (Hay�ick et al. 2018).
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Canine NAD has previously been reported in both mixed breed and purebred dogs, including Rottweiler
(Lucot et al. 2018), Spanish Water dog (Hahn et al. 2015), Collie (Clark et al. 1982), Chihuahua
(Degl’Innocenti et al. 2017), Jack Russell Terrier (Sacre et al. 1993), Dachshund-cross dog (Pintus et al.
2016), Schnauzer-Beagle cross (Fyfe et al. 2011) and Papillons (Tanaka et al. 2017; Tsuboi et al. 2017).
To date, four breed-speci�c forms have the underlying genetic cause identi�ed. NAD in Papillons, which
has a very early age-of-onset, is caused by a missense variant in PLA2G6. The homologue of this gene
has been associated with human infantile neuroaxonal dystrophy and the affected Papillons were
proposed as a valuable animal model for human NAD, especially since these patients demonstrate
clinical signs within the �rst four months of life (Tsuboi et al. 2017). The other known causal variants for
canine NAD comprise variants in tectonin beta-propeller repeat-containing 2 (TECPR2) in Spanish Water
dogs (Hahn et al. 2015), vacuolar protein sorting 11 (VPS11) in Rottweilers (Lucot et al. 2018), and
mitofusin 2 (MFN2) in a colony of Schnauzer-Beagle crosses (Fyfe et al. 2011). The existence of NAD in
various dog breeds presents a unique opportunity to uncover novel genes linked to the disease, which
could have implications not just for dogs, but also as potential candidates for understanding unexplained
human cases.

Here, we report on Miniature American Shepherds (MAS) with a slowly progressive neurodegenerative
disorder affecting the gait in young adult dogs primarily characterized by pelvic limb weakness and
ataxia. Histopathologically, the syndrome is characterized by the presence of axonal spheroids and tissue
changes indicative of neuronal degeneration and secondary gliosis. The aim of this study was to
describe the clinical and pathological phenotype together with the identi�cation of the underlying genetic
cause.

2. Materials and methods
Ethics statement

All examinations and animal experiments were carried out after obtaining informed written consent for
participation by the owner and in accordance with local laws, regulations, and ethical guidelines. Blood
samples or buccal swabs were collected with the approval of the Cantonal Committee for Animal
Experiments (Canton of Bern; permits BE 71/19 and BE94/2022) or with ethical approval of Purdue
University (IACUC # 1901001840).

Animal selection, and de�nition of breed and phenotype

This study was performed with DNA samples from a total of 937 dogs. MAS dogs represent a relatively
young breed that was developed from (standard) Australian Shepherd dogs. MAS dogs were recognized
as an independent breed in 2012 by the American Kennel Club and provisionally recognized by the
European FCI in 2019. Furthermore, uno�cial breed designations, such as Miniature Australian Shepherd
or Toy Australian Shepherd have also been used by some breeders. We provide the owner-reported breed
assignments of all dogs in our study in Table S1. The 937 dogs consist of 485 MAS, 321 Australian
Shepherds, 127 Miniature Australian Shepherds, and 4 Toy Australian Shepherds. Samples originated
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either from the College of Veterinary Medicine, Purdue University (n = 151) or the Vetsuisse Biobank at the
University of Bern (n = 786).

Each dog was assigned to one of three phenotypic categories. The neurological phenotypes were
classi�ed by a board-certi�ed neurologist based on neurological examination, clinical reports, or videos of
the dogs submitted by the owners. Twenty-�ve dogs were classi�ed as ‘neurological, clinical signs
compatible with NAD’ by the presence of hind limb weaknesses with or without ataxia, abnormal gait,
scu�ng of paws/dragging of digits, and kyphosis. All affected dogs exhibited a pacing/ambling gait
(atypical ipsilateral movement of limbs), when gait could be adequately visualized. Six neurological dogs
with signs that differed from the above mentioned were classi�ed as ‘neurological, other’. The remaining
906 dogs were used as controls. For the majority of the controls, the owners reported their dogs as
healthy at the time of sampling. For some of the control dogs, no phenotype information regarding
neurological diseases was available. More detailed information on the 937 dogs is compiled in Table S1.

Clinical examinations

A proportion of affected dogs were evaluated clinically by board-certi�ed veterinary neurologists (n = 10
out of 23 cases that ultimately were homozygous del/del at the discovered deletion variant,
RNF170:XM_038559916.1:c.367delG, Table S1), with a complete neurological evaluation performed. The
remaining 13 cases were variably under the care of general practice veterinarians. Following a call for
screening of NAD in the breed, additional affected dogs were submitted to the study but not evaluated in
person by a veterinary clinician. In this scenario, owners typically submitted videos of the dogs' gait, and
these videos were reviewed by a board-certi�ed neurologist (n = 9 out of 23 del/del cases, Table S1). The
remaining four del/del cases were submitted with clinical descriptions only provided by the owners.

Pathological examinations

Necropsy reports were available for two neurologically affected MAS dogs (Case #3/Dog #79 and Case
#4/Dog #139, Table S1), which were euthanized at the owner’s discretion under the care of their general
practitioner veterinarian, due to severely diminished quality of life.

A complete necropsy with harvesting and evaluation of all the major organs, the brain, and the spinal
cord, was performed on both cases. The tissues were �xed for 48–72 hours in 10% neutral buffered
formalin and routinely trimmed and processed. Para�n-embedded tissues were sectioned at 4–5
microns and stained with hematoxylin and eosin.

Additional sections of the central nervous system were mounted on charged slides (ProbeOn™ Thermo
Fisher Scienti�c) and were used for immunohistochemistry staining for glial cells, including glial �brillary
acidic protein (GFAP) for astrocytes, and ionized calcium-binding adapter molecule 1 (Iba1) for
microglia/macrophages. The immunostaining was performed using the Leica Bond RXm automated
platform combined with the Bond Polymer Re�ne Detection kit (Leica #DS9800). Brie�y, after dewaxing
and rehydration, sections were pretreated with the epitope retrieval BOND ER1 low pH buffer (Leica
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#AR9961) for 20 min at 98°C. Endogenous peroxidase was inactivated with 3% H2O2 for 10 min at room
temperature (RT). Nonspeci�c tissue-antibody interactions were blocked with Leica PowerVision IHC/ISH
Super Blocking solution (PV6122) for 30 min at RT. The same blocking solution also served as diluent for
the primary antibody. A rabbit polyclonal primary antibody against GFAP (Agilent (Dako), Z0334) and a
rabbit monoclonal primary antibody against Iba1 (WAKO, 019-19741) at a concentration of 1/5000 and
1/1500, respectively, were used and incubated on the slides for 45 min at RT. A biotin-free polymeric IHC
detection system consisting of HRP conjugated anti-rabbit was then applied for 25 min at RT.
Immunoreactivity was revealed with the diaminobenzidine (DAB) chromogen reaction. Slides were �nally
counterstained in hematoxylin, dehydrated in an ethanol series, cleared in xylene, and permanently
mounted with a resinous mounting medium (Thermo Scienti�c ClearVue™ coverslip). Normal canine brain
and spinal cord sections from a young, unaffected mixed-breed dog were used as positive controls.
Negative controls were obtained either by omission of the primary antibodies or replacement with an
irrelevant isotype-matched rabbit polyclonal or rat monoclonal antibody.

DNA extraction and exclusion of PNPLA8

Genomic DNA was isolated from the EDTA blood samples or buccal swabs with either 1) the Maxwell
RSC Whole Blood DNA Kit using a Maxwell RSC instrument (Promega, Dübendorf, Switzerland), 2) the
Qiagen Puregene Blood and Tissue kit or the Qiagen DNeasy Blood and Tissue kit (Qiagen, Hilden,
Germany) following the manufacturer’s protocol, or 3) with a standard phenol-chloroform extraction.

Due to the close relatedness of MAS to Australian Shepherds and the overlap of clinical signs in affected
dogs, the previously-published PNPLA8:XM_005630935.2:c.1169_1170dup frameshift variant, discovered
in Australian Shepherds with hereditary ataxia, OMIA variant ID1470 (Abitbol et al. 2022) was �rst tested
in a very small subset (n = 16) of the total 485 MAS dogs. Speci�cally, four neurologically affected MAS,
�ve unaffected but obligate carrier MAS, and seven old (9 + years of age when tested), distantly related,
phenotypically normal MAS were genotyped, and all dogs were homozygous wildtype at
PNPLA8I:XM_005630935.2:c.1169_1170dup, suggesting this variant was likely not causing the NAD in
this breed.

SNV genotyping

Genomic DNA from a total of 54 dogs were genotyped on the Illumina CanineHD BeadChips containing
220,853 markers (Neogen, Lincoln, NE, USA) (as designated in Table S1). All SNV positions reported
herein correspond to the UU_Cfam_GSD_1.0/CanFam4 assembly.

GWAS

GWAS was performed with 54 samples (24 cases and 30 controls). Quality control of the SNV genotype
data was performed using PLINK v.1.9 (Chang et al. 2015). SNVs with a minor allele frequency of less
than 5% or more than 10% missing genotype data and individuals with a genotyping rate of less than
90% were removed. Additionally, unplaced markers with unknown chromosomal position and mtDNA
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markers were excluded. After pruning, 54 dogs and 156,213 markers remained in the analysis and were
used for the GWAS using the linear mixed model implemented in the GEMMA software (v0.94.1). The
genomic in�ation factor in the analysis was 0.98, indicating that the population strati�cation was
appropriately controlled for by the mixed model. Bonferroni correction was used to estimate the genome-
wide signi�cance threshold at p = 0.05/156,213 = 3.2 x 10− 7. Manhattan- and QQ-plots were created using
the qqman package in R(Turner 2014; Team 2019). The raw SNV genotype data are available in
Supplementary File S1.

Autozygosity mapping

The genotype data of 22 dogs that were homozygous for the disease-associated allele at the best
associated marker were used for autozygosity mapping. The analysis was done using PLINK v.1.9
(Chang et al. 2015). Markers with missing genotypes in one of the cases were excluded. Additionally, a
.tped �le with all markers from chromosome 16 was created. Visual inspection of this �le in an Excel
spreadsheet was performed to exactly determine the shared homozygous haplotype in the 22 cases.

Whole-genome sequencing and variant �ltering

A PCR-free genomic DNA library was prepared from Case #9/Dog #161 and whole-genome sequencing at
24.8x coverage was performed on an Illumina Novaseq 6000 instrument (Illumina, Zurich, Switzerland).
Reads were mapped to the UU_Cfam_GSD_1.0 reference genome assembly and variant calling was
performed as described in Jagannathan et al., 2019. SnpEff software (Cingolani et al. 2012) together with
NCBI annotation release 106 for the UU_Cfam_GSD_1.0 genome reference assembly was used to predict
the functional effects of the called variants. The sequencing data of this single affected dog was
compared against 960 control genomes of different breeds to �lter for private variants (Table S2).

PCR and Sanger sequencing

The candidate variant RNF170:XM_038559916.1:c.367delG was genotyped by direct Sanger sequencing
of PCR amplicons. The ampli�cation of a 368 bp (or 367 bp in case of the mutant allele) PCR product
was performed using the primers 5’-TTTTTCAGCATTGGAGCAGTT-3’ (forward) and 5’-
TGATGCTTTCTGGATACAAACATT-3’ (reverse) and AmpliTaqGold360MasterMix (Thermo Fisher Scienti�c,
Waltham, MA, USA) together with additional 20% of GC enhancer (Thermo Fisher Scienti�c). Post
ampli�cation, the samples were treated with exonuclease I and alkaline phosphatase and subsequently
sequenced with ABI BigDye v3.1. PCR amplicons were sequenced with the PCR primers on an ABI 3730
DNA Analyzer (Thermo Fisher Scienti�c) and the resulting Sanger sequences were analyzed using the
Sequencher 5.1 software (GeneCodes, Ann Arbor, MI, USA).

Post-hoc linkage mapping

Affected dogs from both Europe and North America were all connected via one large pedigree (Figure S1).
A post-hoc LOD score was calculated using dogs with pedigree information and genotypes for
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Chr16:23,653,869:delG in LAMP software (Li et al. 2006). Due to the complexity of this large canine
pedigree, it was divided into eight smaller families to allow the program to run. The recessive genetic
model option was used, and disease prevalence was set at 2%.

Estimation of age of mutation

Runs of homozygosity encompassing the identi�ed variant in RNF170 were identi�ed in PLINK v1.9
(Chang et al. 2015) with default parameters, and linkage map positions across the region were
approximated (Wong et al. 2010). The distance from the presumed causal variant and decay of
homozygosity in either direction was calculated. The variant was dated using a previously described
methodology (Gandolfo et al. 2014) speci�cally designed for SNP array data from small datasets.

3. Results
Clinical phenotype

Clinical history of the �rst proband entailed a two-year-old female intact Miniature American Shepherd
with slowly progressive hind limb weakness and incoordination (Case #9/Dog #161, Table S1). Initial
signs of weakness were reported to have occurred at around two years of age. Poor performance during
dog agility events also developed over time and a “blocked lumbosacral region gait” was reported by the
owner. Neurological evaluation identi�ed normal mentation and cranial nerve responses. Behavior was
abnormal with excessive anxiety and fear of strangers. Ambulatory paraparesis with hindlimb ataxia was
evident. Segmental spinal re�exes were normal. Mild hypermetria (with hyperextension) in the thoracic
limbs was also observed. There was no evidence of pain. The integrity of the sensory innervation was
di�cult to ascertain in light of the dog’s fearful behavior. The neuroanatomic localization was to the T3-
L3 spinal cord segments. A multifocal neuroanatomical localization including the T3-L3 spinal cord
segments, C1-C5 spinal cord segments (thoracic limbs hypermetria) and forebrain (excessive anxiety)
was not excluded. MRI of the brain, spinal cord and CSF analysis only identi�ed a mild coning of the
cerebellum in the foramen magnum.

This dog’s sibling also demonstrated ambulatory paraparesis with hindlimb ataxia and was evaluated by
the same neurologist (Case #11/Dog #183, Table S1). For this dog, neither anxiety nor thoracic limb
hypermetria was evident. Neuroanatomic localization was to the T3-L3 spinal cord segments. The clinical
presentation started at a similar age as in the previously examined sibling and was similarly progressive.
No MRI was performed on the second dog.

Review of the videos (see Video S1 for an example) of other affected dogs demonstrated that a majority
had varying degrees of hind limb weakness and ataxia, together with scu�ng of the nails/dragging of
digits. Kyphosis and a pacing/ambling gait were commonly reported. A cerebellar gait was also noted in
several dogs. A few dogs had a reported change in behavior. Seizures were only reported in one dog,
albeit no video footage of the event was available.
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Overall, in the present cohort of MAS dogs from a wide international genetic pool, the onset of clinical
signs was typically around the second year of age, although this varied somewhat between dogs; this
variability, to an extent, depended on the astuteness of the owner’s observations. Slowly progressive T3-
L3 myelopathy signs were observed as the most common clinical presentation, with possible cervical,
cerebellar or forebrain signs also developing. Neither pain nor vestibular signs were reported in affected
dogs. Gait abnormalities were always more obvious during the walk compared to faster gaits.

Histopathological phenotype

In both necropsied cases (Case #3/Dog #79 and Case #4/Dog #139, Table S1) the evaluation of the
brain and spinal cord showed widespread and bilateral neuroaxonal degeneration throughout the gray
and white matter with the lateral cuneate nuclei in the brainstem being most severely affected (Fig. 1a).
The neuroaxonal degeneration consisted of variable numbers of large, swollen and hypereosinophilic
axons (spheroids), dilated myelin sheaths, degenerated or dead neurons, and mixed gliosis (Fig. 1a,
inset). The gliosis was further highlighted by GFAP and Iba1 immunohistochemistry stains (Fig. 1b-c),
which showed increased density of glial cells in the affected regions and occasional formation of glial
cell aggregates. No other signi�cant changes were seen in any of the organs evaluated.

Genetic investigation

As the clinical and pathological examinations were highly suggestive of an inherited disease, we
compiled pedigree information on the available cases, ultimately generating a pedigree spanning both
European and North American cases (Figure S1). The pedigree was compatible with a monogenic
autosomal recessive mode of inheritance. For the identi�cation of the causal genetic variant, we initially
performed a GWAS with 24 dogs classi�ed as ‘neurological, clinical signs compatible with NAD’ and 30
unaffected controls. This analysis yielded a clear association signal on chromosome 16 exceeding the
Bonferroni signi�cance threshold (p = 3.25 x 10− 8; Fig. 2a). Autozygosity mapping revealed that 22 of the
GWAS-cases shared an identical ~ 2.69 Mb homozygous haplotype. The �rst heterozygous markers on
either side of the homozygous region de�ned an exact critical interval for the NAD variant,
Chr16:21,289,584–23,975,245 (all positions reported in UU_Cfam_GSD_1.0/CanFam4) (Fig. 2b, Table
S3).

We sequenced the genome of one case (Case #9/Dog #161, Table S1) and compared the data to 960
control genomes (Table 1, Table S2). Variant �ltering revealed only two private homozygous variants in
the critical interval. One was an intronic SNV that was not further investigated. The remaining variant was
a 1-bp deletion in the RNF170 (ring �nger protein 170) gene and can be designated as
Chr16:23,653,869:delG (UU_Cfam_GSD_1.0 assembly), located in the critical interval (Fig. 2c). This
frameshift variant, XM_038559916.1:c.367delG, is predicted to lead to a truncation of 48% of the wild
type open reading frame, XP_038415844.1:(p.Ala123Glnfs*11) (Figure S2). The Chr16:23,653,869:delG
variant is also absent from the most recently published Dog10K dataset comprising 2075 genetically
diverse canids (Meadows et al. 2023).
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Table 1
Results of variant �ltering in an NAD affected MAS against 960 control genomes.

Filtering step Homozygous variants

all variants in the affected MAS dog 2,428,434

private variants in whole genome 434

protein-changing private variants in whole genome 2

private variants in the critical interval 2

protein-changing private variants in the critical interval 1

in functional candidate genes for similar phenotypes in other species 1

We next genotyped a large cohort of 937 dogs, including the original GWAS cases, for the RNF170 single
base deletion. This revealed 27 dogs as homozygous for the deletion, 98 heterozygous carriers and 813
dogs homozygous for the wildtype allele. Twenty-three of the 27 homozygous mutant dogs showed
clinical signs compatible with NAD (~ 85%). The remaining four dogs did not show any signs of NAD.
However, these four discordant dogs were relatively young (6, 19, 27 and 43 months of age, respectively).
The cohort also comprised six dogs with neurological signs differing from the NAD phenotype. These
dogs were either homozygous (n = 5) or heterozygous (n = 1) for the wildtype allele. Two additional
neurological dogs whose clinical signs were indistinguishable from the other NAD cases also did not
carry the mutant RNF170 allele (Table 2).

Table 2
Association of the genotypes at RNF170:c.367delG variant with phenotype in 937 dogs.

Phenotype group G/G G/del del/del

Neurological, clinical signs compatible with NAD (n = 25) 2 - 23

Neurological, other (n = 6) 5 1 -

Controls, Miniature/Toy American/Australian Shepherd dogs (n = 586) 485 97 4a

Controls, Australian Shepherd dogs, (n = 320) 320 - -

aThese four dogs were all younger than 43 months at the time of writing.

Post-hoc linkage mapping calculated a LOD score of 9.70 for the identi�ed RNF170 deletion in an
extended pedigree (Figure S1), demonstrating signi�cant linkage between the genotype and NAD
phenotype.

Estimation of the age of the mutation indicated that the variant arose approximately 13.7 generations
ago (95% CI: 2.9–25.1), under a “correlated genealogy” model (a model allowing for more than one



Page 11/20

common/shared ancestor, which is nearly always the case in purebred dogs). Given a generation interval
of two years, the mutation event is predicted to have occurred ~ 27.4 years ago.

4. Discussion
In a highly unique situation, three different research laboratories (Purdue University, University of Bern,
and University of Pennsylvania) all independently identi�ed the RNF170 variant in NAD affected dogs
using slightly different approaches. After realizing that all three groups worked on the same disease and
a related set of dogs, we combined the data to produce the present comprehensive report characterizing
neuroaxonal dystrophy in the Miniature American Shepherd, a new autosomal recessively inherited
canine neurologic disease.

Histopathologic examination of affected dogs demonstrated abundant large, irregularly-shaped
spheroids, particularly in the brainstem, which is consistent with neuroaxonal dystrophies (Sisó et al.
2006). Although these spheroids can be found throughout the brain, they are usually found in the gray
matter of brainstem nuclei and spinal cord (dorsal column nuclei), which is considered the characteristic
distribution for NAD (Sisó et al. 2006; Hanshaw et al. 2015). The neurohistopathological diagnosis of
NAD corroborates the genetic �ndings in these dogs. Given the present �ndings, together with the context
of previously existing canine NAD diseases, it is clear that the development of a global pathology
consortium to gather the pathology reports of NAD-positive dogs would be bene�cial; this would allow for
the creation of a canine NAD pathology repository, which would bene�t not only veterinary medicine and
canine patients, but also human medicine, by de�ning excellent, naturally-occurring, large animal models.

A hypothesis-free genetic analysis identi�ed a frameshift deletion in the RNF170 gene as the most likely
causal variant. RNF170 encodes an E3 ubiquitin ligase located in the endoplasmic reticulum membrane
(ER) that mediates ubiquitination-dependent degradation of inositol 1,4,5-triphosphate receptors (IP3Rs)
via the ER-associated protein degradation (ERAD) pathway (Vembar and Brodsky 2008; Lu et al. 2011).
Activation of IP3Rs leads to Ca2+ e�ux from the ER into the cytoplasm. After activation, RNF170 is
recruited by the ERLIN1/ERLIN2 complex and enables the proteasomal degradation of IP3 receptors, thus
having an impact on Ca2+ homeostasis (Lu et al. 2011; Gao and Wojcikiewicz 2020). Dysregulation of
Ca2+ homeostasis and signaling have been implicated in various neurodegenerative diseases such as
Alzheimer’s and Huntington’s disease (Tong et al. 2018; Czeredys 2020). Variants in key genes encoding
components of the ERAD pathway, such as in ERLIN1, ERLIN2 or RNF170 have been reported to cause
hereditary spastic paraplegia (HSP) in humans (MIM #615681, MIM#611225, MIM#619686) (Wakil et al.
2013; Novarino et al. 2014; Rydning et al. 2018; Wagner et al. 2019). Human RNF170 variants are further
associated with autosomal dominant sensory ataxia (SNAX1) (MIM#608984) (Moeller et al. 2008;
Valdmanis et al. 2011).

HSP comprises a genetically and clinically heterogenous group of rare, neurodegenerative motor neuron
disorders characterized by variable bilateral progressive weakness, stiffness, and spasticity in the limbs
(Fink 2013). More than 80 genes have been associated with HSP (Elsayed et al. 2021); and the clinical
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and genetic heterogeneity can make the diagnosis challenging (Chouery et al. 2022). To date, seven
different variants in RNF170 were identi�ed in human patients with early to adolescent-onset HSP
(Wagner et al. 2019; de Sainte Agathe et al. 2021; Chouery et al. 2022; Fu et al. 2023). Even among
patients with known RNF170 variants underlying their HSP, the clinical picture can vary. For example, in a
group of nine people, �ve had normal cranium and cervical spine on MRI, while two had cerebellar
atrophy; in the same group, �ve patients had delayed motor development while four developed age
appropriately (Wagner et al. 2019).

SNAX1 (hereditary sensory ataxia 1) in humans is caused by a heterozygous RNF170 variant (R199C),
and affected individuals experience adult onset, slowly-progressive gait ataxia and clumsiness, together
with distal sensory loss (Valdmanis et al. 2011; Cortese et al. 2020). Interestingly, however, the SNAX1
RNF170:p.R199C variant does not affect the ubiquitination of activated IP3R (Wright et al. 2015). Given
this, and the fact that heterozygous carriers of nonsense variants in RNF170 have been shown to be
unaffected (Kim et al. 2015; Wright et al. 2015; Wagner et al. 2019), it has been hypothesized that the age-
dependent gait problems of human SNAX1 patients might be due to toxic gain-of-function of mutant
RNF170 proteins, independent from endogenous RNF170 function (Cortese et al. 2020). Interestingly, one
dog in the present study (Dog #515, Table S1) phenotyped as “neurological, other” is a heterozygous
carrier of the of the RNF170 deletion. It seems unlikely that this dog’s clinical signs are related to its
carrier status, given the numerous other heterozygous dogs living to older age with no neurological
issues, and the relatively young age-of-onset of this dog’s clinical signs (~ 1 year). More likely, this
suggests that one or more additional variants underlying neurological conditions remain to be discovered
in the MAS.

A murine model (Rnf170−/−) also demonstrated later onset (~ 12 months) and progression of clinical
signs over time (Kim et al. 2015). In mice, the Rnf170−/− gait abnormality was suggested to be
speci�cally associated with inter-limb coupling and step sequence mechanisms, rather than a secondary
effect.

The naturally occurring MAS canine model of NAD in the present study clearly demonstrates autosomal
recessive inheritance, together with a predicted loss-of-function variant, thus mimicking human RNF170-
related HSP conditions. However, clinically, the affected dogs may share more similarities with the typical
presentation of RNF170 SNAX1 in humans, including post-adolescent age of onset. Although not fatal
per se, affected MAS dogs eventually develop more severe disabilities, leading to poor quality of life and
frequent euthanasia. HSPs in people have historically been classi�ed as “pure” and
“complex/complicated” forms, with the former characterized primarily by spasticity without other
signi�cant �ndings and the latter being associated with additional features, such as seizures,
neuropathies, short stature, visual abnormalities, and others (Blackstone 2018). Today, such clinical
classi�cations have been largely superseded by genetic classi�cations (Blackstone 2018). Taken
together, RNF170-related NAD in MAS provides an excellent spontaneous large animal model for HSPs
and SNAX1 in people.
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Long-term outcome information for NAD-affected MAS is currently limited, as many of these dogs are still
alive. The T3-L3 myelopathy was the most evident �nding; whether or not the thoracic limb hypermetria
and behavioral changes (and reported seizures in a single case) are NAD-related is unclear, but could
suggest these dogs experience a more “complex/complicated” phenotype rather than a “pure” form of the
disease. This highlights the need for further studies over longer time frames that include clinical
evaluation of NAD homozygous dogs to understand the complete relationship between age, clinical
status, and the now-known genetic status. When possible, de�nition of the phenotype would be further
enhanced by electrodiagnostic testing. Crucially, the lifespan of NAD-affected MAS is not markedly
decreased, representing an opportunity for therapeutic trials in this large animal model. There is currently
no treatment for NAD in affected dogs; the �ndings in the present study provide a foundation for potential
future studies investigating treatment options.

While the association of the genotypes at the RNF170:c.367delG variant with the NAD phenotype was
very strong, it was not perfect. We observed a total of six discordant dogs in a cohort of 937 dogs. Four
dogs that were homozygous for the deletion did not show clinical signs. Two of them were younger than
two years of age and thus below the typical age of onset for NAD in our cohort. The other two were 27
and 43 months old and thus of an age when clinical signs were noticeable in most of the other cases. We
speculate that the NAD phenotype in these two dogs was particularly mild or had a delayed age of onset.
This underscores the importance of genetic testing in order to stop further propagation of the disease. We
also cannot exclude the possibility of incomplete penetrance. Two other dogs showed clinical signs
indistinguishable from NAD but had a wildtype genotype. This most likely points to genetic heterogeneity
and the potential existence of additional inherited, degenerative neurological diseases in the Miniature
American Shepherd.

We observed the mutant allele only in Miniature American Shepherds and related breeds, but not in
standard Australian Shepherds. This may indicate that the deleterious allele arose only recently after the
separation of the populations. Estimation of the age of the deletion variant predicts the mutation event
occurred approximately 27 years ago, or around the early- to mid-1990s. The �rst parent breed club and
registry for North American MAS was formed in 1990 (https://mascusa.org/breed/history, accessed 20
Jan 2024) and, at least in the American Kennel Club, the MAS stud book is still open, meaning that
standard Australian Shepherds can still be bred into MAS lines. Therefore, we cannot de�nitively rule-out
the presence/absence of this deletion in the Australian Shepherd breed; instead, we recommend
con�rmation by testing additional representative standard Australian Shepherd dogs from different
countries before a general all-clear signal is given to this breed.

Importantly, the disease allele frequency speci�cally in the MAS control cohort was found at 8.3% (this
does not include the standard Australian Shepherds), which corresponds to a carrier frequency of 16.6%.
While these numbers may overestimate the true frequencies due to biased sampling for our study, they
clearly warrant genetic testing and a targeted breeding program to avoid future carrier x carrier matings
for these dogs.
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In conclusion, the clinical and pathologic picture presented by MAS affected with RNF170-related NAD is
strikingly similar to the phenotypic spectrum (HSP, SNAX1) seen in human patients with RNF170 variants.
Thus, NAD in the MAS represents an excellent, spontaneously occurring large animal model for RNF170
conditions in people.
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Figure 1

Central nervous system pathology of affected dogs. Widespread neuroaxonal degeneration and gliosis
are observed. a. Brainstem, at the level of the lateral cuneate nucleus. The neuroparenchyma
demonstrates high numbers of degenerated axons and spheroids along with increased glial cells and
dead neurons (inset). Hematoxylin and eosin. b. and c. Immunohistochemistry for IBA-1 (b.) con�rms the
marked increase in density of microglial cells in the affected regions with formation of Iba-1 positive cell
aggregates (b, inset). Immunohistochemistry for GFAP (c.) only shows a modest increase in astrocytes.
Controls (d-f) obtained from a young, unaffected, intact male mixed-breed dog. 4x scale bar: 150
micrometers; insets: 40x, scale bar: 60 micrometers.
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Figure 2

Mapping of the MAS NAD locus. a Manhattan plot of a GWAS using 24 neurological dogs and 30
controls showed a clear association signal on chromosome 16 with the best associated marker at
21,740,477 bp. The inset shows the QQ-plot. b Autozygosity mapping in 22 NAD cases. Each horizontal
line indicates the genotypes on chromosome 16 for one dog. Identical homozygous haplotypes are
indicated in red. The shared segment de�nes the critical interval. c NCBI annotation release 106 lists 20
genes in the critical interval. Additionally annotated LOCs are not shown. The RNF170 gene is highlighted
in red.
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