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In recent years, there has been a growing interest in the prediction of indi-
vidualized treatment effects. While there is a rapidly growing literature on
the development of such models, there is little literature on the evaluation of
their performance. In this paper, we aim to facilitate the validation of pre-
diction models for individualized treatment effects. The estimands of interest
are defined based on the potential outcomes framework, which facilitates a
comparison of existing and novel measures. In particular, we examine existing
measures of discrimination for benefit (variations of the c-for-benefit), and pro-
pose model-based extensions to the treatment effect setting for discrimination
and calibration metrics that have a strong basis in outcome risk prediction. The
main focus is on randomized trial data with binary endpoints and on models
that provide individualized treatment effect predictions and potential outcome
predictions. We use simulated data to provide insight into the characteristics
of the examined discrimination and calibration statistics under consideration,
and further illustrate all methods in a trial of acute ischemic stroke treatment.
The results show that the proposed model-based statistics had the best char-
acteristics in terms of bias and accuracy. While resampling methods adjusted
for the optimism of performance estimates in the development data, they had a
high variance across replications that limited their accuracy. Therefore, individ-
ualized treatment effect models are best validated in independent data. To aid
implementation, a software implementation of the proposed methods was made
available in R.
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1 INTRODUCTION

Prediction models for important health outcomes have long been a crucial aspect of personalized healthcare.1-3 In line,
methods for assessing their performance have been well established, and include overall accuracy, discrimination, and
calibration assessment.1-5
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2 HOOGLAND et al.

In recent years, there has been a growing interest in the prediction of key health outcomes under different treat-
ment options.6-11 Such individualized treatment effect (ITE) predictions are clearly of interest in many applied settings,
including medical decision making. Due to the causal nature of ITE predictions, such models are typically developed in
randomized data or explicitly account for confounding by other means. While there is a large and rapidly growing lit-
erature on the development of models for individualized treatment effect prediction, for example,10-17 literature on the
corresponding performance assessment is scarce.11,18-20

In this paper, we build on existing proposals for the assessment of clinical prediction models for ITE prediction,18,19,21

with a focus on measures of discrimination for benefit and calibration for benefit. Discrimination and calibration have
been key quantities of interest for clinical prediction model evaluation in the case of binary outcomes,1,2,4,22 and previous
proposals for discrimination for benefit and calibration for benefit have mainly focused on binary outcomes.18,21 Conse-
quently, we focus on binary outcomes, which are also very common in randomized clinical trials.23 Nevertheless, we will
briefly digress into analogous procedures for continuous outcomes, since both quantities are also of interest there as well.

With respect to the types of ITE prediction models of interest, we focus on causal prediction models that contrast
outcome predictions under different treatment options. This in contrast to (i) models that directly estimate ITEs without
considering the outcomes per treatment condition as key estimands, and (ii) models that only predict the sign of treat-
ment effect (ie, benefit or harm). The main reason is that medical decision making is best informed by both prognostic
information and treatment effect information, and should balance the benefits and harms of initiating particular treat-
ments, the underlying risk of disease without treatment, and patient preferences.24 For example, an effective treatment
with significant potential harm and cost may be of interest only to those at high risk without the treatment.25

Previous work by our group has addressed a number of evaluation metrics for ITE models for both binary and
continuous outcomes, including decision accuracy, discrimination for benefit and calibration for benefit.19 The main
contribution of this paper is a more in depth exploration of discrimination and calibration for benefit that (i) utilizes the
potential outcomes framework to increase clarity of exposition and to clearly define the estimands of interest,26,27 (ii)
incorporates recently proposed modifications to the c-for-benefit,20,21 and (iii) proposes model-based estimators of the
defined discrimination and calibration estimands that avoid the need for matching. Simulation results are provided for
illustrative purposes. An applied example using data from the third International Stroke Trial (IST-3)28 serves to further
illustrate implementation in practice. To aid implementation, a software implementation of the proposed methods is made
available in R.

2 INDIVIDUALIZED TREATMENT EFFECT PREDICTION

Most outcome prediction research focuses on capturing statistical association in absence of interventions. Individualized
treatment effect (ITE) prediction is a different type of prediction since it has a causal interpretation: the quantity to be
predicted is the effect caused by the treatment (or intervention, in a larger sense) on the outcome. Therefore, before
moving to the performance measures of interest, this section shortly outlines causal prediction. Subsequently, issues
surrounding the use of binomial outcome data for ITE modeling are shortly discussed (further details are available as
Online Supplementary Material A).

2.1 Causal prediction

To emphasize the causal nature of the predictions, it is helpful to write the individualized treatment effect of interest in
terms of the potential outcomes framework.26,27 For treatment taking values a ∈ , Y A=a denotes the potential outcome
under treatment a. When comparing two treatments, the ITE for individual i, … ,n can be defined as

𝛿(xi) = E(Y a=1|X = xi) − E(Y a=0|Xi = xi) (1)

where xi is a row vector of individual-level characteristics in matrix X. The degree of granularity or individualization
reflected by 𝛿(xi) relates to the number of predictors included in X, to the strength and shape of their association with
the potential outcomes, and especially to the degree to which they have a differential effect across potential outcomes (ie,
modify the effect of treatment). Ideally, the set of measured individual-level characteristics includes all relevant charac-
teristics with respect to individualized treatment effect. In practice however, this set of all relevant characteristics is often
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HOOGLAND et al. 3

unknown and the best way forward is to aim for conditioning on the most important characteristics. Correspondingly,
equation (1) reflects ITE as a conditional treatment effect for some set of characteristics.

Since in practice only one potential outcome is observed per individual,29 assumptions are required to estimate 𝛿(xi)
based on the observed data. These assumptions are discussed in detail elsewhere.11,30 In short, the key assumptions are
exchangeability (the potential outcomes do not depend on the assigned treatment), consistency (the observed outcome
under treatment a ∈  corresponds to the potential outcomes Y A=a), and positivity (each individual has a nonzero prob-
ability of each treatment assignment. An additional assumption that eases inference is no interference (the potential
outcomes for individual i do not depend on treatment assignment to other individuals). Based on these assumptions, the
individualized treatment effect can be identified given the observed data:

𝛿(xi) = E(Y a=1|X = xi) − E(Y a=0|X = xi)
= E(Y a=1|A = 1,X = xi) − E(Y a=0|A = 0,X = xi) (by exchangeability)
= E(Yi|A = 1,X = xi) − E(Yi|A = 0,X = xi) (by consistency).

(2)

Equation (2) shows that ITE predictions 𝛿(xi) can be estimated using a prediction model for outcome risk E(Yi|A =
ai,X = xi). Many modeling tools can be used for this endeavor and the details are beyond the scope of this paper and are
given elsewhere (eg,11,31). When conditioning on x is clear from the context, we at times abbreviate 𝛿(xi) as 𝛿i, or write
the vector of predictions for all individuals 1, … ,n as �̂�.

2.2 Observed outcome data

For binary outcomes, we observe outcome Yi ∈ {0, 1} and covariate status xi for each individual i. In this context, the ITE
estimate 𝛿(xi) is a difference between two risk predictions (P(Yi = 1|A = 1,X = xi) − P(Yi = 1|A = 0,X = xi)). While other
quantities are available to express treatment effect (eg, relative risk, odds ratio), risk differences are generally preferred
and better understood by clinicians.32-34 The range of 𝛿(xi) includes all values in the [−1, 1] interval, while the observed
difference between any two outcomes can only be one of {−1, 0, 1}. Therefore, the observations come with large and
irreducible binomial error and provide only limited information. Also, predictions for binary outcome data commonly
involve nonlinear functions of the covariates, and hence the effects of treatment and the covariates are typically not
additive on the risk difference scale of interest here. Consequently, the resulting ITE predictions conflate variability from
different sources: between-subject variability in P(Y a=0 = 1|X = x) and genuine treatment effect heterogeneity on the
scale used for modeling. This is the price to pay for the benefit in terms of interpretation of measures on the scale of 𝛿(x).35

In case of a continuous outcome, the problems at hand simplify considerably. First, continuous outcomes are far less
noisy than binary outcomes. Second, many continuous outcome models have an identity link function, which puts the
parameter effects directly on the outcome scale, and, most importantly, avoids the conflation of the effects of treatment
effect related parameter and other model parameters.

Regardless of the type of outcome measure, the fact that only one potential outcome can be observed is a key challenge
at the time of model development and evaluation. As opposed to the evaluation of regular prediction models of directly
observable outcomes, a direct comparison between predictions 𝛿(xi) and observed outcomes is not feasible.

3 DISCRIMINATION FOR INDIVIDUALIZED TREATMENT EFFECTS

Discriminative model performance reflects the degree to which model predictions are correctly rank-ordered and is a
common performance measure in prediction models for binary and survival endpoints.2,3 In the binary endpoint setting,
individualized treatment effects estimates 𝛿(xi) for i, … ,n range from [−1, 1], and differences between potential out-
comes Δi = Y a=1

i − Y a=0
i take values in {−1, 0, 1}. The aim is to quantify the degree to which 𝛿(x) correctly rank-orders

the probability to observe benefit in terms of Δ. The continuous case is discussed in Supplementary Material C.

3.1 Discrimination estimand

We base our estimand on the well-known c-statistic, which describes the proportion of concordant pairs amongst pairs
not tied on the outcome. Analogously, for a randomly sampled pair of cases with discordant outcomes, it describes the

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.10186 by U
niversitat B

ern, W
iley O

nline L
ibrary on [05/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 HOOGLAND et al.

probability of concordant predictions (ie, for current purposes: where the case with the lower predicted treatment effect
in the pair also has the lower probability of benefit). In particular, we start from the c-statistic as formulated by Harrell,22

since it allows for ordinal outcomes. Note that such measures of concordance with respect to rank order have a long
history, dating back to Kendall’s proposal of 𝜏 as a measure of rank correlation. Supplementary Material B provides a short
overview of measures of association leading up to the c-statistic by Harrell to build some more intuition. Adapting to the
current setting, for a randomly selected pair of cases k, l ∈ 1, … ,n (k ≠ l), the c-statistic in absence of tied predictions
can be defined as

P(concordance |differential benefit) = P(concordance ∩ differential benefit)
P(differential benefit)

= P(Δk < Δl ∩ 𝛿k < 𝛿l) + P(Δk > Δl ∩ 𝛿k > 𝛿l)
P(Δk < Δl ∪ Δk > Δl)

,

(3)

where P(concordance | differential benefit) is conditional on 𝛿k and 𝛿l (treated as fixed), and the selection of the pairs
(k, l) as well as the outcomes Δ are taken to be random. Thus, P(Δk < Δl) is the probability to observe a more beneficial
treatment effect for individual k as compared to individual l. When the proportion of concordant pairs increases, equation
(3) goes to 1; conversely, it goes to 0 when the proportion of discordant pairs increases. Likewise, Equation (3) moves to
0 when the proportion of ties in 𝛿 for pairs with a nonzero P(Δk ≠ Δl) increases. In line with the c-statistic, we opt for an
estimand that moves toward 0.5 for pairs tied on 𝛿 and with nonzero P(Δk ≠ Δl). Our main discrimination estimand of
interest can be formulated as

𝜃d = P(Δk < Δl ∩ 𝛿k < 𝛿l) + P(Δk > Δl ∩ 𝛿k > 𝛿l) + 𝜁

P(Δk < Δl ∪ Δk > Δl)
, (4)

where 𝜁 = 1
2

P(Δk ≠ Δl ∩ 𝛿k = 𝛿l). Consequently, 0.5 represents a neutral value for the case where the order of 𝛿k, 𝛿l does
not provide information on the probability of benefit (or harm). Since the comparisons are made between all k and l where
k ≠ l, each pair is evaluated twice and benefit in the comparison k to l means harm in the comparison l to k. This allows
for an equivalent formulation of 𝜃d in terms of just benefit as

𝜃d = P(Δk < Δl ∩ 𝛿k < 𝛿l) + 𝜁∗

P(Δk < Δl)
, (5)

where 𝜁∗ = 1
2

P(Δk < Δl ∩ 𝛿k = 𝛿l).

3.2 Discrimination estimators based on matching

In practice, differences between the potential outcomes of interest are not observable at the individual level. Consequently,
the required observations of the Δ’s in 𝜃d are unavailable and have to be approximated. Thus, the truly individual Δ’s are
out of reach, and in the following we will use approximations conditional on covariates x. One of the possibilities is to use
matching as in the proposed c-for-benefit that aims to quantify discriminative performance on the ITE level.18 Below we
outline the c-for-benefit, its properties, and a modification. Thereafter, we introduce an alternative model-based approach
to estimate 𝜃d.

3.2.1 C-for-benefit definition

In the setting of a randomized two-arm study measuring a binary outcome of interest, the c-for-benefit aims to assess
discrimination at the level of ITE predictions (referred to as ’predicted [treatment] benefit’ in the original paper).* The
problem of unobserved individual treatment effects is approached from a matching perspective. One-to-one matching
is used to match treated individuals to control individuals based on their predicted treatment effects. The subsequent
data pairs hence consist of a treated individual and a control individual with similar predicted treatment effect. Observed
treatment effect within the pair is defined as the difference in outcomes between these two individuals. Of note, observed
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HOOGLAND et al. 5

(within-pair) treatment effect can only be in {-1,0,1}. Subsequently, the c-for-benefit has been defined as “the proportion
of all possible pairs of matched individual pairs with unequal observed benefit in which the individual pair receiving
greater treatment benefit was predicted to do so.”18 The predicted treatment effect within each pair used in this definition
is taken to be the (within-pair) average of predicted treatment effects. That is, for a control individual i out of 1, … ,nC
(with nC being the number of controls) and a treated individual j out of 1, … ,nT (with nT being the number treated),
predicted treatment effects are taken to be

𝛿ij(xi, xj) = {(P̂(Yi = 1|Ai = 1,X = xi) − P̂(Yi = 1|Ai = 0,X = xi))+
(P̂(Yj = 1|Aj = 1,X = xj) − P̂(Yj = 1|Aj = 0,X = xj))}∕2.

(6)

The ‘observed’ treatment effect is subsequently taken to be Oij = Yi − Yj. If the two (binary) outcomes in such a pair
are discordant, then there supposedly is some evidence of a treatment effect (ie, benefit or harm); conversely, there is no
such evidence when the outcomes are concordant (ie, the predicted treatment effect did not manifest as a difference in
outcomes). The implicit assumption is that individual i and j are similar enough to serve as pseudo-observations of the
unobserved potential outcomes. The c-for-benefit is an application of the c-statistic by Harrell22 as applied to predictions
𝛿ij(xi, xj) and observations Oij from the matched pairs. That is, indexing the matched pairs by p, q ∈ 1, … ,npairs, with
npairs the total number of pairs, the c-for-benefit can be written as

cben-𝛿 =

∑
p
∑

q≠p

[
I(Op < Oq)I(𝛿p < 𝛿q) + 1

2
I(Op < Oq)I(𝛿p = 𝛿q)

]
∑

p

∑
p≠q

[
I(Op < Oq)

] (7)

with I(⋅) denoting the indicator function; Op and Oq the observed outcome differences within pair p and pair q respectively;
and 𝛿p and 𝛿q the average predicted treatment effect within pair p and pair q respectively (as defined in equation (6)).
Further details on the derivation of Harrell’s c are given in the Supplementary Material B. It is important to note that the
given definition describes an estimator, while the estimand was not explicitly defined in the original paper.18 Throughout,
our goal here is to estimate 𝜃d defined in Equation (4). Modification in the c-for-benefit algorithm discussed below hence
pertain to different estimators, while 𝜃d remains the target estimand.

3.2.2 C-for-benefit properties

Although the c-for-benefit has been applied on several occasions (eg,36-38), its properties have not been fully elucidated.
Van Klaveren et al18 recommended further work on its theoretical basis and simulation studies, which we present here. In
parallel with our work, Xia et al have considered related and complementary methodological aspects of the c-for-benefit,
which we will also relate to here.39

While the c-for-benefit was not developed with our estimand 𝜃d in mind (in fact, no estimand was specified18),
it is helpful to further dissect what it is estimating. As described, the c-for-benefit compares concordance between
differences in i) average predicted treatment effect within matched control-treated pairs 𝛿ij(xi, xj) and ii) observed out-
come differences within those same pairs Oij. In general, however, 𝛿ij(xi, xj) ≠ E(Oij|xi, xj) unless xi = xj. Specifically,
for controls i ∈ 1, … ,nC and treated individuals j ∈ 1, … ,nT and writing g0(x) for P(Yi = 1|A = 0,X = x) and g1(x) for
P(Yi = 1|A = 1,X = x),

E(Oij|xi, xj) = E(Yj|xj) − E(Yi|xi)
= g1(xj) − g0(xi)

(8)

= [g0(xj) + 𝛿(xj)] − g0(xi) (9)

= g1(xj) − [g1(xi) − 𝛿(xi)]. (10)

Perfect matching. In case of perfect matching (ie, xi = xj), it can be seen from Equations (6), (9), and (10) that
E(Oij|xi, xj) = 𝛿(xj) = 𝛿(xi) and 𝛿ij(xi, xj) = 𝛿(xj) = 𝛿(xi). Relating this to our estimand 𝜃d, perfect matching on x provides
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6 HOOGLAND et al.

the required information on Δ (since E(Oij|xi, xj) = E(Δi|x) = E(Δj|x)) and uses the correct treatment effect estimates
𝛿(xi)). Thus, the c-for-benefit based on predictions 𝛿ij(xi, xj) and outcomes Oij estimates 𝜃d under perfect matching.

Imperfect matching. Two matching procedures were proposed for the c-for-benefit: (i) based on 𝛿(x) (ie, minimize
the distance between pairs 𝛿i and 𝛿j), and an alternative (ii) based on the Mahalanobis distance between covariate vec-
tors.†18 In theory, matching on covariates x leads to appropriate matches as described above. However, it is notoriously
difficult in case of increasing dimension of x and requires appropriate scaling or weighting (importance assignment) for
all elements of x. Matching on 𝛿(x) is one-dimensional and hence much easier, but does not necessarily lead to appro-
priate matches on x since �̂�(x) is generally not an injective function of x (ie, multiple configurations of x can give rise to
the same value of 𝛿(x)). In general, when matches are only approximate in terms of x, E(Oij|xi, xj) is not equal to either
𝛿(xj) or 𝛿(xi). Specifically, as most easily seen in Equation (9), Oij will reflect treatment effect in the treated 𝛿(xj) and dif-
ferences in risk under the control condition between case i and j (ie, g0(xj) and g0(xi) may differ when xi ≠ xj). Hence,
E(Oij|xi, xj) = Δ(xj) + 𝜉ij, where 𝜉ij = g0(xj) − g0(xi) is not related to treatment but to variability in control outcome risk,
and will typically have E(𝜉ij) ≠ 0. Also, when xi ≠ xj leads to 𝛿(xj) ≠ 𝛿(xi), 𝛿ij(xi, xj) is no longer equal to either 𝛿(xj) or
𝛿(xi) (but to their average). In terms of our estimand 𝜃d, (i) the approximation of P(Δk < Δl) and P(Δk > Δl) is too vari-
able due to 𝜉ij, and (ii) the pairwise averaged 𝛿ij(xi, xj) is less variable than the individual level treatment effect estimates
that are to be evaluated. While the effect that this may have on rank-ordering is not straightforward, it might at least be
expected that the presence of 𝜉ij, that is unexplained by the treatment effects under evaluation, leads to a bias in �̂�d toward
the neutral value 0.5.

Loss of data. Both matching procedures were proposed for 1 ∶ 1 matching, which requires either equal groups size
for both study arms or loss of data. A simple remedy that stays close to the original idea is to perform repeated analysis
with random sub-samples of the larger arm.19 Alternatively, many-to-one matching (eg, full matching) or many-to-many
matching40-42 might be implemented, but none of these has been studied in the context of the c-for-benefit.

3.2.3 C-for-benefit modifications

Matching on predicted control outcome risk. From Equation (9) it can be seen that adjusting the pairwise outcome
difference Oij based on known g0(⋅) leaves just 𝛿(xj) (in expectation). That is, O∗

ij = (Yj − g0(xj)) − (Yi − g0(xi)) has a useful
expectation that equals the true individualized treatment effect for the treated individual j

E(O∗
ij|g0(xi), g0(xj)) = E(Yj − g0(xj)) − E(Yi − g0(xi))

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
0

= 𝛿(xj). (11)

Analogously, from Equation (10), and similarly adjusting for known g1(⋅), the expectation equals the true individualized
treatment effect for the control individual i

E(O∗
ij|g1(xi), g1(xj)) = E(Yj − g1(xj))

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
0

− E(Yi − g1(xi)) = 𝛿(xi). (12)

Adjusting for g0(⋅) in equation (11) aims to achieve prognostic balance, which bears resemblance to prognostic score
analysis.43,44 Conditioning on g1(⋅) in equation (12) is just the mirror image for g1(⋅). In practice, g0(⋅) and/or g1(⋅) will
of course have to be estimated and the exact equalities will become approximations. However, estimates of either one
provide a matching target that is (i) one-dimensional, and (ii) is a weighted function of x aiming to retain just those
elements that are required to reach E(O∗

ij|xi, xj) = Δ(xj) (adjusting for g0(⋅)) or E(O∗
ij|xi, xj) = Δ(xi) (adjusting for g1(⋅)).

Hence, we implemented a 1:1 matching procedure similar to the c-for-benefit, but with two important differences. First,
matching was performed based on ĝ0(x) as opposed to predicted treatment effect. Second, concordance was evaluated
between the individual level 𝛿(xj), as opposed to the averaged 𝛿ij, and the corresponding adjusted O∗

ij’s, which fits our
estimand 𝜃d under perfect matching on g0(x). Imperfect matching may arise from error in ĝ0(⋅) and unavailable matches
on the level of ĝ0(⋅). We will further refer to this implementation as cben-ŷ0. Note that a mirror image alternative could
be performed when matching on ĝ1(x); the choice between the two might be guided by the expected quality in terms of
prediction accuracy of ĝ0(⋅) and ĝ1(⋅), and the size of the group in which ITE predictions will be evaluated.

Predicted pairwise treatment effects. Recent work by van Klaveren et al21 and Maas et al20 suggests a modifica-
tion of the c-for-benefit procedure. This novel work emphasizes the benefit of 1:1 nearest neighbour matching of treated
and control cases on Mahalanobis distance, since this avoids model-dependence of the matching procedure.
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HOOGLAND et al. 7

Furthermore, they recognize the difficulty of the original definition of predicted treatment effect for a treated-control pair
(Equation (6)), and instead propose to use ‘predicted pairwise treatment effects’. The latter is defined as the predicted dif-
ference in outcome risk within the matched treated-control pair (ie, ĝ1(xj) − ĝ0(xi)). This aligns the within-pairs observed
outcome differences Oij and the predictions (ie, that now specifically target this outcome difference). However, as can be
seen from Equations (9) and (10), this ‘predicted pairwise treatment effects’ reflects both the treatment effect of interest
and the degree to which the model correctly predicts the within-pair difference in prognosis under the same treatment
allocation (ie, matching error in g0 or g1). Thus, it attributes correctly predicted within-pair differences in outcome risk
that are unrelated to treatment to the ’predicted pairwise treatment effects’. In line, we expect this novel modification to
overestimate 𝜃d. For the remainder of this paper, we will use cben-𝛿 to refer to the original c-for-benefit using 1:1 matching
on predicted treatment effect, and we will use cbenppte to refer to this recently proposed modification.

3.3 Model-based c-statistic for benefit

Extending earlier work on model-based concordance assessment in the context of risk prediction,45 we propose
model-based estimation of 𝜃d (Equation (4)): the concordance statistic between ITE predictions and the true difference
in probabilities to observe benefit between pairs of individuals. As such, model-based estimates are used to approximate
P(Δk < Δl) in Equation (5). For randomly selected pairs k, l ∈ 1, … ,n (k ≠ l), and taking Y = 1 to be harmful, there are
five potential outcome configuration that signal more benefit for case k than for case l.

1. Y a=1
k = 0,Y a=0

k = 1,Y a=1
l = 0,Y a=0

l = 0 (benefit for k, no benefit for l),
2. Y a=1

k = 0,Y a=0
k = 1,Y a=1

l = 1,Y a=0
l = 1 (benefit for k, no benefit for l),

3. Y a=1
k = 0,Y a=0

k = 1,Y a=1
l = 1,Y a=0

l = 0 (benefit for k, harm for l),
4. Y a=1

k = 0,Y a=0
k = 0,Y a=1

l = 1,Y a=0
l = 0 (no benefit for k, harm for l),

5. Y a=1
k = 1,Y a=0

k = 1,Y a=1
l = 1,Y a=0

l = 0 (no benefit for k, harm for l).

The corresponding probability estimates for these patterns follow easily from the model(s) for both potential out-
comes. For instance, for the first pattern: [1 − P̂(Y a=1

k = 1)] ⋅ P̂(Y a=0
k = 1) ⋅ [1 − P̂(Y a=1

l = 1)] ⋅ [1 − P̂(Y a=0
l = 1)]. The sum

of the five patterns is further referred to as Pbenefit,k,l. Subsequently, the required elements for an estimate of 𝜃d can be
derived. From equation (5), plugging in Pbenefit,k,l for P(Δk < Δl), we estimate model-based concordance probability for
benefit (mbcb) as

mbcb =

∑
k
∑

l≠k

[
I(𝛿k < 𝛿l)P̂benefit,k,l + 1

2
I(𝛿k = 𝛿l)P̂benefit,k,l

]
∑

k

∑
l≠k

[
P̂benefit,k,l

] . (13)

Note that the mbcb is sensitive to error in the estimation of both 𝛿(x) and Pbenefit,k,l. For the first this is clearly desir-
able. Regarding the latter, it is the price for the inherently unobservable individual-level treatment effects and replaces
the matching error of the estimators described earlier. The model underlying P̂benefit,k,l should be fairly robust (ie, low
risk of misspecification and overfitting), since it essentially replaces the role of the observed outcomes. When evaluating
training sample performance (’apparent’ performance), both 𝛿(x) and P̂benefit,k,l are estimated using the same data. For
external validation of predictions 𝛿(x), that is, in new data, the model for P̂benefit,k,l should be estimated in the new data.
As a different use-case, the effect of changing covariate distributions (also known as case-mix) on the mbcb can be pre-
dicted under given models for 𝛿(x) and Pbenefit,k,l. That is, assuming that both models are transportable to the new setting,
equation (13) gives an estimate of discriminative ability in the new case-mix (ie, for a new matrix of covariate and treat-
ment data). This is useful since c-statistics are case-mix sensitive.45,46 For example, it may be helpful to estimate the effect
of a more homogeneous or more heterogeneous sample on the model’s discriminative ability.

4 CALIBRATION OF INDIVIDUALIZED TREATMENT EFFECT
PREDICTIONS

In addition to discrimination, calibration represents a distinct and important criterion for prediction models. We use cal-
ibration here in the sense of the work of van Calster,4,5 Steyerberg,2 and Harrell,3 where perfect calibration describes
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8 HOOGLAND et al.

the situation where the expected outcome conditional on the prediction equals the prediction, across the range of pre-
dictions. Empirically, this involves regressing observed outcomes on model predictions and then evaluating the slope
and intercept or a smooth fitted to the data. Note that these measures of calibration are sensitive to both bias and the
degree of spread in the predictions.‡ In case of binary outcome, calibration is typically assessed by means of logistic
regression. Here we will stay with this convention, which does assume that the logistic link function is appropriate
for the model under evaluation. The continuous outcome case is discussed in Supplementary Material C. Regardless
of the type of outcome, the challenge is to cope with the unobserved nature of the outcome of interest in case of
individualized treatment effect predictions. Several methods have previously been proposed. A common descriptive
method to assess individualized treatment effect calibration is to form k groups based on predictions 𝛿 and to com-
pare the within-group observed and predicted treatment effect.11,18,19 While intuitive and straightforward, this approach
requires arbitrary choices for split points and is often hampered by small group sizes. Also, matching based solutions
have been proposed.20 However, in line with the arguments for model-based calibration in outcome risk prediction,5,48

we here argue for model-based calibration of individualized treatment effect predictions. Below we discuss the esti-
mands and estimation for such a model-based approach. Note that the estimands for the alternative methods mentioned
(eg, split-group and matching approaches) are different, and that a direct comparison of the estimators would have no
clear interpretation.

Model-based calibration of treatment effect predictions. The main aim is to find the calibration intercept and
slope for estimated treatment effects on the linear predictor scale. The anticipated intercept 𝛽0 and slope 𝛽1 in case of a
perfect prediction are 0 and 1 respectively, as for regular prognostic model calibration.2,3 Thus, the estimands of interest
are regression parameters. Slopes under 1 reflect overfitting of the treatment effect predictions, and conversely, slopes
over 1 reflect underfitting. Deviations of the estimated calibration intercept relate to average error in the ITE predictions
(for a fixed slope).

To cope with the unobserved outcome of interest, we first assume that control outcome risk g0(x) is known. Then, for
the nT treated cases indexed by j in 1, … ,nT ,

logit(P(Yj = 1)) = 𝛽0 + 𝛽1𝛿lp(xj) + glp,0(xj), (14)

where 𝛿lp(xj) = logit(ĝ1(xj)) − logit(ĝ0(xj)) and offset glp,0(xj) = logit(g0(xj)). Conversely, assuming known outcome risk in
the treated g1(x), for the nC control cases indexed by i from 1, … ,nC,

logit(P(Yi = 1)) = −𝛽0 − 𝛽1𝛿lp(xi) + glp,1(xi). (15)

Both can be combined for all observed outcomes Y (so both arms), omitting the subject indices for simplicity, as

logit(P(Y = 1)) = [𝛽0 + 𝛽1𝛿lp(x)](2Ai − 1) + glp,0(x)A + glp,1(x)(1 − A) (16)

with A = 1 for the treated and A = 0 for controls. In the remainder of the paper, we take the calibration
intercept 𝛽0 and calibration slope 𝛽1 in equation (16) as our calibration estimands, conditioning on a sample
x and under known P(Y = 1), g0(x), and g1(x). In practice, Y is a noisy manifestation of P(Y = 1) and both
g0(x) and g1(x) have to be estimated. To obtain the required estimates 𝛽0 and 𝛽1, we plug ĝ0(x) and ĝ1(x)
into equation (16).

While not the focus of the current study, the assessment of calibration of predicted individualized treatment effects
is also possible without the need for estimates Ê(Y A=a|x) (ie, ĝ0(x) and ĝ1(x). Supplementary Material E introduces
an approach based on the transformed covariate method by Tian et al,12 which has different estimands but a similar
underlying idea.

5 SIMULATION STUDY

A simulation study was performed with the aim to compare performance of the different discrimination and calibration
measures for ITE predictions discussed across varying sample sizes. The simulation study was performed and reported
in line with recommendations by Morris et al49 and using R statistical software version 4.2.50
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HOOGLAND et al. 9

5.1 Simulation study procedures

Data generating mechanisms: Synthetic trial data were simulated for a trial comparing two treatments on a binary
outcome. Covariates x1 and x2 were generated from independent standard normal distributions and treatment assignment
was 1:1 and independent of X. Data generating mechanism 1 (DGM-1) was based on a simple logistic model

logit(P(Y A=a
i = 1)) = −1 − 0.75ai + xi1 + 0.5aixi2. (17)

DGM-1 includes main effects of treatment and X1 and an interaction between treatment and X2. For each of nsim = 500
simulation runs, development data sets (referred to as data sets D for development) of size 500, 750, and 1000 were ran-
domly drawn. Validation data sets from DGM-1 were of size 1000 for each simulation run (referred to as data sets V1 for
validation in data from DGM-1). Marginal event probabilities were P(Y a=0 = 1) ≈ 0.31 and P(Y a=1 = 1) ≈ 0.20. Addition-
ally, independent validation sets of n=1000 cases were sampled from a second data generating mechanism (DGM-2) with
changes in the coefficients to reflect a different population (referred to as data sets V2)

logit(P(Y A=a
i = 1)) = −0.5 − 0.5ai + 0.75xi1 + 0.25xi2 + 0.25aixi1 + 0.25aixi2, (18)

Marginal event probabilities for the second DGM were P(Y a=0 = 1) ≈ 0.39 and P(Y a=1 = 1) ≈ 0.31. With differences in
both average treatment effect and heterogeneity of treatment effect between DGM-1 and DGM-2, a model developed in a
sample from DGM-1 should not perform well in individuals from DGM-2.

Estimands: For discrimination, our estimand was 𝜃d as defined in equation (5). For calibration, our estimands were
𝛽0 and 𝛽1 as defined in equation (16).

Methods: The ITE model fitted to the development data was a logistic regression model estimated by means of
maximum likelihood of the form

logit(P(Yi = 1)) = 𝛽0 + 𝛽1ai + 𝛽2xi1 + 𝛽3xi2 + 𝛽4aixi1 + 𝛽5aixi2. (19)

Discrimination performance was assessed by means of the original c-for-benefit (cben-𝛿), the c-for-benefit using 1:1
matching on predicted outcome risk under the control treatment (cben-ŷ0), recently proposed c-for-benefit based on
Mahalanobis distance matching and predicted pairwise treatment effect (cbenppte), and the proposed model-based
c-for-benefit (mbcb). Calibration performance was estimated according to equation (16). Note that estimation of cben-ŷ0,
the mbcb, and calibration assessment require estimates ĝ0(x) and ĝ1(x). For ’apparent’ evaluation, these are predictions
from the ITE model. In practice, they should be based on data not used to fit the ITE model. Therefore, in bootstrap eval-
uations and external data simulations, ĝ0(⋅) and ĝ1(⋅) were estimated according to model (19) in independent samples.
Performance measures were evaluated in settings (1) apparent (based on the same sample as on which the ITE model was
fitted3), (2) in interval validation using bootstrap 0.632+ adjustment (3) in interval validation using bootstrap optimism
correction, (4) in external validation samples V1 generated from DGM-1, and (5) in external validation data samples V2
generated from DGM-2. A more detailed account of the procedures in available in Online Supplementary Material D. In
addition to the main simulations, settings (1), (4), and (5) were also evaluated under misspecification of the ITE model
with the omission of the (important) interaction between treatment and x2. For these simulations, ĝ0(x) and ĝ1(x) were
either estimated according to model (19) as in the main simulations, or using separate regression forests per treatment
arm to provide an alternative robust to misspecification.15,51

Performance measures: Writing 𝜃s for the estimand value in simulation run s, and �̂�s for the corresponding estimate,
performance measures were averaged across simulations s ∈ 1, … ,nsim in terms of root mean squared prediction error√

1
nsim

∑nsim
s=1 (𝜃s − �̂�s)2 and visualized in terms of mean ± 1 SD for both the errors (𝜃s − �̂�s) and the absolute values (�̂�s).

To obtain more stable estimates for calibration outcomes in presence of extreme values, those summary statistics were
computed after trimming away the ten percent most extreme values.

5.2 Discrimination results

Figure 1 (deviations from the estimands) and Supplementary Figure F.1 (absolute value summaries) show the main sim-
ulation results with respect to the discrimination statistics. With respect to the apparent estimates, all statistics showed
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10 HOOGLAND et al.

F I G U R E 1 Simulation results for the discrimination statistics in terms of mean (± 1 SD) deviation from the estimand 𝜃d.

optimism that decreased with sample size. The original cben-𝛿 seemed virtually unbiased for sample sizes 750 and 1000.
However, according to the results based on independent data evaluations discussed below, it was actually slightly biased
downwards (in agreement with Section 3.2.2, and this canceled out the optimism here. The cbenoptw was most optimistic
in agreement with Section 3.2.3.

As shown in the bootstrap panels in Figure 1, both types of bootstrap evaluations successfully adjusted for optimism
in the apparent evaluations. On average, bias was almost eliminated from cben-ŷ0 and the mbcb. However, in terms of
accuracy, this decrease in bias was offset by increased variability as shown by the increase in rmse between apparent and
bootstrap evaluations for the best performing methods (Table 1).

For assessment in independent validation samples from either DGM-1 or DGM-2, both cben-ŷ0 and the mbcb were
virtually unbiased, with the mbcb having the better rmse. As expected, the original cben-𝛿 was slightly pessimistic and
the recently proposed cbenoptw was optimistic. Both had larger rmse than the mbcb.

Detailed results of the simulations under misspecification are provided in Supplementary Material F. In short, the
mbcb and cben-𝛿 performed well, while cben-ŷ0 was more sensitive to the choice of model used to approximate the
potential outcomes in the external data.

5.3 Calibration results

Figure 2 (deviations from the estimands) and Supplementary Figure F.2 (absolute value summaries) show the main
simulation results with respect to the calibration evaluation. In line with regular calibration of outcome risk, apparent
calibration assessment is not of interest, and apparent intercepts and slopes were uniformly 0 and 1 respectively. The
estimand did clearly show a decrease in overfitting with increasing sample size (Figure F.2).
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HOOGLAND et al. 11

T A B L E 1 Root mean squared error against 𝜃d as averaged over simulation runs for each measure and for each of the sample sizes (500,
750, and 1000).

Statistic cben-𝜹 cbenppte cben-ŷ0 mbcb

Sample size 500 750 1000 500 750 1000 500 750 1000 500 750 1000

Development data

Apparent 0.036 0.028 0.025 0.050 0.037 0.033 0.046 0.035 0.031 0.036 0.028 0.024

0.632+ 0.041 0.033 0.027 0.038 0.030 0.027 0.037 0.029 0.026 0.039 0.031 0.025

Opt. corrected 0.041 0.033 0.028 0.053 0.039 0.034 0.046 0.036 0.031 0.037 0.029 0.024

External

DGM-1 0.027 0.027 0.029 0.029 0.030 0.029 0.031 0.031 0.031 0.023 0.025 0.024

DGM-2 0.025 0.023 0.024 0.030 0.031 0.030 0.030 0.028 0.028 0.023 0.022 0.022

Note: Bold for best performance per setting (multiple if tied).

F I G U R E 2 Simulation results for the ITE calibration intercept and slope estimates. Each figures shows the deviation from the
estimand (10% trimmed mean ± 1 SD).
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12 HOOGLAND et al.

T A B L E 2 Root mean squared error against 𝛽0 and 𝛽1, after ten percent trimming, and as averaged over simulation runs for each of the
sample sizes (500, 750, and 1000).

Statistic 𝜷0 𝜷1

Sample size 500 750 1000 500 750 1000

Development data

Apparent 0.23 0.20 0.17 0.28 0.24 0.21

0.632+ - - - 0.38 0.30 0.24

Opt. corrected 0.23 0.21 0.18 0.29 0.26 0.22

External

DGM-1 0.17 0.18 0.18 0.19 0.21 0.21

DGM-2 0.18 0.15 0.16 0.20 0.18 0.19

Both bootstrap procedures removed some optimism from the apparent estimates and showed the decreasing risk of
overfitting with increasing sample size, but were still optimistic. In fact, in terms of rmse (Table 2), the bootstrap estimates
were worse than the noninformative apparent evaluation. This implies that there is not enough information in a single
sample to obtain reliable out-of-sample ITE calibration estimates based on this method. This is likely related to the need
to estimate g0(⋅) and g1(⋅) in the small number of independent out-of-sample cases.

When validating a model in a new independent sample, calibration assessment was unbiased as desired (bottom panels
Figure 2) in both DGM-1 and DGM-2, correctly identifying problems when applying the model to DGM-2.

Detailed results of the simulations under misspecification are provided in Supplementary Material F. In short, and in
line with the main simulation results, the apparent calibration estimates were not informative, and the estimates of the
calibration intercept and slope in external data agreed with the estimands on average, albeit with considerable variability.

6 APPLIED EXAMPLE: THE THIRD INTERNATIONAL STROKE TRIAL

Patients with an ischemic stroke have sudden onset of neurological symptoms due to a blood clot that narrows or blocks
an artery that supplies the brain. A key component in the emergency medical treatment of these patients includes
clot-busting drug alteplase (intravenous thrombolysis recombinant tissue-type plasminogen activator).52

The third International Stroke Trial (IST-3) was a randomized trial and investigated the benefits and harms of intra-
venous thrombolysis with alteplase in acute ischemic stroke.28 This large trial included 3035 patients receiving either
alteplase or placebo in a 1:1 ratio. The primary outcome was proportion of patients that was alive and independent at
6-month follow-up, which we used as outcome of interest here. Primary analyses of the treatment effect were performed
with logistic regression adjusted for linear effects of age, National Institutes of Health stroke scale (NIHSS) score, time
from onset of stroke symptoms to randomization, and presence (vs absence) of ischemic change on the prerandomization
brain scan according to expert assessment. This analysis showed weak evidence of an effect (OR 1.13, 95% CI 0.95-1.35),
but subgroup analyses suggested possibly heterogeneous treatment effect by age, NIHSS score, and predicted probability
of a poor outcome.

For illustrative purposes, we here compare a main effects logistic regression model similar to the original adjusted
analysis (model 1) with a model where all covariate-treatment interactions were included (model 2), and with random
forest estimates.15 The outcome was coded as 0 for those independent and alive after 6 months and 1 otherwise. The
included variables were treatment, age, NIHSS, time (from onset of stroke symptoms to randomization), and imaging sta-
tus (presence vs absence of ischemic change on the prerandomization brain scan). In the regression models, continuous
variables age, NIHSS, and time, were modeled using smoothing splines. Models 2 included covariate-treatment inter-
actions for these variables. Model1 and 2 were fitted using the mgcv package in R with default smoothing parameter
selection based on generalized cross-validation.53 ITE predictions were based on the difference between potential out-
come predictions under alteplase and the control condition. For the random forest predictions, control outcome risk was
modeled as a regression forest in the control group with the same covariates as used in model 1 and 2 (models 3a). ITE
predictions were based on a causal forest with the same covariates (models 3b). Where required for evaluation purposes,
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HOOGLAND et al. 13

potential outcomes under the treated condition were inferred based on control predictions plus ITE predictions. Both
random forests were fitted using R package grf51 and default settings (ie, 2000 trees, honest splitting, minimum node size
5, try all variables for splits given p < 20). All in all, this applied example illustrates different ways to assess the quality of
individualized treatment effect predictions. The evaluated models were emphatically chosen for this purpose and were
not developed in collaboration with clinical experts in the field. Hence, they are not meant to me applied in practice.

The exact parameter estimates for both models are not of key interest, but the apparent performance with respect to
outcome risk prediction under allocated treatment was good: c-statistics were 0.826 (model 1), 0.831 (model 2), and 0.818
(model 3a/b), with corresponding Brier scores of 0.160, 0.158, and 0.163, and Nagelkerke R2 of 0.389, 0.402, and 0.370.
Important to note, only the random forest implementations directly provide out-of-bag estimates for the training data, so
their apparent evaluation metrics should be less optimistic. However, optimism in outcome predictions should be small
given the very large n to p ratio. Differences between methods were small and Spearman’s correlation between outcome
risk predictions for the different methods were all > 0.97.

The predicted ITEs, however, were very different. Model 1 predicted ITEs with median −0.020 (95% between −0.29
and 0.00), model 2 predicted ITEs with median −0.026 (95% between −0.161 and 0.120), and model 3b predicted ITEs
with a median of −0.023 (95% between −0.147 and 0.113). That is, the predicted treatment effect was very similar across
individuals when predicted by model 1 (assuming a constant treatment effect on the log odds scale), but not when pre-
dicted by model 2 (assuming a heterogeneous treatment effect on the log odds scale) or causal random forest model 3b.
Table 3 shows the apparent and bootstrap corrected results for discrimination and calibration assessment at the ITE level
for the applied example as averaged over 1000 bootstrap samples.

With respect to ITE discrimination, both apparent and bootstrap-corrected discrimination estimates favored model 2
and 3a/b over model 1, with model 1 estimates around the no discriminative ability value of 0.5. The apparent mbcb for
both model 2 and 3a/b were around 0.566 and correspond to the expected c for benefit for the covariate distribution in
this sample assuming the model is correct. Bootstrap corrected results generally preferred model 2, with the exception of
optimism corrected mbcb (preferring the random forest-based predictions). As a general remark, boot0.632+ corrections
were quite stable, while optimism correction gave larger corrections. Based on the simulation results, their accuracy is
similar in large sample. All in all, model 2 and model 3a/b are clearly better than model 1 in terms of discriminative ability.

In terms of calibration, bootstrap corrected slope estimates suggested that both model 2 and model 3a/b were overfitted
with respect to ITEs. The amount of shrinkage suggested varies considerably between the 0.632+ and optimism corrected
estimates, with the 0.632+ estimate suggesting more shrinkage. Based on the simulation study, the 0.632+ was more
accurate. Note that the calibration slope for model 1 is not estimable (since the ITEs have no variability on the logit scale)
and the intercept estimate for model 1 clearly showed that the degree of predicted benefit was underestimated.

The results indicate that model 1 did not provide useful differentiation in terms of ITEs. While the discriminative abil-
ity of model 2 and model 3a/b seemed modest, clear benchmarks are lacking. With respect to treatment decisions, Table 4

T A B L E 3 Applied example discrimination and calibration statistics for predicted individualized treatment effect.

Model cben-𝜹 cbenppte cben-ŷ0 mbcb 𝜷0 𝜷1

Apparent

M1 0.488 0.536 0.489 0.510 −0.117

M2 0.562 0.584 0.570 0.567 0.012 1.096

M3a/b 0.538 0.544 0.557 0.566 −0.023 0.788

Bootstrap 0.632+

M1 0.489 0.563 0.499 0.505

M2 0.535 0.584 0.559 0.536 0.484

M3a/b 0.536 0.566 0.557 0.531 0.382

Optimism corrected

M1 0.485 0.486 0.475 0.507 −0.118

M2 0.534 0.538 0.544 0.518 −0.047 0.900

M3a/b 0.486 0.459 0.502 0.537 −0.065 0.486
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14 HOOGLAND et al.

T A B L E 4 Applied example: out-of-sample benefit estimates of treating according to the model (treat is benefit <0, do not treat
otherwise. Median and 95% bootstrap interval are shown.

Comparison M1 M2 M3b

Model vs opposite −0.009 (−0.050, 0.053) −0.031 (−0.081, 0.020) −0.038 (−0.082, 0.010)

Model vs treat all 0.002 (−0.046, 0.050) −0.010 (−0.056, 0.042) −0.013 (−0.061, 0.038)

Model vs treat none −0.013 (−0.055, 0.044) −0.025 (−0.071, 0.027) −0.027 (−0.073, 0.020)

shows out-of-sample treatment benefit estimates for treatment according to the model versus (i) not treated according to
the model,19 (ii) treatment all, and (iii) treat none are provided. All are nonsignificant. Nonetheless, while model 2 and
model 3b are very different methods, they provided similar ITE estimates that agree with respect to sign in 80% of cases.
Also, patient characteristics of those predicted to have benefit agree with clinical knowledge.52 For model 2 comparing the
1969 patients predicted to have benefit according to model 2 (𝛿model2 < 0) with the remaining 1066 patients (𝛿model2 ≥ 0),
the first were older [median(IQR) age 83 (78-87) vs 73 (63-82)], had worse symptoms [median(IQR) nihss 15(10-20) vs
6(4-9)], had less delay to randomization and thus treated earlier [median(IQR) time in hours 3.5 (2.5-4.9) vs 4.2 (3.6-4.8)],
were more likely to have visual infarction on imaging (43% vs 36%). These figures were very similar for model 3b. Conclud-
ing, there was insufficient signal to reliably guide treatment decisions, but the proposed measures clearly differentiated
between the models with and without potential (1 vs 2 & 3a/b), and aligned with estimates of decision accuracy.19

7 SOFTWARE

R package iteval (https://github.com/jeroenhoogland/iteval) provides an implementation of the cben-𝛿, cben-ŷ0, mbcb,
and calibration measures as defined in this paper in the freely available R software environment for statistical comput-
ing.50 The cbenppte has been implemented in R package HTEPredictionMetrics available on GitHub (https://github
.com/CHMMaas/HTEPredictionMetrics).20

8 DISCUSSION

Measures of calibration and discrimination have a long history in the context of prediction models for observed outcome
data, especially of the binary type. However, the evaluation of prediction models for individualized treatment effects (ITE)
is more challenging due to the causal nature of the predictions and the resulting unobservable nature of individualized
treatment effects. In this article, we used the potential outcomes framework27 to gain insight into existing performance
measures,18,20,21 clearly defined the estimands of interest, and developed model-based measures of discrimination and
calibration for ITE prediction models. The model-based proposals avoid the need for matching and at the same time avoid
the bias associated with existing measures, and are applicable for all prediction methods that can provide predictions for
both potential outcomes. Measures of discrimination provide insight into the degree to which the model correctly ranked
the predicted treatment benefit, while measures of calibration provide information on bias and over/underfitting. While
the primary focus was on dichotomous outcomes, we also provided residual-based approaches for continuous outcome
models. As such, our work provides generally applicable tools for the endeavor of evaluating ITE prediction models in
randomized data.

In terms of discriminative ability, the proposed model-based c-for-benefit (mbcb) provides both a normal performance
measure and an expected (case-mix adjusted) reference level for new data (in line with the model-based c-statistic.45 The
latter is relevant because concordance probabilities are known to be sensitive to case-mix.46 Also, bootstrap procedures
were proposed that adjust for optimism when no external data are available. In the simulation study, the mbcb estimates
were best in terms of both bias and root mean square error across settings. The original cben-𝛿18 has a more difficult
interpretation and was downward biased in the simulation study, but was very stable throughout. In contrast, the recent
cbenppte

20,21 was consistently optimistic. Our adaptation of the matching-based c-for-benefits (the cben-ŷ0) removed the
bias, but at too high a cost in terms of variability. We hypothesize that the stability of the mbcb is due to the lack of need
for a matching algorithm.
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In terms of calibration, the potential outcomes framework provided a model-based method for evaluating ITE pre-
diction calibration. Again, the model-based nature avoided the need for matching algorithms, and the results of the
simulation study showed unbiased estimation in independent validation data. However, the main proposal depends on
the accuracy of the underlying potential outcome predictions under both treatment conditions. Thus, misspecification of
the potential outcome models may invalidate the proposed calibration measure. While this may seem like a significant
cost, we emphasize that the medical decision making context for which these models were developed requires accurate
potential outcome predictions in conjunction with ITE predictions. Therefore, we consider accurate outcome prediction
models to be a prerequisite for ITE modeling, and their evaluation should be a principle part of performance evaluation
in practice.2,3 Nonetheless, for use cases where only the ITEs are relevant, we proposed an alternative calibration method
based on the work Tian et al12 that does not depend on a potential outcome model.

A key finding for both the ITE discrimination and calibration measures was that bootstrapping procedures were able to
remove optimism (ie, reduce bias), but that the increase in variance of the estimator generally led to increased root mean
squared error compared to apparent evaluation. This implies that external data are needed to accurately evaluate ITE
predictions. The underlying reason is the need for accurate potential outcome predictions based only on the out-of-sample
cases, for which the 36.8% of out-of-sample cases in a bootstrap procedure were apparently insufficient. Nevertheless,
bootstrap procedures are still to be preferable to apparent assessment when nothing else is available, as they provide a
fairer estimate on average. Also, there was little overfitting in our examples due to large n to p ratios, but optimism in
apparent estimates can be much more severe and can vary widely between methods.

Related work. The key literature underlying the developments in this article mainly arose from the fields of (medi-
cal) statistics and epidemiology, but there are recent and connected developments in econometrics and machine learning,
some of which venture beyond randomized data and the large n to p ratio in this paper. While ITE estimation was not
the focus of our work, it is worth discussing how it relates to recent machine learning methods. In particular, recent
years have seen a rapid growth in regression and machine learning methods that aim to estimate individualized treat-
ment effects directly, without estimating the potential outcomes themselves. These methods benefit in settings where the
functional form of the treatment effect is less complex than the response surfaces of the potential outcomes, and thus
easier to learn or model. Popular methods include transformed covariate regression12 and in particular tree-based meth-
ods.14,15,54-56 In addition, there has been much interest in meta-learners that decompose the estimation of individualized
treatment effects into separate prediction problems that can be approached using any prediction method (eg, regression,
machine learning).13,16,17,57,58 Typically, these methods require prior estimation of the potential outcomes and propensity
scores, which are then combined into transformed outcomes that can be regressed on the covariates to predict individual
treatment effects. Prominent examples include the X learner,16 the DR learner,58 and the R learner.17 Extensive simulation
studies investigating the properties of these causal machine learning methods are available elsewhere.59-61

What all of these methods have in common is that they either do not estimate potential outcomes, or treat them
as nuisance parameters that are used to obtain more accurate personalized treatment effect estimates. Also, they either
inherently provide shrinkage and selection techniques, or can build on methods that do, and thus have an advantage
in settings with a higher tension between model complexity and sample size (eg, high-dimensional settings). This has
been shown to be beneficial in terms of the accuracy of predicted ITEs, particularly for observational data and strong
treatment selection.58,61 However, if the potential outcome predictions are of interest, separately predicting the potential
outcomes and individualized treatment effects leads to the unwanted situation that Ê(Y A=1|xi) − Ê(Y A=0|xi) ≠ 𝛿(xi). The
pragmatic solution taken in our applied example was to separately estimate Ê(Y A=0|x) and 𝛿(x) and infer Ê(Y A=1|x) from
them. While this leads to consistency between predicted potential outcomes and ITEs, it does not use the most accurate
(directly estimated) model for Ê(Y A=1|x).

With respect to the proposed measures of discrimination and calibration for individualized treatment effects, the dis-
crimination estimand formulated in section 3 is not within reach for methods estimating individualized treatment effects
𝛿(x) without informing on Ê(Y A=a|x). This is because the probability of observing a benefit for an individual, or observ-
ing a difference in benefit between two individuals, depends on the risk in the absence of treatment. In general, medical
decision making for individuals is difficult when only the treatment effect estimate is available, and not the outcome pre-
diction under a reference condition. Obvious applications that depend only on 𝛿(x) are beyond the scope of our work, but
include ranking groups according to their predicted benefit for judicious allocation of limited resources. Research specifi-
cally aimed at evaluating a model’s prioritization qualities includes recent work on prioritization rules via rank-weighted
average treatment effects.62 With respect to calibration, we have proposed an alternative method that does not depend on
the potential outcome model(s), but it requires further study and comparison with a recent arXiv paper by Xu and Yad-
lowsky63 that provides a fairly general calibration metric for methods that only provide ITEs. Their proposal examines
the 𝓁p norm of the expected calibration error for predicted treatment effect heterogeneity using nonparametric methods,
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which have different estimands compared to our proposal.63 Also, Chernozhukov has proposed an estimation framework
that targets key features of individualized treatment effect, with a particular interest in approximation based on a lin-
ear function of proxy ITE predictions from auxiliary data.13 Although intended for estimation and inference purposes
and, unlike the current work, based on transformed outcome models, their estimation objective bears resemblance to our
calibration objective without assuming a specific parametric form.

Limitations. Limitations of the current work include the relatively narrow scope of the simulation study, which was
conducted primarily for illustrative purposes. We also limited our use case to settings with randomized data and models
that provide individualized treatment effect estimates as the difference between two potential outcome predictions. In
addition, we focused on parametric measures of discrimination and calibration in line with the existing literature and the
common context of very limited sample size, but recently proposed nonparametric measures are promising.63 Important
questions remain regarding the relationship between discrimination and calibration at the outcome and ITE levels, and
the relationship between discrimination and calibration statistics and the clinical utility of the models. With respect to
uncertainty estimates, bootstrap procedures provide a viable option.

Future work. In terms of future research, it would be interesting to evaluate whether some level of grouping is benefi-
cial for evaluating model performance. Paradoxically, the goal of precision underlying the development of ITE models may
hinder the ability to evaluate them, since individual-level treatment effects are inherently unobservable. In large sample
situations, it would also be interesting to allow for a more flexible estimation of the calibration slope beyond the current
linear implementation, which would allow for the construction of E-statistics and an integrated calibration index.20,64

Conclusion. In summary, we have provided a principled review of existing measures of discrimination and calibra-
tion for models predicting individualized treatment effects, and proposed model-based methods that avoid the need for
matching and reduce bias. Further research is needed to improve understanding of the precise properties of these mea-
sures under different conditions of sample size, degree of treatment effect heterogeneity, and explained variation, and to
explore the relationship with novel estimators for related estimands in the machine learning literature.
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ENDNOTES
∗The original paper did not focus on the required conditions for causal interpretation of the predicted individualized treatment effects; here
we assume that these assumptions, as described in Section 2.1, are met.

†Where the distance between xi and xj is defined as d(xi, xj) =
√

(xi − xj)′S−1(xi − xj) with S the covariance matrix of the covariates x.
‡Stevens and Poppe provide an interesting overview of different uses of the term calibration in different disciplines.47
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