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Abstract: To determine the diagnostic performance of simulated reduced-dose chest CT scans
regarding pulmonary T1 tumors and assess the potential impact on patient management, a repository
of 218 patients with histologically proven pulmonary T1 tumors was used. Virtual reduced-dose
images were simulated at 25%- and 5%-dose levels. Tumor size, attenuation, and localization were
scored by two experienced chest radiologists. The impact on patient management was assessed by
comparing hypothetical LungRADS scores. The study included 210 patients (41% females, mean
age 64.5 ± 9.2 years) with 250 eligible T1 tumors. There were differences between the original and
the 5%—but not the 25%—dose simulations, and LungRADS scores varied between the dose levels
with no clear trend. Sensitivity of Reader 1 was significantly lower using the 5%-dose vs. 25%-dose
vs. original dose for size categorization (0.80 vs. 0.85 vs. 0.84; p = 0.007) and segmental localization
(0.81 vs. 0.86 vs. 0.83; p = 0.018). Sensitivities of Reader 2 were unaffected by a dose reduction. A CT
dose reduction may affect the correct categorization and localization of pulmonary T1 tumors and
potentially affect patient management.

Keywords: chest; CT scan; lung neoplasms; computer simulation; radiation dosage

1. Introduction

Lung cancer is one of the deadliest cancers worldwide. It accounts for 18% of the
cancer deaths overall and is a leading cause of cancer death in men and the second leading
cause in women [1].

CT screening examinations enable the detection of small lung cancers in the early
stages, improving the patient outcome substantially [2,3]. After detection of the nodules,
core-needle biopsy can be used to determine lung cancer types and subtypes, a relatively
safe procedure facilitating optimal targeted therapy for each patient [4,5].

Among others, the National Lung Cancer Screening Trial (NLST) found a reduction
in mortality rates by 20% in a high-risk population (n = 53,454) when using low-dose
CT (LDCT) instead of chest radiography for lung cancer screening (LCS) [6]. Previous
investigations also showed that chest radiography is significantly inferior to chest CT
examinations regarding the detection of small pulmonary tumors [7,8]. The importance
of detecting lung cancers in the tumor stage 1 (T1) is reflected by the 5-year survival
rate, which drops from 61% in localized tumor stages to 7% in advanced tumor stages [9].
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Therefore, the current study focused on T1 tumors, which by definition are not larger than
3 cm across, have not reached the membranes surrounding the lungs, and do not affect the
main branches of the bronchi.

Still, an immanent issue with LCS is the exposure to ionizing radiation. Therefore,
the optimization of screening CT protocols plays a key role in the field and has driven
numerous investigations in the past. In particular, in the past decade, with the introduction
of iterative reconstruction algorithms [10] and highly efficient detector assemblies, LDCT
has become a reality that is already in broad clinical use, especially in the field of LCS, with
the UK currently leading the way [11–14].

In the context of LCS, the minimization of radiation exposure is particularly relevant
since a large number of healthy individuals without symptoms are exposed. Several
studies have addressed this issue in the past using different approaches, and there is a
broad consensus that dose reduction is feasible [15–18].

In this context, LDCT protocols are commonly associated with effective doses of one
to two mSv at best [19]. However, recent investigations have shown that further dose
reduction is feasible, with an effective radiation dose well below one mSv. Our institution
has built a profound expertise regarding ULDCT examinations in phantom studies, which
showed that low-dose (1–2 mSv) and ultralow-dose (0.1–0.2 mSv) [20] examinations are
feasible for detecting small solid and subsolid nodules [17], with rather high sensitivities
and specificities compared to the original dose examinations [21].

Another noteworthy new development in this context is the photon-counting detector
CT, as it offers the opportunity to perform chest CT scans at very low doses with minimal
noise, retaining a comparable image quality. The first studies regarding lung nodule detec-
tion and classification reported very promising results in humans and phantoms [22,23],
but further research is warranted, e.g., to rule out potential impacts on patient manage-
ment recommendations and to elaborate on optimized protocols for indications, such as
LCS. However, it underlines the importance of exploring the potential effects of CT dose
reduction on pulmonary nodule management.

Several studies have evaluated the effect of dose reduction on the detection of pul-
monary nodules in well characterized but relatively small clinical cohorts [24,25], and the
validation of those results over a wide variety of different vendors and scanners in a larger
clinical cohort is still missing.

This study aimed to evaluate the feasibility of ultra-low dose protocols regarding
the detection and classification of histologically proven pulmonary T1 cancers. Unlike
previous studies, it utilizes a highly heterogeneous cohort, including data from different
sites, including various scan protocols and CT scanner types. Furthermore, it aimed
at assessing the potential impact on patient management caused by dose reductions by
comparing shifts in the hypothetical Lung CT Screening and Reporting System (LungRADS)
scores between the different dose-level groups.

2. Materials and Methods

This is a retrospective study with a fully crossed block design with multiple readers
and multiple cases. It was approved by the local ethics committee and conducted in
accordance with the principles of the Declaration of Helsinki. Only patients with written
informed consent were included in the cohort provided by the local lung cancer center
(LCC). The authors had full access to and take full responsibility for the integrity of the data.

2.1. Study Cohort

The study cohort was based on a repository provided by the local lung cancer center
(LCC). It consisted of 218 individuals, all with histologically proven T1 tumors of the lung
and available chest CT scans. The examinations were synchronized with the institutional
picture archiving and communication system (PACS) and collected in a private user case
list. The relevant dose parameters, such as dose-length-product (DLP) or the CT dose index
volume (CTDIvol), were documented for each CT scan. Inclusion criteria were as follows:
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resected pulmonary lesion, histopathologic diagnosis of lung cancer, lesion size <3 cm
(T1-stage), preoperative CT-scan present, patient age >18 years. Exclusion criteria were as
follows: absence of preoperative CT-scan, higher tumor stages, explicit denial of further
data use, insufficient image quality.

The examinations of six patients were deemed ineligible for virtual dose reduction
due to excessive image noise (n = 4) and missing CT slices (n = 2). Additionally, two more
scans were excluded because of incomplete lung coverage, to avoid potential bias from
the smaller scan volume. The characteristics of the included patients (n = 210) and tumors
(n = 250) are shown in Table 1.

Table 1. Patient and nodule characteristics.

Sex (f/m) 87/123
Age [Years, Mean (SD)] 64.5 (9.2)

Other pulmonary diagnoses, n (%)
Emphysema 120 (57.1%)
Fibrosis 2 (1.0%)
Pulmonary congestion 8 (3.8%)
Pleural effusion 9 (4.3%)
Pneumonia 28 (13.3%)
Atelectasis 21 (10.0%)
Bronchitis 157 (74.8%)
SAD 28 (13.3%)
Postoperative status 5 (2.4%)

Nodule localization, n (%)
Upper lobe 133 (53.2%)
Middle lobe/lingula 17 (6.8%)
Lower lobe 100 (40.0%)

Nodule attenuation and diameter, n (%)

Solid 201 (80.4%)
<4 mm 3
4–6 mm 11
>6–8 mm 19
>8–15 mm 50
>15–30 mm 118

Part-solid 28 (11.2%)
<6 mm 1
≥6 mm 27

Ground glass 21 (8.4%)
<30 mm 21
>30 mm 0

LungRADS category, n (%)
2 24 (9.6%)
3 39 (15.6%)
4A 69 (27.6%)
4B 118 (47.2%)

SAD, small airway disease.

2.2. CT Acquisition and Creation of Virtual (Ultra)Low-Dose Protocols

The 218 CT examinations originated from over 20 different sites all over the coun-
try with 5 different CT manufacturers (Siemens, n = 130; Philips, n = 34; GE, n = 28;
Toshiba, n = 25; Canon, n = 1). These examinations were conducted over an 8-year period
(2010–2018), with the DLP and CTDI values remaining within the respective National Diag-
nostic Reference Levels [26]. The acquired minimum slice thickness varied from 0.5–3 mm
with the vast majority (>80%) being ≤1.5 mm. The reconstruction algorithms contained
filtered-back projection (n = 130, 60%), as well as iterative reconstruction (IR, n = 88, 40%).
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Scan volumes of the included examinations contained whole-body examinations (n = 4,
2%), Positron Emission Tomography and Computed Tomography (PET/CT) scans (n = 36,
17%), chest plus abdomen or neck (n = 46, 22%), and chest-only acquisitions (n = 124, 59%)
(Table 2).

Regarding the scan protocol, 62% of the examinations were performed on the local
128-row multidetector Flash CT scanner (Siemens SOMATOM Definition Flash, Siemens
Healthineers, Erlangen, Germany) featuring iterative reconstruction algorithms (iterative
reconstruction in imaging space (IRIS)) and a detector system with integrated readout
electronics, a gantry rotation time of 0.28 s, and a pitch of 2.2. For image reconstruction, an
I30f soft tissue kernel was utilized; iterative reconstruction was used to create axial stacks
of a 1 mm slice thickness.

The anonymized examinations were transferred to a dedicated post-processing imag-
ing lab specialized in LDCT simulations. The reduced dose simulations were produced by
adding statistical noise to the images using a previously described CT image-based noise
addition tool [27]. Four reduced dose level simulations were created out of every CT scan,
leading to five different dose levels for each examination: 100% (original), 50%, 25%, 10%,
and 5% doses.

These simulations were consecutively re-transferred to our institution.

Table 2. CT parameters.

Dose parameters of the original scans, mean (SD)

DLP, mGycm
Chest only (n = 124) 315.6 (213.5)
Chest plus neck/abdomen (n = 46) 892.6 (557.4)
Whole-body acquisition (n = 4) 540.8 (501.2)
PET-CT (n = 36) 308.6 (155.6)

CTDIvol, mGy
Chest only (n = 124) 13.7 (13.4)
Chest plus neck/abdomen (n = 46) 27.2 (23.9)
Whole-body acquisition (n = 4) 16.4 (25.1)
PET-CT (n = 36) 4.1 (2.1)

Effective dose, mSv #

Chest only (n = 124) 4.4 (3.0)
Chest plus neck/abdomen (n = 46) 12.5 (7.8)
Whole-body acquisition (n = 4) 7.6 (7.0)
PET-CT (n = 36) 4.3 (2.2)

Slice thickness, n (%)
0.5 mm 4 (1.2%)
0.625 mm 3 (0.9%)
0.75 mm 1 (0.3%)
0.9 mm 9 (2.6%)
1 mm 85 (25.0%)
1.25 mm 29 (8.5%)
1.5 mm 12 (3.5%)
2 mm 48 (14.1%)
2.5 mm 2 (0.6%)
3 mm 16 (4.7%)
4 mm 1 (0.3%)

CTDIvol, volume computed tomography dose index; DLP, dose-length-product. # Calculated from the DLP using
the conversion factor of 0.014 [28].

2.3. Pilot Study

After preparation of the reduced dose simulations, each reader would have needed to
review 1050 examinations (210 × 5), which would have resulted in a highly time-consuming
task. Since the differences between adjacent dose levels visually did not seem very striking,
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a pilot study was conducted in order to compare the signal-to-noise-ratios (SNRs) and
contrast-to-noise-ratios (CNRs) of the five dose level groups (study workflow depicted in
Figure 1).
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Therefore, a board-certified radiologist (AAP) measured the attenuation in Hounsfield
units (HUs) and the corresponding standard deviations (SDs) of the air outside the patient
(anterior of the sternum), in the bone (central in the vertebral body), and in the soft tissue
(autochthonous back musculature) above the level of the diaphragm in 10 randomly chosen
patients. SNR was calculated by dividing the signal intensity (SI) of the soft tissue by the
background noise (SD of soft tissue SI), CNR by dividing the difference between the SI of
bone, and soft tissue by the soft tissue background noise as follows:

SNR =
SIso f t tissue

SDso f t tissue

CNR =
SIbone − SIso f t tissue

SDso f t tissue

2.4. Readout

Two independent blinded readers (reader 1 with seven years and reader 2 with
five years of experience in chest radiology) conducted the readouts of the main study on
dedicated workstation monitors (BARCO Coronis Fusion 6MP LED, Kortrijk, Belgium). The
readers scored all eligible examinations (3 × 210 = 630 examinations) in a randomized order
regardless of the dose level, rating the nodule diameter (based on the categories following
LungRADS v2022) and the location and density category (solid, part-solid, ground-glass)
of each nodule on a spreadsheet. The readers were allowed to use all kinds of tools, such as
multiplanar reformats or maximum intensity projections, in order to read the examinations
in the most realistic setting possible. A board-certified radiologist with seven years of
experience in chest radiology read all examinations independently and documented the
presence of other pulmonary diagnoses, such as emphysema, fibrosis, or pneumonia.

2.5. Statistical Analysis

Metric variables are reported as the mean (standard deviation), with categorical
variables as absolute numbers (relative percentage). In the pilot study, the SNR and CNR
of the different groups were compared using the Friedman test for multiple not normally
distributed paired samples with Bonferroni correction for multiple comparisons. For the
main study, a generalized linear mixed model (GLMM) with crossed random intercepts
for readers and lesions and the dose reduction level as a fixed effect was designed. The
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binarized endpoints (yes/no) were correct nodule detection, correct categorization of
nodule attenuation, size, and localization.

In a subgroup analysis, each reader’s results regarding the respective endpoints for
each (simulated) dose level were compared using the Cochran’s Q test.

To assess the possible clinical impact of the findings, the hypothetical LungRADS
scores of the tumors were calculated for every dose level. Shifts between the risk groups,
which could be assumed to be caused solely by a dose reduction, were documented. The
scores were based on LungRADS v2022.

Interrater agreement was assessed by using Cohen’s Kappa (κ). According to Landis
and Koch, kappa-values of 0.00 to 0.20 were interpreted as slight, 0.21 to 0.40 as fair, 0.41 to
0.60 as moderate, and 0.61 to 0.80 were interpreted as substantial, while values between
0.81 and 1.00 were interpreted as almost perfect agreement [29].

A p-value of <0.05 was considered statistically significant. All analyses were performed
using dedicated software: SPSS (SPSS Statistics, IBM Corp., version 25.0. Armonk, NY,
USA) and GraphPad Prism (GraphPad Software, Inc., version 8, San Diego, CA, USA).

3. Results

After preparation of the simulations, the CT scans of 210 patients (mean age [SD]
64.5 [9.2] years, 87 females [41%]) containing 250 tumors of the lung (201 solid, 28 part-solid,
and 21 ground glass) could be included in the analysis (Table 1). Two exemplary cases are
depicted in Figures 2 and 3. Eight patients had to be excluded due to technical reasons,
such as incomplete coverage of the lungs.
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Figure 3. Different dose level simulations depicting a 14 mm ground-glass nodule in the left upper
lobe of a 75-year old female (white arrow) with left-sided chest pain. The lesion turned out to be a
primary pulmonary adenocarcinoma.
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Regarding contrast media application, 74% (n = 156) of the scans were contrast-
enhanced, and 26% (n = 54) were non-contrast scans (Table 2).

3.1. Pilot Study

The comparison of the SNR and CNR of the different dose level simulations in 10 pa-
tients revealed that regarding the 10% and 50% simulations, there were no significant
differences in the adjacent dose levels (Table 3, Figure 4). Since no significant effects on
reader performance were to be expected, the 10% and the 50% dose level simulations were
excluded from the further analysis.

Table 3. SNR and CNR by dose level (n = 10).

Dose level 100% 50% 25% 10% 5%

Noise, mean (SD) 22.4 (6.8) 29.3 (10.1) 39.9 (13.3) 61.1 (25.1) 86.0 (34.5)
SNR, mean (SD) 2.2 (0.9) 1.7 (0.5) 1.2 (0.4) 0.8 (0.3) 0.6 (0.3)
CNR, mean (SD) 4.3 (3.6) 3.2 (2.7) 2.5 (2.0) 1.8 (1.5) 1.2 (1.0)

CNR, contrast-to-noise ratio; SNR, signal-to-noise ratio.
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(a) and CNR (b) depicted as boxplots (min–max). CNR, contrast-to-noise ratio; SNR, signal-to-noise
ratio; ns, non-significant; *, significant (p < 0.05); **, highly significant (p < 0.01).

3.2. Influence of Virtual Dose Reduction on Nodule Detection, Categorization, and Localization

As the main finding, the results of the GLMM indicated no significant differences in
the odds of correct nodule detection or correct categorization of nodule size, attenuation,
or localization between the different dose levels (Table 4).

Table 4. Results of the generalized linear mixed model.

Variable Terms Odds Ratio 95%-CI p-Value

Detection
Original vs. 25% 1.23 0.73–2.28 0.385
Original vs. 5% 0.86 0.50–1.48 0.579

Size
Original vs. 25% 1.16 0.81–1.67 0.408
Original vs. 5% 0.88 0.62–1.25 0.472

Attenuation
Original vs. 25% 0.93 0.61–1.42 0.747
Original vs. 5% 0.91 0.60–1.39 0.668

Localization
Original vs. 25% 1.12 0.77–1.64 0.559
Original vs. 5% 0.83 0.57–1.21 0.341

CI, confidence interval.
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Subgroup Analysis

In a subgroup analysis by the reader, the comparison of the three dose levels (100%,
25%, and 5% dose simulation) revealed no significant differences regarding the detection
rate and false-positive rates (FPRs) for both readers (Table 5a).

Table 5. (a). Nodule-based detection sensitivity and FPR by dose level. (b). Correct nodule
categorization and localization by dose level (n = 250).

(a)

Dose Level 100% 25% 5% p-Value a

Reader 1 Sensitivity, n (%) 236 (94%) 238 (95%) 235 (94%) 0.097
Sensitivity

(part-solid), n (%) 26 (93%) 27 (96%) 26 (93%) 0.368

FPR, n ( n
210 ) 94 (0.45) 87 (0.41) 86 (0.41) 0.543

Reader 2 Sensitivity, n (%) 223 (89%) 229 (92%) 218 (87%) 0.419
Sensitivity

(part-solid), n (%) 24 (86%) 25 (89%) 24 (86%) 0.717

FPR, n ( n
210 ) 27 (0.13) 28 (0.13) 32 (0.15) 0.607

(b)

Dose Level 100% 25% 5% p-Value b

Reader 1 Size 0.84 0.85 0.80 0.007 *
Attenuation 0.89 0.88 0.88 0.161

Lobe 0.93 0.93 0.92 0.325
Segment 0.83 0.86 0.81 0.018 #

Reader 2 Size 0.69 0.71 0.70 0.798
Attenuation 0.80 0.80 0.79 0.942

Lobe 0.86 0.86 0.84 0.442
Segment 0.71 0.71 0.69 0.761

FPR, false-positive rate. a Cochran’s Q test or Friedman test, as appropriate. b Cochran’s Q test. * Post-hoc-analysis:
100% vs. 25%, p = 0.401; 100% vs. 5%, p = 0.036; 25% vs. 5%, p = 0.003. # Post-hoc-analysis: 100% vs. 25%, p = 0.105;
100% vs. 5%, p = 0.247; 25% vs. 5%, p = 0.005.

Regarding the correct size categorization and segmental localization of the nodules,
reader 1 performed significantly inferiorly using the 5%-dose level simulations compared
to the higher dose levels. However, reader 2 achieved comparable results for the three dose
levels regarding all endpoints (Table 5b, Figure 5).

Regarding the relevant subgroup of subsolid nodules (n = 49), reader 1 achieved
sensitivities of 93%, 96%, and 93% for the three dose levels, while reader 2 achieved
sensitivities of 86%, 89%, and 86%, respectively.

A subgroup analysis, by LungRADS category, of the tumors was performed and
revealed increasing detection rates for both readers with an increasing LungRADS score.
Reader 2 detected more LungRADS 2 tumors using the 25%-dose level compared to the
original dose level (p = 0.022) regarding the smallest subgroup of LungRADS 2 tumors
(n = 24). There were no differences between the dose levels for the other LungRADS
categories (Figure 6).

Reader 1 was more sensitive regarding the detection of LungRADS 2 tumors
(p = 0.016), otherwise there were no significant differences between the readers (Figure 6).

There was no significant correlation between detection status and any of the technical
or clinical parameters (Table 1).
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3.3. Impact on Patient Management

Regarding the possible clinical impact of the findings, the hypothetical LungRADS
scores of each dose level were compared for each reader. For reader 1, 15% (n = 38) of the
tumors shifted LungRADS scores by dose reduction from the original dose to the 25%-dose
level, hereby 6% (n = 15) shifted to a lower score, and 9% (n = 23) shifted to a higher score.
Dose reduction from the original dose to the 5%-dose level led to a shift for 17% of the
tumors (n = 42), 6% (n = 15) to a lower score, and 11% (n = 27) shifted to a higher score.

The corresponding value for reader 2 regarding the dose reduction from the original
dose to the 25%-dose level was 18.0% (n = 45), of which 9% (n = 22) shifted to a lower and
9% (n = 23) to a higher risk score. After reducing the original dose to the 5%-dose level,
20% (n = 50) of the tumors shifted overall, hereby 10% (n = 24) shifted to a lower and 10%
(n = 26) to a higher risk score.

3.4. Interrater Agreement

Regarding the hypothetical LungRADS categorization of the nodules (comprising
nodule size and density), the readers showed a moderate agreement for all dose levels
(κ = 0.459–0.492). Following the definition of Landis and Koch [29], the analysis revealed
almost perfect interrater agreement regarding lobar localization (κ = 0.824–0.857) and
substantial agreement regarding segmental localization (κ = 0.661–0.700) of the nodules for
all dose levels (Table 6).

Table 6. Interrater agreement.

Dose Level 100% 25% 5%

LungRADS score * (κ) 0.459 0.492 0.465
Lobe (κ) 0.857 0.839 0.824

Segment (κ) 0.700 0.688 0.661
* LungRADS score comprises nodule size and attenuation (based on LungRADS v2022).

4. Discussion

This study analyzed the impact of dose reduction on the detection, localization, cat-
egorization, and management of pulmonary T1 tumors by using virtual (ultra)low-dose
CT protocols.

The main finding of this study was that dose reduction in chest CT is feasible regarding
pulmonary nodule detection, localization, and classification. However, according to the
subgroup analyses, tumor localization and size categorization might be affected by a dose
reduction for certain readers. Fletcher et al. analyzed the detectability of pulmonary
nodules in the chest CT scans of 21 patients containing 28 nodules using five different
dose levels and found that dose reductions by 70% or more are non-inferior compared
to the routine clinical dose levels [16]. In a follow-up study, they revealed that scanning
pulmonary nodules 5 mm or larger at very-low-dose levels are feasible down to a 10-quality
reference mAs (QRM) level but might lead to a loss of detection regarding a significant
proportion of part-solid nodules [24].

In the current study, there were no differences regarding the detection rates of part-
solid nodules between the different dose levels; however, it has to be mentioned that the
number of included part-solid nodules was rather small (n = 28).

The mean CTDIvol in this study was relatively high compared to similar studies, most
probably because the included examinations comprised not only chest CT scans but also
abdominal or whole-body scans acquired in various clinical settings [24]. However, the
effectively applied doses were in similar ranges [30].

Nodule detection rates of both readers were excellent for all dose levels while main-
taining an acceptable FPR (range: 0.13–0.45).

In order to evaluate the secondary endpoint, readers had to localize the nodules
correctly and categorize them by size and attenuation; the categories were defined in accor-
dance to LungRADS v2022 in order to assess the potential impact on patient management.
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LungRADS categories shifted between the different doses, indicating a potential impact
on patient management. After calculation of the hypothetical LungRADS scores, 15.2%
and 16.8% of all tumors would have shifted to a different LungRADS category after dose
reduction from the original dose to the 25%- and 5%-dose level, respectively, for reader 1.
The corresponding values for reader 2 were even a bit higher with 18.0% and 20.0%. Taking
into regard a measurement variability of 25% reported by several in vivo “coffee-break”
studies and the proportion of differing LungRADS scores between two different computer-
aided diagnosis (CAD) systems measuring the same nodule of approximately 15%, these
values seem acceptable and are in line with the literature [31–33].

In a similar study, Paks et al. compared an LDCT protocol to an ULDCT protocol
regarding pulmonary nodule detection and volumetry in 188 solid pulmonary nodules
greater than 2 mm and concluded that ULDCT delivers comparable results and therefore
may be used for follow-up examinations [30]. However, they did not assess the impact on
patient management specifically, limiting the comparison to the current study.

Hata et al. and Milanese et al. both assessed the impact of dose reduction on Lun-
gRADS classification by radiologists [34,35]. While Milanese et al. found excellent intraob-
server agreement between low dose and ultra-low dose scans, Hata et al. reported varying
agreements between the original dose and reduced dose scans, indicating a potential impact
of dose reduction on the LungRADS classification, which is in line with the current results.
However, it should be noted that in the latter study, the median volume of the nodules
was approximately 50 mm³, compared to volumes ranging from 75 mm³ to 194 mm³ in
Milanese et al., which made interpretation more challenging.

A task for future studies will be the evaluation of (AI-) CAD systems in this con-
text, since such tools are broadly utilized in daily clinical routines in order to support
radiologists, who are confronted with an increasing workload and benefit from CAD sys-
tems, especially if used as second reader devices [36–38]. Regarding the current study, it
can be hypothesized that the use of (AI-) CAD systems potentially could have enhanced
the readers’ performance, especially reader 1 might have had benefitted from a second
reader device. In theory, the use of CAD systems leads to more robust and reproducible
readout results.

Interestingly, it could be shown that CT dose reduction has an influence on the perfor-
mance of a deep learning (DL)-based CAD system regarding malignancy prediction in a
high-risk cohort of proven malignancies [39]. This finding implies that the CAD systems
still require radiological supervision as their performance is dependent on image quality.

For daily clinical routines, these results imply increased awareness while reading
reduced-dose chest CT scans, for instance in the context of LCS. This applies to both
readouts performed by radiologists alone and AI-assisted readouts. If CAD systems are
utilized, the results demand supervision by a radiologist in a second reader scenario,
since the risk of lung cancer under- or overestimation and all the associated, potentially
unnecessary consequences, such as biopsies, is given.

This study has limitations. First, although the results of the current study indicated no
statistical difference between the different dose level scans, the design did not allow for any
statement on the non-inferiority of the reduced-dose CT scans, which should be targeted in
follow-up studies.

Second, the virtual reduced-dose protocols were created during post-processing and
are not perfectly transferable to true ULDCT protocols. However, this approach was the
most realistic and at the same time ethically justifiable one. Third, CT scans from various
institutions and vendors were included with differing settings, which may have affected the
quality of the simulations. On the other hand, this approach led to robust and generalizable
results. Fourth, there were only a small number of part-solid nodules included in this study.
This type of nodule is very relevant, since it has a higher probability of malignancy and
is specifically vulnerable to higher image noise. However, the management defining and
therefore most relevant part of the nodule is the solid portion, which was evaluated by the
readers. Fifth, the results were based on the readout results of only two readers resulting in
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limited generalizability and demanding follow-up studies with a higher number of readers.
Lastly, there was no washout period for the readers between the readout of the different
dose levels to definitely rule out recall bias. However, randomization of the large number
of cases prevented an order effect.

In conclusion, the results of this study indicate that a dose reduction to 25% or 5%
of the original dose is feasible for the detection and localization of pulmonary T1 cancers.
Alterations to patient management based solely on dose reduction cannot be ruled out by
the current results; however, there is no clear tendency towards malignancy risk over- or
underestimation. For clinical routines, respective measures should be taken to address this
problem, for instance the utilization of a second reader setup.
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