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A B S T R A C T

Cancer is a leading cause of death and a cost burden on healthcare systems worldwide. The mainstay
of treatment is chemotherapy which is most often administered empirically. Optimizing the frequency of
drug administration would benefit patients by avoiding overtreatment and reducing costs. In this work,
the optimization of chemotherapy regimens using mathematical programming techniques is demonstrated by
developing a simple mathematical programming model for the administration of a fictitious drug. The question
to be answered by the solution of the model is how often the drug should be administered so that the tumor size
does not exceed a predefined size and the treatment cost reaches a minimum value. The proposed mathematical
programming model is computer-implemented using a well-established mathematical programming system,
thus keeping the cost and effort of obtaining the optimization results low. An example is used to demonstrate
the superiority of the proposed optimization approach over the mainstay approach.
1. Introduction

Despite significant advances in cancer research, cancer remains
a fatal disease with a poor prognosis (Ferlay et al., 2021; Siegel
et al., 2024). Current treatment options range from surgery, (radio-
)chemotherapy, palliative care, and combinations of these. Every day,
oncologists are faced with choosing the best treatment option for an
individual patient. Drug regimens are selected according to state-of-
the-art guidelines based on clinical trials.

An important principle of chemotherapy is cytoreduction, i.e. the
elimination of the tumorous (neoplastic) cell population. Because many
therapies cannot fully discriminate between tumorous and non-tumorous
cells, healthy (proliferative) cells also undergo cell death. Thereby,
treatment itself can induce organ dysfunction and may significantly
reduce quality of life. This has led to the common practice of ad-
ministering chemotherapy in cycles with specific and individually
tailored dosage(s). However, little is known on optimal dosing and how
individuals benefit from variation in administration cycles.

‘‘Treatment scheduling’’ refers to the concept of allocating appropri-
ate treatment to a patient in a suitable (i.e. gold standard therapy and
administration mode), optimized (optimal frequency of administration)
and timely (treatment duration and total time frame) manner (National
Cancer Institute). Scheduling models have to consider and integrate
several non-negligible parameters and constraints, respectively (Ma-
jidi et al., 1993). These parameters shall reflect tumor biology as
accurately as possible. The importance of treatment scheduling may
be underlined by the fact, that the leading causes of cancer death,
i.e. lung and colorectal cancer (Ferlay et al., 2021), are both sensitive
to chemotherapy.

E-mail address: konstantin.braeutigam@unibe.ch.

In recent decades, the growing interest in tumor modeling (Brady
& Enderling, 2019; Kuznetsov et al., 2021; Rockne et al., 2019; Victori
& Buffa, 2019) has led to several attempts to mathematically model
tumor growth and thereby optimize treatment regimens in a more
individualized and targeted way (Enderling & Wolkenhauer, 2021;
Shi et al., 2014). Optimal control approaches predominate (Lecca,
2021), with most models expressed as sets of differential equations
(Moore & Allen, 2019). These models are then reformulated in order to
make them amenable to mathematical programming techniques such as
mixed integer linear programming (MILP). The main reason for using
differential equations is to be able to model the tumor dynamics: Tumor
growth as a function of time, evolution of drug clearance over time,
etc.

Tumor growth is biologically complex and any modeling attempt
is inherently approximate. It is generally accepted that tumors grow
in three phases: In the initial phase, the tumor starts growing ex-
ponentially from a small size (Fig. 1). After reaching its maximum
growth acceleration, the tumor continues growing in larger rates. Fi-
nally, growth rates decrease as the tumor approaches a lethal size
(Gompertz, 1825; Laird, 1964). Importantly, tumor growth rates of hu-
man neoplasms are extremely heterogeneous, depending on the entity,
inherent biological aggression, and host factors (Spratt et al., 1995,
1996). Tumor growth dynamics are most commonly modeled using
exponential, power law, logistic, Gompertz and Bertalanffy functions,
depending on the cancer type (Beckman et al., 2020; Benzekry et al.,
2014; Soerensen et al., 2018; Tabassum et al., 2019; Vaghi et al., 2020).
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Fig. 1. Tumor growth over time (𝑡: time, 𝑁(𝑡): amount of tumor cells over time 𝑡).
p
2
i
v
n
a
b
o
a

a
(
m
a
o
p

c
i
o
t
t
s
p
t
b
d
d
r
s
l

t
u
d
m
i
G
l
(
1

p
e

Patient death can be considered the most critical clinical endpoint
n oncology and inevitably marks the point of no return. Death oc-
urs when the tumor size exceeds a critical value. Therefore, the
efinition of a value for the tumor mass beyond which the quality
f life for the patient may be considered unbearable, is useful for
he purposes of treatment optimization. A total tumor burden of one
ilogram, equivalent to one trillion cells, has been postulated to be
ethal (Del Monte, 2009). Tumor cell populations smaller than 10³ cells
re considered as biologically tolerable due to efficient host defense
echanisms (e.g. via apoptosis, immune surveillance, etc.) (Petrovski
McCall, 2001). In addition to tumor size, resistance to chemotherapy

ritically limits any scheduling efforts (Werner et al., 2014) as it un-
quivocally predicts treatment failure. Lastly, while scheduling models
re becoming increasingly complex and multi-parametric (Laleh et al.,
022), financial affordability can significantly hinder treatment access
nd delivery (Fundytus et al., 2021). In 2018, the cost of cancer in the
uropean Union was e199 billion (Hofmarcher et al., 2020). Despite
eing important especially in low-income countries (Ruff et al., 2016),
udget constraints have so far been neglected in treatment scheduling.

Besides optimal control, other approaches have found their way into
reatment scheduling. In recent years, there has been an increased re-
earch effort to apply metaheuristics to optimize treatment scheduling
Horne et al., 2016). Various metaheuristic optimization approaches
ave been put into practice, such as swarm intelligence (e.g. Dhieb
t al., 2023), a multiobjective gray wolf optimizer (Chen et al., 2023),
tc. Dhieb et al. propose an optimized chemotherapy scheduling and
rug administration protocol that aims to minimize tumor cell size,
rug consumption, and total therapy duration (Dhieb et al., 2023).
heir protocol consists of a series of chemotherapy and relaxation
essions. While drug administration is optimized according to an op-
imal control approach, the duration of each session is optimized using
he Particle Swarm Optimization metaheuristic. Shindi et al. combine
ptimal control theory with multiobjective swarm intelligence and
volutionary algorithms to minimize tumor and drug concentration
Shindi et al., 2020). They claim that their hybrid approach is per-
orming better than methodologies that are based purely on swarm or
volutionary algorithms. The metaheuristic multiobjective ‘‘gray wolf
ptimizer’’ (Chen et al., 2023), which mimics predator–prey behavior,
as used to establish a drug administration protocol that minimizes

he concentration of cancer cells and the concentration of the drug
ithin the body of the patient. It should be noted though, that while
etaheuristic approaches provide ‘‘good enough’’ solutions, they suffer

rom their inherent inability to claim mathematically proven global
2

ptimality (INFORMS, 2021; Soerensen et al., 2018).
In recent years, artificial intelligence (AI) methods have been ap-
lied to healthcare (Padmanabhan et al., 2017; Shiranthika et al.,
022). Yang et al. review applications of Reinforcement Learning (RL)
n cancer chemotherapy. They conclude that RL could be of practical
alue, but there are still many issues to be resolved for these tech-
iques to benefit oncological studies (Yang et al., 2023). A more recent
pplication of RL to drug dose control in chemotherapy is reported
y Mashayekhi et al. The authors report promising results, but point
ut that several challenges still need to be addressed before RL can be
pplied to real medical cases (Mashayekhi et al., 2024).

Mathur et al. provide a classification of cancer therapy optimization
pproaches based on the accumulated knowledge of previous research
Mathur et al., 2022). This classification is intended to aid decision
aking when determining the most appropriate treatment regimen for
given cancer patient. Another excellent critical review and assessment
f research to date is provided by Strobl et al. (Strobl et al., 2023). Both
apers provide invaluable views on future research directions.

This work addresses the scheduling of drug dose administration for
ancer patients over a longer treatment horizon. The treatment horizon
s divided into a number of shorter treatment periods at the beginning
f which a drug dose may or may not be administered. Dose administra-
ion decisions are outcomes of a mathematical programming problem
hat is solved to global optimality. The goal of the drug administration
chedule is to ensure an acceptable level of quality of life for the
atient at a minimum drug cost. Quality of life is ensured by forcing
he size of the tumor of the patient not to exceed a prespecified upper
ound. The tumor size is controlled by assuming that the treatment
rug reduces the size of the tumor and that it resets the function
escribing tumor growth evolution back to an earlier time state. The
esult of the optimization is thus, how often and when a given drug
hould be administered in order to guarantee an acceptable quality of
ife while financial cost is kept at a minimum.

Main assumption of our approach is that drug administration leads
o tumor shrinkage. The ability to keep the tumor size below a given
pper bound determines the success or failure of a treatment. The
eveloped model can be mathematically classified as a MILP resp.
ixed-integer nonlinear programming (MINLP) model and is computer-

mplemented using the mathematical programming modeling system
AMS (GAMS Development Corporation, 2021). The optimization prob-

em is solved to global optimality usling the optimization solver CPLEX
IBM Inc, 2021) resp. the global optimization solver BARON (Sahinidis,
996).

Formulating the drug administration scheduling problem as a multi-
eriod global optimization problem, addressing both therapeutic and
conomic issues, and solving it to global optimality is a novel approach.
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Determining the tumor size during optimization by moving back and
forth on the function describing its evolution, is another novelty.

The optimization approach makes it possible to assess treatability,
to avoid overtreatment and to ensure a good quality of life for the
patient. Moreover, the healthcare system can reduce treatment costs.

2. A mathematical programming approach for treatment schedul-
ing in Oncology

In the following section an optimization model for drug adminis-
tration for a patient suffering from a solid tumor is developed. If the
patient does not receive medical treatment, he will die when the tumor
reaches a critical size. In order to keep the tumor size at a level that
allows the patient to live a comfortable life, the patient is treated with
drugs. The effect of the drug treatment on the tumor is to reduce the
size of the tumor. The treatment does not reduce the size of the tumor
to zero. If the treatment is stopped, the tumor will continue to grow
until either the patient dies or the treatment is restarted.

The problem is to minimize the cost of treatment while ensuring
an acceptable quality of life for the patient. To achieve this goal,
decisions must be made about whether or not to administer the drug
at predetermined time points over the treatment horizon.

2.1. Assumptions

For the purposes of modeling the following assumptions are made:

• The treatment horizon consists of a predefined number of inter-
vals of constant length (e.g. weeks)

• The drug can be administered at most once at the beginning of
each interval

• Each dose of the drug is of the same amount
• The tumor grows according to a prespecified growth model during

the time periods
• The effect of the drug on the tumor is that it reduces its size by a

constant factor
• The drug cannot reduce the size of the tumor below a minimum

value

2.1.1. Notation
In this section we introduce the notation for expressing the problem

as a mathematical programming model. This concerns the indices, the
constants as well as the decision variables involved in the model.

2.1.2. Indices
𝑘 index indicating the number of treatment periods.

2.1.3. Constants
𝑝 price for a dose of drug
𝐺(𝑘) upper bound on size of the tumor
𝐺(𝑘) lower bound on the size of the tumor
𝑆𝑇 𝑜𝑙 maximum size of tumor tolerated
𝑆𝑚𝑖𝑛 minimum possible size of the tumor after

treatment
𝑆0 initial size of the tumor
𝐴 constant factor by which the tumor size has

grown after a period of time elapsed
𝑅𝐹 factor expressing the reduction in tumor size

when a dose of drug is administered

2.1.4. Decision variables
𝑋(𝑘) binary variable indicating weather (𝑋(𝑘) = 1) or

not (𝑋(𝑘) = 0) the drug is administered
𝐺(𝑘) tumor size before treatment
𝑅(𝑘) reduction of tumor when drug is administered
3

𝑆(𝑘) tumor size after the drug has been administered
2.1.5. Constraints
In the following, we mathematically express the constraints that

characterize the treatment scheduling problem. First we describe the
objective function, and then the problem constraints.

2.1.6. Objective function
The goal of the optimization is to minimize the total cost of the

drug treatment while keeping the size of the tumor below a certain
level 𝑆𝑚𝑎𝑥. The total cost of the drug treatment is the sum of the cost
of the drug that need to be administered during the treatment horizon
𝐻 . The objective function may be expressed mathematically as

𝑀𝑖𝑛
𝐾
∑

𝑘=1
𝑝 𝑋(𝑘) (1)

2.1.7. Treatment horizon
The treatment horizon 𝐻 consists of 𝐾 periods of equal length,

which are indexed from 1 to 𝐾.

.2. Tumor size

.2.1. Size of tumor before treatment (tumor growth)
We use an exponential model to express tumor growth. More specif-

cally we assume that the untreated tumor size at period 𝑘 equals 𝐴
times the treated tumor size at the previous period 𝑆(𝑘 − 1). This is
expressed mathematically as

𝐺(𝑘) = 𝐴 𝑆(𝑘 − 1) ∀𝑘 > 1 (2)

2.2.2. Size of tumor after treatment
The size of the tumor at period 𝑘, 𝑆(𝑘), equals the size of the tumor

because of tumor growth 𝐺(𝑘) minus the reduction in size of the tumor
because of treatment in period 𝑘. Expressed mathematically

𝑆(𝑘) = 𝐺(𝑘) − 𝑅(𝑘) ∀𝑘 = 1,… , 𝐾 (3)

2.2.3. Reduction of tumor size
The effect of drug treatment is shown by a reduction in the size

of the tumor. We assume that the size of the tumor is reduced by
a constant factor 𝑅𝐹 each time the drug is administered. Expressed
mathematically

𝑅(𝑘) = 𝑅𝐹 𝑋(𝑘) 𝐺(𝑘) ∀𝑘 = 1,… , 𝐾 (4)

2.2.4. Tumor size limit
As already stated, the model aims at finding a drug administration

schedule that keeps the size of tumor below value 𝑆𝑇 𝑜𝑙.

𝑆(𝑘) ≤ 𝑆𝑇 𝑜𝑙 ∀𝑘 = 1,… , 𝐾 (5)

2.3. Mathematical properties of the model

Besides the linear constraints, the model contains the nonlinear con-
straints (4). Further, the model contains the discrete (binary) variables
𝑋𝑘, all other variables being continuous, non-negative. The model is
therefor a Mixed Integer Non-Linear Programming (MINLP) problem.

The problem can either be solved as a MINLP, or efforts can be
made to linearize constraints (2) and (4), thus transforming the MINLP
problem into an MILP. Fortunately, constraints (4) can be linearized
exactly, so the linearization does not therefore change the optimal
solution of the problem. The linearization leads to a MILP amenable

to currently available MILP solvers.
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inearization of Eq. (4)
The following set of constraints linearizes constraints (4) exactly

Hu & Kahng, 2016, page 128)

(𝑘)𝑋(𝑘) ≤ 𝑅(𝑘)
𝑅𝐹

∀𝑘 = 1,… , 𝐾 (6)

𝑅(𝑘)
𝑅𝐹

≤ 𝐺(𝑘)𝑋(𝑘) ∀𝑘 = 1,… , 𝐾 (7)

(𝑘)(1 −𝑋(𝑘)) ≤ 𝐺(𝑘) −
𝑅(𝑘)
𝑅𝐹

∀𝑘 = 1,… , 𝐾 (8)

𝐺(𝑘) −
𝑅(𝑘)
𝑅𝐹

≤ 𝐺(𝑘)(1 −𝑋(𝑘)) ∀𝑘 = 1,… , 𝐾 (9)

This concludes the description of the model. In the following we
describe an example of an instance of the model, we implement it in
the mathematical programming language GAMS (GAMS Development
Corporation, 2021), and solve it using the commercial state of the art
MILP solver interfaced by GAMS.

3. Results

3.1. Model parameters

In the following the parameters of the model instance are being
described

Tumor growth parameters
Growth rate: 𝐴 = 1.5
Initial value: 𝑆0 = 50

Tumor size parameters
Initial value of the tumor size: 𝑆0 = 50
Maximum acceptable tumor size before treatment: 𝑆𝑚𝑎𝑥 = 500
Minimum size of the tumor after treatment: 𝑆𝑚𝑖𝑛 = 10

Time parameters
Treatment horizon: 𝐻 = 52
Period length: 𝐿 = 1

Drug parameters
Tumor size reducing factor: 𝑅𝐹 = 0.6
Cost for a dose: 𝑝 = 10
4

3.2. Solution of the optimization problem

In the following, we show that the tumor size reaches the lethal
size without treatment. A simple heuristic solution to the problem is
then presented. Finally, an attempt is made to solve the problem to
optimality using state-of-the-art optimization software.

3.2.1. No drug treatment
When the tumor is left untreated its size grows by a factor of 𝐴 = 1.5

period by period. At period 𝑘 = 9 the size of the tumor reaches the
alue of 1281.4453 exceeding the lethal value of 1000 (gram). Thus
ot treating cannot be an option since the patient dies after 8 periods
f time. The evolution of 𝑆(𝑘) when the tumor is not treated is depicted
n Fig. 2.

.2.2. Heuristic solution
A simple heuristic approach to address the problem would be to

dminister the drug just when the tumor size 𝐺(𝑘) is about to exceed
he value 𝑆𝑇 𝑜𝑙. This approach leads to an objective value of 210, which

means, that the drug needs to be administered 21 times within the
treatment horizon at the appropriate periods. The evolution of 𝑆(𝑘)
when the heuristic is applied is shown in Fig. 3. Fig. 3 shows that the
tumor size remains at tolerable but high values during the treatment
horizon. We are interested in solutions that ensure small tumor size
and are economically viable.

3.2.3. Solution of the example using optimization software
The example instance of the model is implemented using GAMS.

GAMS is a mathematical modeling system, that allows the computer
implementation of optimization models by using human readable al-
gebraic statements. The modeling system provides interfaces to imple-
mentations of state-of-the-art mathematical optimization algorithms,
referred to as solvers. The model is developed to be a MILP since
it contains both continuous and discrete variables and only linear
constraints. For the solution of the problem we use the state-of-the-art
MILP solver CPLEX (IBM Inc, 2021).

The MILP solver CPLEX returns for the model instance described
above a feasible solution of 210, which corresponds to 21 doses of drug.
The solver is not able to determine the optimal solution to the problem
within the allocated time of 3 h (10,800 s).

The evolution of the tumor size 𝑆(𝑘) is shown in Fig. 4.
Further arbitrary modifications of 𝑆𝑇 𝑜𝑙 cannot answer the question

concerning the optimal value of drug cost subject to a predefined 𝑆𝑇 𝑜𝑙.
This question can only be answered if we enable CPLEX to obtain the
optimal solution to the problem.
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Fig. 3. Evolution of tumor size 𝑆(𝑘) after the drug has been administered when the heuristic is applied.
Fig. 4. Evolution of 𝑆(𝑘) after the drug has been administered.
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.3. Model refinement

In this section we take another look at the model aiming to strengthen
he constraints involved, with the objective to be able to obtain the
ptimal solution to the model within an acceptable time period. We
ocus on constraints (4), which are restated here:

(𝑘) = 𝑅𝐹 𝑋(𝑘) 𝐺(𝑘) ∀𝑘 = 1,… , 𝐾 (10)

q. (10) can be relaxed to

(𝑘) ≤ 𝑅𝐹 𝑋(𝑘) 𝐺(𝑘) ∀𝑘 = 1,… , 𝐾 (11)

hich does not affect the optimal solution of the problem because
ptimization will always force this inequality to be satisfied as an
quality. This is because it is optimal to reduce the tumor size as much
s possible, whenever the drug is administered.

With constraint (11) we want to enforce

(𝑘) = 0 ⟹ 𝑅(𝑘)∕𝑅𝐹 ≤ 0 ∀𝑘 = 1,… , 𝐾 (12)

nd

(𝑘) = 1 ⟹
𝑅(𝑘) ≤ 𝐺(𝑘) ∀𝑘 = 1,… , 𝐾 (13)
5

𝑅𝐹
The last two constraints (12), (13) may be reformulated to

𝑅(𝑘)∕𝑅𝐹 ≤ 𝑀1𝑋(𝑘) ∀𝑘 = 1,… , 𝐾 (14)

and
𝑅(𝑘)
𝑅𝐹

− 𝐺(𝑘) ≤ 𝑀2(1 −𝑋(𝑘)) ∀𝑘 = 1,… , 𝐾 (15)

where 𝑀1,𝑀2 are numbers big enough to make the constraints redun-
dant when appropriate and as small as possible to keep the feasible
region tight. A first choice for these numbers is 𝑀1 = 𝑀2 = 𝐺(𝑘) = 𝑆𝑇 𝑜𝑙

𝑅𝐹 .
Eq. (15) shows that 𝑀2 needs only be an upper bound on 𝑅(𝑘)

𝑅𝐹 −𝐺(𝑘)
hen 𝑋(𝑘) = 0 (when 𝑋(𝑘) = 1, the expression is bounded by 0). When
(𝑘) = 0 from Eq. (14) follows that 𝑅(𝑘)

𝑅𝐹 = 0 and Eq. (15) becomes
−𝐺(𝑘) ≤ 0. 𝑀2 can therefore be set to 𝑀2 = 0.

Eqs. (14), (15) become

𝑅(𝑘) ≤ 𝑆𝑇 𝑜𝑙𝑋(𝑘) ∀𝑘 = 1,… , 𝐾 (16)

and
𝑅(𝑘)
𝑅𝐹

− 𝐺(𝑘) ≤ 0.0 ∀𝑘 = 1,… , 𝐾 (17)

With the help of constraint (2) constraint (17) can be rewritten as

𝑅(𝑘) ≤ 𝑅𝐹 𝐴𝑆(𝑘 − 1) ∀𝑘 > 1 (18)
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nd since 𝑆(𝑘) ≤ 𝑆𝑇 𝑜𝑙 constraint (18) can be written as

(𝑘) ≤ 𝑅𝐹 𝐴𝑆𝑇 𝑜𝑙 𝑋(𝑘) ∀𝑘 = 1,… , 𝐾 (19)

ecapitulating, the analysis leads to the following two constraint sets,
hich replace the non-linear constraints (4).

(𝑘) ≤ 𝑆𝑇 𝑜𝑙𝑋(𝑘) ∀𝑘 = 1,… , 𝐾 (20)

(𝑘) ≤ 𝑅𝐹 𝐴𝑆𝑇 𝑜𝑙 𝑋(𝑘) ∀𝑘 = 1,… , 𝐾 (21)

Solving the problem stated in Section 3 using constraints (20), (21)
eads to the optimal solution of the problem within a solution time of
.714 s on a desktop equipped with a Intel Pentium 4.3 GHz CPU and
GB of RAM.

The value of the objective function is 60, indicating that adminis-
ering 6 doses of drug maintain the size of the tumor below 𝑆𝑇 𝑜𝑙 =
00.

The evolution of the tumor size 𝑆(𝑘) is depicted in Fig. 5.

4. Treatment optimization using the Gompertz tumor growth mode

Since much of the scientific community considers modeling tumor
growth using the Gompertz growth function to be a more appropriate
way to mathematically model tumor growth (e.g. Beckman et al., 2020;
Benzekry et al., 2014; Tabassum et al., 2019; Vaghi et al., 2020), we
adapt the mathematical optimization model presented in the previous
section to model tumor growth using the Gompertz function. To do
so, we refer to Benzekry et al. (2014) and adapt the values of the
parameters used by those authors for the growth function to obtain
similar values to those obtained in Section 3.1 where we assume
exponential tumor growth.

More specifically, we assume tumor growth according to the follow-
ing function (see Benzekry et al., 2014, page 3):

𝐺(𝑡) = 𝑉0 exp(
𝑎
𝑏
(1 − exp(−𝑏𝑡))) (22)

or the purpose of this work, parameters 𝑉0, 𝑎, 𝑏 are as follows: 𝑉0 = 50,
= 0.72, 𝑏 = 0.18.

Eq. (2) becomes now:

(𝑘) = 𝑉0 exp(𝑎
𝑏
(1 − exp(−𝑏(𝑡(𝑘 − 1) + 1)))) ∀𝑘 > 1 (23)

where,

𝑡(𝑘) = −1 𝑙𝑛(1 − 𝑏 𝑙𝑛(
𝑆(𝑘)

)) (24)
6

𝑏 𝑎 𝑉0
n Eqs. (23), (24) 𝑡(𝑘) denotes the time at which the size of the tumor
quals the value 𝑆(𝑘) if the tumor is not treated. Put differently, 𝑡(𝑘)
enotes the time at which treatment at period 𝑘 sets back the evolution
f the tumor size. This value is attained by solving Eq. (22) for 𝑡, when
ixing 𝐺(𝑡) to 𝑆(𝑘).

In terms of its mathematical programming properties the modified
odel classifies to be a MINLP problem. The problem is computer

mplemented using GAMS and solved using the global optimization
oftware tool BARON (Sahinidis, 1996).

All parameter values remain as in Section 3.1 apart from the initial
ize of the tumor which is set to 𝑆0 = 3𝑉0 = 150 and the minimum
cceptable size of the tumor after treatment which is set to 𝑆𝑚𝑖𝑛 =
0. These modifications are necessary to avoid mathematical problems
ecause of Eq. (24) (negative 𝑡𝑘 values, undefined logarithm operation).

The solution of the problem is depicted in Fig. 6. The value of the
bjective function assumes its optimal value at a value of 200, which
eans that the patient is administered a drug dose 20 times within the
laning horizon of 52 time periods. The time points at which the drug
eeds to be administered are shown in Fig. 6; these are the beginning
f the periods: 3, 6, 9, 11, 14, 17, 18, 21, 23, 26, 27, 30, 33, 36, 38,
1, 43, 45, 46, 50.

The solution was obtained on a desktop equipped with a Intel
entium 4.3 GHz CPU and 4 GB of RAM after a processing time of
0350.16 s. The magnitude of the consumed computation time reflects
he difficulty of solving MINLPs to optimality and gives rise to the
eed for research to developing ways to improving computational
erformance.

. Discussion and conclusion

Mathematical modeling has long been used in cancer research and
as led to invaluable insights into cancer biology (Anderson & Quar-
nta, 2008; Barbolosi et al., 2016; Strobl et al., 2023). The first math-
matical optimization approaches to treatment planning in oncology
ere developed in the mid-twentieth century. Since then, important
iscoveries in cancer genetics, evolution and metabolism have been
ade (Hanahan, 2022; Hanahan & Weinberg, 2000, 2011; Nature,
020).

Mathematical modeling of treatment has several significant ad-
antages. First, in contrast to an experimental setup, it is low cost
Shi et al., 2014). Second, mathematical models have proven their
bility to predict advantageous treatment doses (Moore, 2018). Third,
n silico modeling allows for the testing of a considerable number
f mathematical hypotheses. Finally, mathematical models challenge
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Fig. 6. Optimal solution for the evolution of tumor size 𝑆(𝑘) after treatment(s) in the case of Gompertz tumor growth.
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mpirical results from clinical trials (Altrock et al., 2015) and may lead
o further investigation. Nevertheless, important biological phenomena
re still largely unaddressed, either due to poor understanding or due
o difficult implementation in models. These phenomena include, for
nstance, metastases and relapse tumors, both of which imply greater
nnate resistance and usually higher biological aggressiveness.

The MILP and MINLP approaches presented here demonstrate that
athematical programming can be of great value in developing optimal

reatment schedules. This approach is natural because dichotomous
ecisions are common in scheduling algorithms and linear resp. non-
inear constraints may capture the underlying problem realistically.
urthermore, these approaches have been described as ‘‘flexible’’ in
hat previously unprecedented clinically important constraints can be
ncorporated with relative ease (Harrold & Parker, 2004). The models
eveloped here are only applicable to solid neoplasms with an iden-
ifiable tumor size. The latter is, however, not critically limiting as
he vast majority of malignant tumors are solid (Siegel et al., 2024).
he developed model provides fast optimization which is necessary in
outine practice.

Budget constraints have been largely neglected in treatment schedul-
ng models. Treatment costs are, however, not negligible with increas-
ng economic pressure and expensive targeted therapies (Hofmarcher
t al., 2020; Tsimberidou et al., 2020). Treatment costs have been
ncluded by Bazrafshan and Lotfi in their optimization model, which
eeks to maximize the sum of the predicted expected survival time
f the patient for each drug that is a candidate for a drug mix to be
dministered during chemotherapy treatment. The survival time is cal-
ulated using statistical methods and subsequently a MILP is formulated
o maximize the expected survival time of a drug mix subject to budget
nd other constraints. The tumor dynamics are not included in their
odel, which is a key difference from our approach (Bazrafshan &

otfi, 2016). The approach presented here explicitly considers the cost
f each dose to be administered and attempts to minimize the total cost,
hile taking into account tumor growth dynamics and patient quality
f life constraints. Simultaneously addressing therapeutic and economic
ssues and solving to global optimality is a novel approach.

As previously stated, our mathematical programming model ad-
resses both therapeutic and economic aspects. The therapeutic aspects
re unambiguously related to the modeling of tumor growth dynamics.
t is assumed that the size of the tumor increases steadily in the absence
f drug administration. When a dose is administered, the function that
escribes tumor growth is set to an earlier time status, indicating a
eduction in tumor size as a result of the treatment. The presented
ptimization approach allows for the assessment of the treatability of
7

he disease. An infeasible solution to the model would indicate that
reatment cannot be successful. Additionally, the model may suggest
ot administering a drug dose at the beginning of a treatment period to
void overtreatment. Finally, by limiting the tumor size to a predefined
pper bound, the patient may be promised a good quality of life.

Although novel, the presented model has some limitations. First, the
apabilities of the model are demonstrated by using fictitious values.
atient data is protected by privacy laws, requires ethical approval, and
s generally difficult to obtain. Previous research has mainly relied on
xperimental data, i.e. from cell lines or mice (Murphy et al., 2016).
he use of data from case reports is limited as it typically represents a
ingle time point. Bazrafshan and Lotfi (2016) incorporated trial data
nto their work, but only demographic data, a toxicity score, and dosage
evels of a specific drug (Bazrafshan & Lotfi, 2016). Additionally, the
ssue of drug resistance was not explicitly addressed, but it could be
ncluded in the model as a reduction in the drug’s ability to reduce
umor size. Lastly, Gompertz tumor growth is used, which is generally
ell accepted but does not perform well for any type of cancer. Tumor
rowth varies considerably depending on the model used (Murphy
t al., 2016). However, accuracy testing of published cell line data
rom ten different mass-forming cancers confirms Gompertz growth is
eliable (Sarapata & de Pillis, 2014). Selecting the appropriate model
s crucial for predicting tumor growth and determining the necessary
herapeutic interventions for the disease.

A classification of our approach according to Mathur et al. (2022)
s difficult because no assumptions are made, e.g. about the frequency
r density of dose administration. The drug is administered according
o the result of the optimization process, which does not take into
ccount the heuristic knowledge accumulated from previous research.
he closest class of therapy to our approach (according to Mathur
t al., 2022) would be ‘‘adaptive therapy’’, i.e. dynamic alteration of
oses in response to the tumor evolution. The model presented here
ims at control rather than cure. We limit the tumor size which allows
or competition between treatment-sensitive and -resistant cells (West
t al., 2023).

Current treatment practices, make the appropriate time to initiate
reatment controversial. While some have advocated early treatment
or smaller tumors (Coldman & Goldie, 1983), others suggest higher
oses for larger tumors at the end of the treatment period (Harrold &
arker, 2004). Although larger tumors might become more vulnerable
ue to constrained nutrient supply, administration at the end of treat-
ent periods is ethically problematic as it implies hitting tumor growth

rbitrarily only at a very late stage of disease (Iliadis & Barbolosi,
000). ‘‘Metronomic chemotherapy’’, i.e. the repeated administration
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of low doses to avoid toxicity while keeping the tumor size constantly
small (Ledzewicz & Schaettler, 2017), might reduce side effects but
does not imply optimal doses or respect budget constraints. This work
concludes that it is feasible to keep tumor size constantly within a
critical tolerated boundary by computing optimal treatment doses.

Some authors (e.g. De Pillis & Radunskaya, 2001; Ghaffari et al.,
2016; Heydarpoor et al., 2020; Sharifi et al., 2019) model interactions
with immune cells in order to protect the immune system from the
drug effect. Immunotherapies, such as checkpoint inhibitors, are state-
of-the-art for many cancers (Mahoney et al., 2015). However, immune
cells can be hijacked by cancer to create a tumor-promoting milieu
(Vinay et al., 2015). The goal of preserving the immune infiltrate must
be viewed with caution and must be modeled accurately. Cancer is
heterogeneous and the complexity of tumor evolution highlights the
need for dynamic decision making (Strobl et al., 2023). This of course
has implications for the modeling efforts. For example, allowing for
relaxation and cell recovery during the treatment schedule must take
into account that cancer cells also recover during treatment arrests. This
makes careful modeling to correctly capture reality very important.

Many approaches to treatment scheduling aim for a complete re-
sponse, i.e. a tumor reduction to zero with no evidence of residual
tumor. Resistance is a phenomenon that makes complete response a
rare event. Tumor cells (can) acquire resistance (Murray, 1997) during
treatment arrests by inducing sub-clones with different biological be-
havior (Marusyk et al., 2014; Michor & Beal, 2015; Prager et al., 2019).
In addition, resistance is also a matter of statistical chance (Coldman
& Murray, 2000) and can be intrinsic, i.e. not acquired, with imme-
diate non-response and treatment failure (Patwardhan et al., 2021).
Modeling a therapy-resistant (insensitive) population is an accurate
means of depicting cancer biology as the sensitive and the insensitive
tumor clones directly compete with each other for nutrients, access to
blood flow, defense mechanisms against the host immune response, etc.
(Hadjiandreou & Mitsis, 2014). However, as resistance is an inherent
and plastic property of cancer, we prefer to use critical tumor size as
the primary endpoint.

It becomes apparent that the mathematical modeling effort needs
to be increased in order to be able to obtain applicable optimization
results. It is imperative to correctly capture the biology of cancer if
optimal treatment schedules are to be mathematically derived. Com-
bining model development with synchronous clinical triage could be a
step forward (Mathur et al., 2022). On the other hand, complex, multi-
parameter models make it difficult to optimize with real-world data
because this data is difficult to obtain (Kuznetsov et al., 2021). A ther-
apeutic approach that adapts cancer biology to what is algorithmically
possible, is unacceptable in the context of cancer treatment, as it may
jeopardize a patient’s life.

Novel studies on treatment scheduling will depend on stronger
interdisciplinary collaboration (Anderson & Maini, 2018; Balaz et al.,
2021; Kuznetsov et al., 2021) to bridge gaps and to validate models
with clinical data (Brady & Enderling, 2019; Hadjiandreou & Mit-
sis, 2014; Meille et al., 2016; Moore, 2018). While clinicians do not
understand the mathematical complexity of optimization approaches,
modeling experts cannot reliably identify and implement the most
important parameters for treatment. The lack of synergy results in a
considerable loss of information. In addition, the treatment schedule
must obey economical and technical constraints. Appropriate methods
have to be developed in order to be able to cope with the complexities
that the models may exhibit such as averse mathematical properties,
problem size, solution speed, and many others. Thus, future research
will have to address the problem of modeling these aspects as accu-
rately as necessary in order to robustly support the decision making
process in oncology.
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