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Deciding dependence in logic and algebra

George Metcalfe and Naomi Tokuda

Dedicated to Dick de Jongh

Abstract. We introduce a universal algebraic generalization of de Jongh’s
notion of dependence for formulas of intuitionistic propositional logic,
relating it to a notion of dependence defined by Marczewski for elements
of an algebraic structure. Following ideas of de Jongh and Chagrova, we
show how constructive proofs of (weak forms of) uniform interpolation
can be used to decide dependence for varieties of abelian ℓ-groups, MV-
algebras, semigroups, and modal algebras. We also consider minimal
provability results for dependence, obtaining in particular a complete
description and decidability of dependence for the variety of lattices.

Keywords. Dependence, Uniform Interpolation, Coherence, Lattices.

1. Introduction

In [9] de Jongh and Chagrova introduced an intriguing notion of dependence
of formulas for intuitionistic propositional logic IPC as an analogue of the
usual notion of dependence of vectors in linear algebra.1 Formulas ϕ1, . . . , ϕn

are said to be IPC-dependent if there exists a formula ψ(p1, . . . , pn) such that
⊢IPC ψ(ϕ1, . . . , ϕn), but 6⊢IPC ψ(p1, . . . , pn); otherwise, ϕ1, . . . , ϕn are said
to be IPC-independent. In [8] it is shown that a single formula ϕ is IPC-
dependent if, and only if, either ⊢IPC ¬¬ϕ→ ϕ or ⊢IPC ¬¬ϕ, and [9] provides
a “reasonably simple” sequence of formulas (ψi(p1, p2))i∈N such that any two
formulas ϕ1, ϕ2 are dependent if, and only if, ⊢IPC ψi(ϕ1, ϕ2) for some i ∈ N.
Notably, it is also proved in [9] that checking the IPC-dependence of any finite

This research was supported by Swiss National Science Foundation grant 200021 165850.
1This notion was previously defined by de Jongh in [8] using different terminology and
appears also in Lemmon’s textbook Beginning Logic [22] in the context of comparing two
formulas of classical propositional logic. For a detailed history and comparison of this and
other notions of dependence in logic, we refer to [17]. Details of the seemingly unrelated
but fascinating field of dependence logic may be found in [39, 44].

http://arxiv.org/abs/2106.10100v1
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number of formulas is decidable, making ingenious use of Pitts’ constructive
proof of uniform interpolation for IPC [33].

In this paper, we extend the ideas of [9] to a general universal algebraic setting
(recalled in Section 2), defining the V-dependence of terms t1, . . . , tn for an
arbitrary variety (equational class) V . In Section 3, we show that t1, . . . , tn are
V-independent if, and only if, a certain homomorphism between finitely gener-
ated V-free algebras is an embedding, or, equivalently, a certain finitely gener-
ated subalgebra of a V-free algebra is V-free over n generators. It then follows
that V-dependence is a special case of Marczewski’s notion of dependence for
elements of an algebraic structure [24–26], and a converse is obtained by rel-
ativizing V-dependence to a given set of equations. Marczewski-dependence
has been studied extensively in universal algebra (see [16, Chapter 5]), lead-
ing in particular to the introduction of v∗-algebras [31], later rediscovered by
semigroup theorists in the guise of independence algebras [15].

In Section 4, we turn our attention to the problem of deciding V-dependence.
Generalizing the proof strategy of [9], we show that V-dependence is decidable
(even relative to a finite set of equations) if there is a constructive proof that V
is coherent, i.e., that every finitely generated subalgebra of a finitely presented
algebra in V is finitely presented. The property of coherence originated in
sheaf theory and has been studied widely in algebra (see, e.g., [14, 35, 36]),
and from a more general model-theoretic perspective in [41,42]. In [19] it was
proved that coherence and deductive interpolation are jointly equivalent to
the property of right uniform deductive interpolation considered in [13].

Constructive proofs of coherence are implicit in uniform interpolation proofs
for, e.g., IPC [33], the modal logics GL and S4Grz [3], and the varieties of
abelian ℓ-groups and MV-algebras [13, 29]. However, coherence is a quite
rare property for non-locally finite varieties, at least those corresponding to
modal, substructural, and other non-classical logics [19,20]. We therefore also
consider a weaker condition for deciding V-dependence that requires only a
constructive proof that finitely generated V-free algebras are coherent, and
is satisfied, for example, by the non-coherent variety of groups. Even when
such a constructive proof is not available, however, there may exist other
methods for deciding V-dependence. Notably, the dependence problem for the
variety of semigroups corresponds precisely to checking whether a finite set of
words is a code, solved by the famous Sardinas-Patterson algorithm [34], and
the dependence problem for the variety of modal algebras can be decided
using bisimulation-based methods described in [23] for calculating uniform
interpolants (when they exist) for the description logic ALC.

In Section 5, following again ideas of [9], we consider minimal sets of equations
for checking V-dependence for some variety V . In particular, we provide finite
minimal sets of equations for dependence in both the locally finite variety of
distributive lattices and the non-locally finite variety of lattices, obtaining a
first proof that the dependence problem for the variety of lattices is decidable.
Finally, in Section 6, we conclude the paper with a short list of open problems.
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2. Equational consequence and free algebras

Let us begin by recalling some elementary material on universal algebra,
referring to [4] for further details and references. We assume that L is an
algebraic language and that an L-algebra A is a (first-order) structure for this
language with universe A and fundamental operations fA for each function
symbol f of L. For any set of variables x, we denote by Tm(x) the set of
L-terms over x, and by Eq(x) := Tm(x) × Tm(x), the set of L-equations
over x. For Tm(x) 6= ∅ (i.e., when x 6= ∅ or L contains a constant), we denote
by Tm(x) the L-term algebra over x. We also write t(x), ε(x), or Σ(x) to
mean that the variables occurring in an L-term t, an L-equation ε, or a set of
L-equations Σ, are included in x, and assume that x, y, etc. are disjoint sets,
writing x, y to denote their disjoint union. Given an L-term t(x1, . . . , xn) and
an L-algebra A, we denote by tA the induced term-function from An to A.

For any homomorphism h : A → B between L-algebras A and B, its kernel
ker(h) := {〈a, b〉 ∈ A×A | h(a) = h(b)} forms a congruence of A: that is, an
equivalence relation that is preserved by the fundamental operations of A.
Moreover, the converse is also true; every congruence of A is the kernel of
some homomorphism with domain A. For any L-algebra A, the set Con(A)
of congruences of A forms a complete lattice ordered by inclusion ⊆ with
greatest element ∇A := A × A and least element ∆A := {〈a, a〉 | a ∈ A}.
Given S ⊆ A×A, the congruence Cg

A
(S) of A generated by S is the smallest

congruence of A containing S. A congruence Θ of A is finitely generated if
Θ = Cg

A
(S) for some finite S ⊆ A×A.

Let H, I, S, and P denote the class operators of taking homomorphic images,
isomorphic images, subalgebras, and products, respectively. A class of L-
algebras K is called a variety if it is closed under H, S, and P. By theorems
of Birkhoff and Tarski, respectively, K is a variety if, and only if, it is an
equational class, and HSP(K) is the variety generated by K.

Example 2.1. A Heyting algebra is an algebra 〈H,∧,∨,→, 0, 1〉 such that
〈H,∧,∨, 0, 1〉 is a bounded distributive lattice (with a ≤ b :⇔ a∧ b = a) and
→ is the residual of ∧; that is, a ≤ b → c if, and only if, a ∧ b ≤ c for all
a, b, c ∈ H . Heyting algebras form a variety HA that provides the algebraic
semantics for intuitionistic propositional logic.

Equational consequence for a class K of L-algebras may be defined as follows.
For a set of L-equations Σ ∪ {ε} containing exactly the variables in a set x,

Σ |=K ε :⇐⇒ for every A ∈ K and homomorphism e : Tm(x) → A,

Σ ⊆ ker(e) =⇒ ε ∈ ker(e).

For a set of L-equations Σ ∪∆, we write Σ |=K ∆ if Σ |=K ε for all ε ∈ ∆.

In the case where K is a variety, we may reformulate equational consequence
in terms of congruences of K-free algebras. Let us first recall the construction
of K-free algebras for an arbitrary class K of L-algebras over a set x, assuming
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that either L contains a constant or x is non-empty. Let ΘK(x) be the smallest
congruence of Tm(x) such that the quotient by this congruence embeds into
a member of K, i.e.,

ΘK(x) :=
⋂

{Θ ∈ Con(Tm(x)) | Tm(x)/Θ ∈ IS(K)}.

The K-free algebra over x may then be defined as

FK(x) := Tm(x)/ΘK(x).

It follows that for any s, t ∈ Tm(x),

〈s, t〉 ∈ ΘK(X) ⇐⇒ |=K s ≈ t ⇐⇒ |=FK(x) s ≈ t.

Where appropriate, we deliberately confuse L-terms, L-equations, and sets
of L-equations with the corresponding elements, pairs of elements, and sets
of pairs of elements from FK(x). Hence for s, t ∈ Tm(x),

|=K s ≈ t ⇐⇒ s = t in FK(x).

Also, when the class of algebras K is clear from the context, we drop the
subscript and write simply F(x).

The following lemma expresses the crucial connection between equational
consequence in a variety and congruences on the free algebras of that variety.

Lemma 2.2 (c.f. [29, Lemma 2]). For any variety V and Σ ∪∆ ⊆ Eq(x),

Σ |=V ∆ ⇐⇒ Cg
F(x)

(∆) ⊆ Cg
F(x)

(Σ).

In what follows, we will omit mention of the language L, assuming throughout
that a class of algebras K is a class of L-algebras, and that terms, equations,
and sets of equations are defined over this language. We will also adopt the
useful notation [n] to denote the set {1, . . . , n} for n ∈ N.

3. An algebraic theory of dependence

We now have the tools available to formulate and study the de Jongh notion
of dependence in a more general algebraic setting. Let V be any variety. We
call terms t1, . . . , tn ∈ Tm(x) V-dependent if for some equation ε(y1, . . . , yn),

|=V ε(t1, . . . , tn) and 6|=V ε;

otherwise, we call t1, . . . , tn V-independent.

Example 3.1. If V is the variety of vector spaces over some fixed field K,
this notion of independence coincides with the usual notion in linear algebra.
Just observe that terms t1, . . . , tn ∈ Tm(x) in the language with the usual
group operations and scalar multiplication for each λ ∈ K are V-independent
if, and only if, (without loss of generality) for any equation ε(y1, . . . , yn) of
the form λ1y1 + · · ·+ λnyn ≈ 0 with λ1, . . . , λn ∈ K,

|=V λ1t1 + · · ·+ λntn ≈ 0 =⇒ |=V λ1y1 + · · ·+ λnyn ≈ 0,

and that |=V λ1y1 + · · ·+ λnyn ≈ 0 if, and only if, λ1 = · · · = λn = 0.
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Example 3.2. Let Lat be the variety of lattices and DLat the variety of
distributive lattices, and consider the lattice terms

t1 := x1 ∧ (x2 ∨ x3) and t2 := x2 ∨ (x1 ∧ x3).

Defining ε(y1, y2) := y1 ≤ y2 (where s ≤ t denotes s ∧ t ≈ s), we have
|=DLat ε(t1, t2) and 6|=DLat ε, so t1 and t2 are DLat -dependent. However, no
such equation exists in the case of lattices, so t1 and t2 are Lat -independent.

The next result provides equivalent characterizations of V-independence.

Proposition 3.3. Let V be a variety. For any terms t1, . . . , tn ∈ Tm(x) and
variables y = {y1, . . . , yn}, the following are equivalent:

(1) t1, . . . , tn are V-independent.

(2) The homomorphism h : F(y) → F(x) defined by mapping yi to ti for

each i ∈ [n] is injective.

(3) Cg
F(x,y)

(〈y1, t1〉, . . . , 〈yn, tn〉) ∩ F (y)2 = ∆F (y).

Proof.

(1)⇒ (2) Suppose that t1, . . . , tn are V-independent and that h(u) = h(v) in
F(x) for some u, v ∈ Tm(y). That is, u(t1, . . . , tn) = v(t1, . . . , tn) in F(x),
and hence |=V u(t1, . . . , tn) ≈ v(t1, . . . , tn). But t1, . . . , tn are V-independent,
so |=V u ≈ v and u = v in F(y). Hence h is injective.

(2)⇒ (3) Suppose that h is injective. Let f : F(y) → F(x, y) be the natural
inclusion homomorphism and let g : F(x, y) → F(x) be the homomorphism
mapping x ∈ x to x and yi to ti for each i ∈ [n]. Clearly, h = g ◦ f and
Cg

F(x,y)
(〈y1, t1〉, . . . , 〈yn, tn〉) ⊆ ker(g), and hence, since h is injective,

Cg
F(x,y)

(〈y1, t1〉, . . . , 〈yn, tn〉) ∩ F (y)
2 ⊆ ker(h) = ∆F (y).

(3)⇒ (1) Suppose that Cg
F(x,y)

(〈y1, t1〉, . . . , 〈yn, tn〉) ∩ F (y)2 = ∆F (y) and

consider ε ∈ Eq(y) with |=V ε(t1, . . . , tn). Then {y1 ≈ t1, . . . , yn ≈ tn} |=V ε
and an application of Lemma 2.2 yields

ε ∈ Cg
F(x,y)

(〈y1, t1〉, . . . , 〈yn, tn〉) ∩ F (y)
2 = ∆F (y).

Hence, by Lemma 2.2, also |=V ε. So t1, . . . , tn are V-independent. �

Remark 3.4. Condition (3) of Proposition 3.3 can also be understood as
a property of equational consequence. Given terms t1, . . . , tn ∈ Tm(x) and
variables y = {y1, . . . , yn}, define

Γ := {y1 ≈ t1, . . . , yn ≈ tn} and Π := {ε ∈ Eq(y) | Γ |=V ε}.

Then for any ε ∈ Eq(y),

|=V ε(t1, . . . , tn) ⇐⇒ Γ |=V ε ⇐⇒ Π |=V ε,

and, corresponding to condition (3),

t1, . . . , tn are V-independent ⇐⇒ |=V Π.



6 G. Metcalfe and N. Tokuda

Let us now consider the relationship between this notion of dependence and
the general algebraic notion introduced by Marczewski in [24]. We say that
elements a1, . . . , an of an algebra A are Marczewski-dependent in A if there
exist terms u(y1, . . . , yn), v(y1, . . . , yn) satisfying

uA(a1, . . . , an) = vA(a1, . . . , an) and uA 6= vA;

otherwise, we call a1, . . . , an Marczewski-independent in A.

Remark 3.5. Equivalently, a1, . . . , an ∈ A are Marczewski-independent in
A if, and only if, they are distinct and generate a subalgebra of A that is
HSP(A)-free over the set of generators {a1, . . . , an} [25].

It is not hard to see that V-dependence for a variety V corresponds to the
Marczewski-dependence of elements of finitely generated V-free algebras.

Proposition 3.6. Let V be a variety. Terms t1, . . . , tn ∈ Tm(x) are V-
dependent if, and only if, t1, . . . , tn are Marczewski-dependent in F(x).

Proof. It suffices to observe that t1, . . . , tn ∈ Tm(x) are Marczewski-dependent
in F(x) if, and only if, there exist terms u(y1, . . . , yn), v(y1, . . . , yn) satisfying

uF(x)(t1, . . . , tn) = vF(x)(t1, . . . , tn) and uF(x) 6= vF(x),

or, equivalently, there exist terms u(y1, . . . , yn), v(y1, . . . , yn) satisfying

|=V u(t1, . . . , tn) ≈ v(t1, . . . , tn) and |=V u 6≈ v,

which holds if, and only if, t1, . . . , tn are V-dependent. �

Let us now consider a more general version of dependence defined for a variety
V relative to a fixed set of equations. We call t1, . . . , tn ∈ Tm(x) V-dependent
over Σ ⊆ Eq(x) if for some equation ε(y1, . . . , yn),

Σ |=V ε(t1, . . . , tn) and 6|=V ε;

otherwise, we call t1, . . . , tn V-independent over Σ.

To obtain a reformulation of this property analogous to Proposition 3.3, we
consider for Σ ⊆ Eq(x), the quotient algebra F(x)/Cg

F(x)
(Σ), denoting its

elements by [t]Σ for each t ∈ Tm(x).

Proposition 3.7. Let V be a variety. For any Σ ⊆ Eq(x), t1, . . . , tn ∈
Tm(x), and y = {y1, . . . , yn}, the following are equivalent:

(1) t1, . . . , tn are V-independent over Σ.

(2) The homomorphism h : F(y) → F(x)/Cg
F(x)

(Σ) mapping yi to [ti]Σ for

each i ∈ [n] is injective.

(3) Cg
F(x,y)

(Σ ∪ {〈y1, t1〉, . . . , 〈yn, tn〉}) ∩ F (y)2 = ∆F (y).



Deciding dependence in logic and algebra 7

Proof.

(1)⇒ (2) Suppose that t1, . . . , tn are V-independent over Σ and h(u) = h(v)
for some u, v ∈ Tm(y). It follows that [u(t1, . . . , tn)]Σ = [v(t1, . . . , tn)]Σ in
F(x)/Cg

F(x)
(Σ) and, by Lemma 2.2, that Σ |=V u(t1, . . . , tn) ≈ v(t1, . . . , tn).

Since, by assumption, t1, . . . , tn are V-independent over Σ, we have |=V u ≈ v.
So u = v in F(y). That is, h is injective.

(2)⇒ (3) Suppose that h is injective. Let f : F(y) → F(x, y) be the natural
inclusion homomorphism and let g : F(x, y) → F(x)/Cg

F(x)
(Σ) be the homo-

morphism mapping x ∈ x to [x]Σ and yi to [ti]Σ for each i ∈ [n]. Clearly,
h = g ◦ f and Cg

F(x,y)
(Σ ∪ {〈y1, t1〉, . . . , 〈yn, tn〉}) ⊆ ker(g), and hence, since

h is injective,

Cg
F(x,y)

(Σ ∪ {〈y1, t1〉, . . . , 〈yn, tn〉}) ∩ F (y)
2 ⊆ ker(h) = ∆F (y).

(3)⇒ (1) Suppose that Cg
F(x,y)

(Σ ∪ {〈y1, t1〉, . . . , 〈yn, tn〉}) ∩ F (y)
2 = ∆F (y)

and Σ |=V ε(t1, . . . , tn) for some ε ∈ Eq(y). Then Σ ∪ {y1 ≈ t1, . . . , yn ≈
tn} |=V ε and, by Lemma 2.2,

ε ∈ Cg
F(x,y)

(Σ ∪ {〈y1, t1〉, . . . , 〈yn, tn〉}) ∩ F (y)
2 = ∆F (y).

Hence, by Lemma 2.2, also |=V ε. So t1, . . . , tn are V-independent over Σ. �

Remark 3.8. V-dependence over Σ can again be understood as a property
of equational consequence. For t1, . . . , tn ∈ Tm(x) and y = {y1, . . . , yn}, let

Γ := Σ ∪ {y1 ≈ t1, . . . , yn ≈ tn} and Π := {ε ∈ Eq(y) | Γ |=V ε}.

Then for any ε ∈ Eq(y),

Σ |=V ε(t1, . . . , tn) ⇐⇒ Γ |=V ε ⇐⇒ Π |=V ε,

and, corresponding to condition (3),

t1, . . . , tn are V-independent over Σ ⇐⇒ |=V Π.

A natural question to ask at this point is whether this more general notion
is related to Marczewski-dependence. Below we show that this is indeed the
case, although the relationship is unlikely to be of any practical value.

Recall that the positive diagram Diag+(A) of an algebra A can be identified
with the set of equations s(a1, . . . , an) ≈ t(a1, . . . , an) ∈ Eq(A) such that
sA(a1, . . . , an) = tA(a1, . . . , an).

Proposition 3.9. Let A be any algebra. Then a1, . . . , an ∈ A are Marczewski-

dependent in A if, and only if, a1, . . . , an ∈ Tm(A) are HSP(A)-dependent
over Diag+(A).

Proof. It suffices to observe that for any set of variables y = {y1, . . . , yn},
equation u ≈ v ∈ Eq(y), and a1, . . . , an ∈ A,
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(i) Diag+(A) |=HSP(A) u(a1, . . . , an) ≈ v(a1, . . . , an)

⇐⇒ u(a1, . . . , an) ≈ v(a1, . . . , an) ∈ Diag+(A)

⇐⇒ uA(a1, . . . , an) = vA(a1, . . . , an)

(ii) |=HSP(A) u ≈ v ⇐⇒ A |= u ≈ v ⇐⇒ uA = vA. �

4. Deciding dependence

In [9] de Jongh and Chagrova established the decidability of IPC-dependence
for finitely many formulas (equivalently, the HA-dependence of finitely many
terms) using Pitts’ constructive proof of uniform interpolation for IPC [33].
More concretely, they proved that formulas ϕ1, . . . , ϕn are IPC-independent
if, and only if, the right uniform interpolant of (p1 ↔ ϕ1) ∧ · · · ∧ (pn ↔ ϕn)
with respect to a new set of variables {p1, . . . , pn} is a theorem of IPC. In this
section, we generalize their approach to an arbitrary variety V and finite set
of equations Σ, showing that to check the V-dependence of terms t1, . . . , tn
over Σ, a constructive proof of the weaker property of coherence in V — or,
when Σ = ∅, just coherence for finitely generated V-free algebras — suffices.

A finitely presented algebra A ∈ V is said to be coherent if every finitely
generated subalgebra of A is finitely presented, and a variety V is called
coherent if all of its finitely presented members are coherent. The following
result from [19] relates this notion to finitely generated congruences on finitely
generated V-free algebras and equational consequence.

Theorem 4.1 ([19, Theorem 2.3]). Let V be a variety. The following are

equivalent:

(1) V is coherent.

(2) For any finite sets x, y and finitely generated congruence Θ of F(x, y),
the congruence Θ ∩ F (y)2 on F(y) is finitely generated.

(3) For any finite sets x, y and finite set of equations Γ(x, y), there exists a

finite set of equations Π(y) such that for any equation ε(y),

Γ |=V ε ⇐⇒ Π |=V ε.

Remark 4.2. Condition (3) is closely related to the property of right uniform
deductive interpolation, which is obtained by replacing “any equation ε(y)”
with “any equation ε(y, z)”. Indeed, a variety has right uniform deductive
interpolation if, and only if, it is coherent and has deductive interpolation.
Let us note also that deductive interpolation (obtained from right uniform
deductive interpolation by dropping the requirement that Π(y) be finite) is
equivalent to the amalgamation property in the presence of the congruence
extension property. We refer to [13, 19, 29] for further details and discussion
of these relationships.
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Let us call the problem of finding for any finite sets x, y and finite set of
equations Γ(x, y), a finite set of equations Π(y) satisfying the equivalence in
condition (3) of Theorem 4.1, the coherence problem for V . Note that this
is equivalent to the problem of finding a finite presentation for a finitely
generated subalgebra of a finitely presented algebra of V .

Proposition 4.3. Let V be a variety and let Σ be any finite set of equa-

tions. If the coherence problem for V and the equational theory of V are both

decidable, then V-dependence over Σ is decidable.

Proof. Given t1, . . . , tn ∈ Tm(x), define Γ := Σ ∪ {y1 ≈ t1, . . . , yn ≈ tn}. It
follows from Remark 3.8 that t1, . . . , tn are V-independent over Σ if, and only
if, for any equation ε(y),

Γ |=V ε ⇐⇒ |=V ε.

However, by assumption, a finite set of equations Π(y) can be constructed
such that for any equation ε(y),

Γ |=V ε ⇐⇒ Π |=V ε.

It follows that t1, . . . , tn ∈ Tm(x) are V-independent over Σ if, and only if,
|=V Π, which, by assumption, is decidable. �

The coherence problem is clearly decidable for any locally finite variety. Also,
as mentioned above, Pitts’ constructive proof of uniform interpolation for
IPC provides an algorithm that decides the coherence problem for the variety
HA of Heyting algebras [33] and hence also an algorithm for deciding HA-
dependence over any finite set of equations.

Pitts-style proofs of uniform interpolation have been obtained for various
intermediate, modal, and substructural logics (see in particular [1,3,38,40]),
but typically establish an implication-based uniform interpolation property
that does not imply coherence. However, for the modal logics GL and S4Grz,
the proof-theoretic proofs of uniform interpolation by Bilková [3] (originally
proved semantically by Shavrukov [38] and Visser [40], respectively) provide
constructive proofs of coherence for the associated varieties and hence also
decidability of dependence over finite sets of equations.

Example 4.4 (Abelian ℓ-groups). An abelian ℓ-group is an algebraic struc-
ture 〈L,∧,∨,+,−, 0〉 such that 〈L,∧,∨〉 is a lattice with order a ≤ b :⇔
a ∧ b = a, 〈L,+,−, 0〉 is an abelian group, and a ≤ b implies a + c ≤ b + c
for all a, b, c ∈ L. They form a variety LA that is generated as a quasivariety
by R = 〈R,∧,∨,+,−, 0〉 (cf. [2, Lemma 6.2]) and has a decidable equational
theory. In [30] it is proved that checking whether the subalgebra generated
by n elements of a finitely generated free abelian ℓ-group is isomorphic to
the n-generated free abelian ℓ-group is decidable, and hence, although this is
not explicitly stated, that LA-dependence is decidable. However, a stronger
version of this result, the decidability of LA-dependence over a finite set of
equations, follows already from a (quite easy) constructive proof of coherence
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given implicitly in [29]. Note first that it suffices to show that for any finite
set y and finite set of equations Γ(x, y), there exists a finite set of equations
Π(y) such that for any equation ε(y),

Γ |=R ε ⇐⇒ Π |=R ε.

Moreover, we may assume (with a little work, omitted here) that Γ consists
of inequations 0 ≤ si + nx (i ∈ I), 0 ≤ tj − nx (j ∈ J), and 0 ≤ uk (k ∈ K)
for some n ≥ 1, finite sets I, J,K, and terms si(y), tj(y), uk(y). The desired
set Π(y) is then {0 ≤ si + tj | i ∈ I; j ∈ J} ∪ {0 ≤ uk | k ∈ K}.

Example 4.5 (MV-algebras). The variety MV of MV-algebras consists of
algebraic structures 〈M,⊕,¬, 0〉 satisfying the equations

(M1) x⊕ (y ⊕ z) ≈ (x⊕ y)⊕ z (M4) ¬¬x ≈ x
(M2) x⊕ y ≈ y ⊕ x (M5) x⊕ ¬0 ≈ ¬0
(M3) x⊕ 0 ≈ x (M6) ¬(¬x ⊕ y)⊕ y ≈ ¬(¬y ⊕ x)⊕ x.

It is generated as a quasivariety by [0,1] = 〈[0, 1],⊕,¬, 0〉, where a ⊕ b =
min(1, a + b) and ¬a = 1 − a, with defined operations 1 := ¬0, a ⊙ b :=
¬(¬a⊕ ¬b), a ∨ b := ¬(¬a⊕ b)⊕ b, and a ∧ b := ¬(¬a ∨ ¬b) [10]. Let Ru be
the unital abelian ℓ-group consisting of R with an additional constant 1. It
follows from McNaughton’s representation theorem (or see [29, Sec. 6] for a
direct proof) that (i) the interpretation of any term s in [0,1] is equivalent
on [0, 1] to the interpretation of some term (t∧ 0)∨ 1 in Ru, and, conversely,
(ii) the interpretation of any term (t ∧ 0) ∨ 1 in Ru is equivalent on [0, 1]
to the interpretation of some term s in [0,1]. Coherence for MV may then
be established constructively as in the case of abelian ℓ-groups described
in the previous example. Since MV also has a decidable equational theory,
MV-dependence over a finite set of equations is decidable.

As shown in [19, 20], coherence for a non-locally finite variety is a rather
exceptional property. In particular, the varieties of lattices, semigroups, and
groups, as well as broad families of varieties of modal algebras and residuated
lattices are not coherent. However, for checking V-dependence (i.e., over the
empty set of equations), it is not necessary to have an algorithm that decides
the full coherence problem; it suffices to consider the coherence of finitely
generated V-free algebras.

Lemma 4.6. Let V be a variety. The following are equivalent for any finite

set x:

(1) F(x) is coherent.

(2) For any t1, . . . , tn ∈ Tm(x) and y = {y1, . . . , yn}, the congruence

Cg
F(x,y)

(〈y1, t1〉, . . . , 〈yn, tn〉) ∩ F (y)2 is finitely generated.

(3) For any t1, . . . , tn ∈ Tm(x) and y = {y1, . . . , yn}, there exists a finite

set of equations Π(y) such that for any equation ε(y),

{y1 ≈ t1, . . . , yn ≈ tn} |=V ε ⇐⇒ Π |=V ε.
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Proof. For the equivalence of (1) and (2), consider any t1, . . . , tn ∈ Tm(x)
and y = {y1, . . . , yn}. Let h : F(y) → F(x) be the homomorphism mapping
yi to ti for each i ∈ [n]. Then ker(h) = Cg

F(x,y)
(〈y1, t1〉, . . . , 〈yn, tn〉) ∩ F (y)2

and, by the homomorphism theorem (see [4]), the quotient F(y)/ ker(h) is
isomorphic to the subalgebra A of F(x) generated by {t1, . . . , tn}. We now
recall the following:

Fact ([19, Lemma 2.2]). If B ∈ V is finitely presented and isomorphic to a
quotient F(z)/Θ for some finite set z, then Θ is finitely generated.

Hence, if F(x) is coherent, A is finitely presented and, by the fact stated
above, Cg

F(x,y)
(〈y1, t1〉, . . . , 〈yn, tn〉)∩F (y)2 is finitely generated. Conversely,

assuming (2), if A is a subalgebra of F(x) generated by {t1, . . . , tn}, then the
congruence Cg

F(x,y)
(〈y1, t1〉, . . . , 〈yn, tn〉)∩F (y)2 is finitely generated andA is

finitely presented, so F(x) is coherent. The equivalence of (2) and (3) follows
directly from Lemma 2.2. �

Let us therefore call the problem of finding for any t1, . . . , tn ∈ Tm(x) and
y = {y1, . . . , yn}, a finite set of equations Π(y) satisfying the equivalence in
condition (3), the free coherence problem for V . (Note that this is equivalent
to finding a finite presentation for a finitely generated subalgebra of a finitely
generated V-free algebra.) It follows directly from the proof of Proposition 4.3
that if the free coherence problem for V and the equational theory of V are
decidable, then V-dependence is decidable.

Example 4.7 (Groups). The variety Grp of groups is not coherent; e.g., the
wreath product ZwrZ is a finitely generated subgroup of a finitely presented
group that is not finitely presented [7]. However, by the Nielsen-Schreier
theorem, every finitely generated subgroup of a finitely generated free group
is again a finitely generated free group, so finitely generated free groups are
coherent. Moreover, Nielsen’s proof in [32] also determines the rank of a
finitely generated subgroup of a free group, so the free coherence problem for
Grp is decidable. Hence also Grp-dependence is decidable.

It may not be the case that all finitely generated free algebras of a variety V
are coherent. However, assuming that the equational theory of V is decidable,
V-dependence is decidable (again considering the proof of Proposition 4.3) if
there exists an algorithm to check for t1, . . . , tn ∈ Tm(x) and y = {y1, . . . , yn}
whether for any equation ε(y),

{y1 ≈ t1, . . . , yn ≈ tn} |=V ε ⇐⇒ |=V ε.

Example 4.8 (Semigroups). The variety SG of semigroups is not coherent.
Indeed, even the n-generated free semigroups are not coherent for n ≥ 3;
e.g., the subsemigroup of the free semigroup F(x, y, z) generated by yx, yx2,
x3, xz, and x2z is not finitely presented [6]. However, the SG-dependence
problem corresponds precisely to the problem of checking whether a finite
subset X of a finitely generated free semigroup F(x) is a code, solved by the
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famous Sardinas-Patterson algorithm [34]. For finite subsets Y, Z ⊆ F (x), let
Y −1Z := {t ∈ F (x) | st ∈ Z; s ∈ Y }. The algorithm starts with U0 := X and
continues iteratively with Un+1 := X−1Un ∪ U−1

n X for each n ∈ N. It can
be proved that X is not a code if, and only if, X ∩ Un 6= ∅ for some n ≥ 1,
and, since there can only be finitely many different Un’s, the algorithm is
terminating.

Example 4.9 (Modal algebras). Modal algebras — Boolean algebras with
an additional unary operation� satisfying �(x∧y) ≈ �x∧�y and �1 = 1 —
form a variety MA that provides algebraic semantics for the modal logic K.
This variety is not coherent [19], and the coherence of finitely generated free
modal algebras seems to be an open problem. Nevertheless, MA-dependence
can be decided using a bisimulation-based method given in [23] for calculating
existing right uniform deductive interpolants for the description logic ALC.
It is well known that ALC restricted to a single role may be viewed as a
syntactic variant of the logic K. Hence to decide MA-dependence, it suffices
to observe that modal formulas ϕ1, . . . , ϕn (corresponding to terms) areMA-
independent if, and only if, the formula (p1 ↔ ϕ1)∧· · ·∧(pn ↔ ϕn) has a right
uniform deductive interpolant with respect to the new variables p1, . . . , pn
that is a theorem of K. This latter claim can be checked using the algorithm
described in [23].

5. Dependence and minimal provability

In [8] it is shown that a single formula ϕ is IPC-dependent if, and only if,
either ⊢IPC ¬¬ϕ → ϕ or ⊢IPC ¬¬ϕ, and in [9] a family (ψi(p1, p2))i∈N of
formulas is given such that two formulas ϕ1, ϕ2 are IPC-dependent if, and
only if, ⊢IPC ψi(ϕ1, ϕ2) for some i ∈ N. In both cases, no proper subset of the
given set of formulas suffices for checking IPC-dependence. In this section,
we provide a general framework for describing such “minimal provability”
results, obtaining a complete description and decidability of dependence for
the variety of lattices.

Let V be a variety. Given any sets of equations Γ,∆ with variables in a set y,
we write Γ |∼V ∆ to denote that for any substitution (i.e., homomorphism)
σ : Tm(y) → Tm(ω) extended to Eq(y) by σ(s ≈ t) = σ(s) ≈ σ(t),

|=V σ[Γ] =⇒ |=V σ(δ) for some δ ∈ ∆.

It is not hard to check (see, e.g., [18]) that |∼V is a (finitary) multiple-
conclusion consequence relation over Eq(y); that is, for any equation ε and
finite sets of equations Γ,Γ′,∆,∆′ with variables in y,

(i) {ε} |∼V {ε}

(ii) if Γ |∼V ∆, then Γ ∪ Γ′ |∼V ∆ ∪∆′

(iii) if Γ ∪ {ε} |∼V ∆ and Γ′ |∼V {ε} ∪∆′, then Γ ∪ Γ′ |∼V ∆ ∪∆′

(iv) if Γ |∼V ∆, then σ[Γ] |∼V σ[∆] for any substitution σ : Tm(y) → Tm(y).
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It is also easy to see that for any set of equations Γ∪{ε} with variables in y,

Γ |=V ε =⇒ Γ |∼V {ε}.

Remark 5.1. The relation |∼V describes the admissibility of universal for-
mulas (or multiple-conclusion rules) in the variety V . Indeed, for finite sets
of equations Γ,∆, it is the case that Γ |∼V ∆ is equivalent to the validity of
the implication from the conjunction of the equations in Γ to the disjunction
of the equations in ∆ in the free algebra F(ω) (see, e.g., [5]).

Let us call ∆ ⊆ Eq(y) V-refuting for a set y if for any equation ε(y),

6|=V ε ⇐⇒ {ε} |∼V ∆,

and minimal if, additionally, no proper subset of ∆ is V-refuting for y.

Lemma 5.2. Let V be a variety and let ∆(y) be a V-refuting set of equations
for y = {y1, . . . , yn}. Then t1, . . . , tn ∈ Tm(x) are V-dependent if, and only

if, |=V δ(t1, . . . , tn) for some δ ∈ ∆.

Proof. Suppose first that t1, . . . , tn are V-dependent. Then |=V ε(t1, . . . , tn)
and 6|=V ε for some equation ε(y). Since ∆ is a V-refuting set of equations for
y, also {ε} |∼V ∆. Hence |=V δ(t1, . . . , tn) for some δ ∈ ∆. For the converse,
suppose that |=V δ(t1, . . . , tn) for some δ ∈ ∆. Clearly {δ} |∼V ∆ and hence
6|=V δ, so t1, . . . , tn are V-dependent. �

If V has a decidable equational theory and a finite V-refuting set of equations
can be found for y = {y1, . . . , yn} for each n ∈ N, then V-dependence is
clearly decidable. In the case where V is locally finite, a finite V-refuting set
of equations ∆n can be obtained for each n ∈ N and y = {y1, . . . , yn} by
considering all pairs of distinct elements s, t from the finite free algebra F(y).
A minimal V-refuting set for y can then be obtained by iteratively removing
any δ ∈ ∆n such that {δ} |∼V ∆n \{δ}.

Example 5.3. Let us illustrate this idea with the simple case of the (locally
finite) variety DLat of distributive lattices. It is straightforward to show that
for each n ∈ N,

∆n :=
{

∧

i∈I

yi ≤
∨

j∈[n]\I

yj | ∅ 6= I ( [n]
}

is a minimal DLat -refuting set of equations for y = {y1, . . . , yn}. We first
observe that, using distributivity, the set of equations of the form s ≤ t,
where s is a join of meets of variables, and t is a meet of joins of variables,
is DLat -refuting for y. We then obtain the minimal DLat -refuting set ∆n

using the fact that for i ∈ {1, 2},

{s1 ∨ s2 ≤ t} |∼DLat {si ≤ t} and {s ≤ t1 ∧ t2} |∼DLat {s ≤ ti}.
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It follows that t1, . . . , tn ∈ Tm(x) are DLat -dependent if, and only if, for
some ∅ 6= I ( [n],

|=DLat

∧

i∈I

ti ≤
∨

j∈[n]\I

tj .

We therefore obtain further confirmation that dependence in the variety of
distributive lattices is decidable.

We devote the rest of this section to the more interesting case of the (non-
locally finite) variety Lat of all lattices.2 The equational theory of Lat is
decidable. However, it is not coherent. For example, consider the congruence
Θ of F(x, y, z, u, w) generated by {y ≤ x, x ≤ z, x ≤ u∨ (w∧ (u∨x))}. It can
be shown that the congruence Ψ := Θ ∩ F (y, z, u, w)2 of F(y, z, u, w) is not
finitely generated, yielding a finitely generated sublattice of F(x, y, z, u, w)/Θ,
isomorphic to F(y, z, u, w)/Ψ, that is not finitely presented [19].3 On the other
hand, since finitely generated sublattices of free lattices are projective [21]
and finitely generated projective algebras are finitely presented (see [11]),
every finitely generated free lattice is coherent. To the best of our knowledge,
however, there is no known algorithm that constructs a finite presentation
for a finitely generated sublattice of a finitely generated free lattice.

We prove that Lat -dependence is decidable by providing a finite minimal Lat -
refuting set of equations for y = {y1, . . . , yn} for each n ∈ N. The following
admissibility properties for Lat will be useful:

(i) {x1 ≤ y, x2 ≤ y} |∼Lat {x1 ∨ x2 ≤ y}

(ii) {x1 ∨ x2 ≤ y} |∼Lat {x1 ≤ y} and {x1 ∨ x2 ≤ y} |∼Lat {x2 ≤ y}

(iii) {x ≤ y1} |∼Lat {x ≤ y1 ∨ y2} and {x ≤ y2} |∼Lat {x ≤ y1 ∨ y2}

(iv) {x ≤ y1, x ≤ y2} |∼Lat {x ≤ y1 ∧ y2}

(v) {x ≤ y1 ∧ y2} |∼Lat {x ≤ y1} and {x ≤ y1 ∧ y2} |∼Lat {x ≤ y2}

(vi) {x1 ≤ y} |∼Lat {x1 ∧ x2 ≤ y} and {x2 ≤ y} |∼Lat {x1 ∧ x2 ≤ y}.

We will also need the fact that each generator y of a free lattice is both join-
and meet-irreducible, which can be expressed as follows:

(vii) |=V y ≤ t1 ∨ t2 =⇒ |=V y ≤ t1 or |=V y ≤ t2

(viii) |=V s1 ∧ s2 ≤ y =⇒ |=V s1 ≤ y or |=V s2 ≤ y.

Finally, we will make crucial use of the following property of admissibility in
lattices, known as Whitman’s condition [43]:

{x1∧x2 ≤ y1∨y2} |∼Lat {x1 ≤ y1∨y2, x2 ≤ y1∨y2, x1∧x2 ≤ y1, x1∧x2 ≤ y2}.

2Some general properties of Marczewski-dependence in lattices are explored in [27,37], but
decidability issues are not considered in these papers.
3An earlier example given by R. McKenzie of a finitely generated sublattice of a finitely
presented lattice that is not finitely presented can be found in [11].
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All these properties can be established directly as properties of free lattices
(see, e.g., [11]) or follow as easy consequences of the completeness of a simple
analytic Gentzen system for lattices (see, e.g., [28]).

Theorem 5.4. For each n ∈ N, the following is a minimal Lat-refuting set

of equations for y = {y1, . . . , yn}:

∆n :=
{

yi ≤
∨

j∈[n]\{i}

yj | i ∈ [n]
}

∪
{

∧

j∈[n]\{i}

yj ≤ yi | i ∈ [n]
}

.

Proof. Note first that clearly 6|=Lat δ for each δ ∈ ∆n. Also {δ} 6|∼V ∆n \{δ}
for each δ ∈ ∆n. E.g., if δ is y1 ≤ y2 ∨ · · · ∨ yn, let σ be the substitution
mapping y1 to (y2 ∧ z) ∨ · · · ∨ (yn ∧ z) and yi to yi for i ∈ {2, . . . , n}. Then
|=Lat σ(δ), but 6|=Lat σ(ε) for each ε ∈ ∆n.

Hence it suffices now without loss of generality (since an equation s ≈ t can
always be replaced by inequations s ≤ t and t ≤ s) to prove that for any
inequation ε(y),

6|=V ε =⇒ {ε} |∼V ∆n,

proceeding by induction on the number of symbols in ε. For the base case,
observe that if ε is an inequation with one variable on the left and a join of
variables on the right, or one variable on the right and a meet of variables on
the left, the claim follows directly from the definition of ∆n. For the induction
step, we consider the following cases:

(a) Suppose that ε is s1∨s2 ≤ t and 6|=V ε. Then, by property (i), 6|=V s1 ≤ t
or 6|=V s2 ≤ t, and, by the induction hypothesis, {s1 ≤ t} |∼V ∆n or
{s2 ≤ t} |∼V ∆n. By property (ii), {ε} |∼V {s1 ≤ t} and {ε} |∼V {s2 ≤ t},
so also {ε} |∼V ∆n.

(b) Suppose that ε is s ≤ t1∧t2 and 6|=V ε. Then, by property (iv), 6|=V s ≤ t1
or 6|=V s ≤ t2, and, by the induction hypothesis, {s ≤ t1} |∼V ∆n or
{s ≤ t2} |∼V ∆n. By property (v), {ε} |∼V s ≤ t1 and {ε} |∼V s ≤ t2, so
also {ε} |∼V ∆n.

(c) Suppose that ε is s1 ∧ s2 ≤ t1 ∨ t2 and 6|=V ε. Then, by properties (iii)
and (vi), 6|=V s1 ≤ t1 ∨ t2, 6|=V s2 ≤ t1 ∨ t2, 6|=V s1 ∧ s2 ≤ t1, and
6|=V s1 ∧ s2 ≤ t2. So, by the induction hypothesis, {s1 ≤ t1 ∨ t2} |∼V ∆n,
{s2 ≤ t1 ∨ t2} |∼V ∆n, {s1 ∧ s2 ≤ t1} |∼V ∆n, and {s1 ∧ s2 ≤ t2} |∼V ∆n.
But also {ε} |∼V {s1 ≤ t1 ∨ t2, s2 ≤ t1 ∨ t2, s1 ∧ s2 ≤ t1, s1 ∧ s2 ≤ t2}, by
Whitman’s condition, so {ε} |∼V ∆n.

(d) Suppose that ε is (up to a permutation of meets) (s1 ∨ s2)∧ s3 ≤ yi and
6|=V ε. Then, by properties (vi) and (i), 6|=V s3 ≤ yi and either 6|=V s1 ≤ yi
or 6|=V s2 ≤ yi. Hence, by property (viii), either 6|=V s1 ∧ s3 ≤ yi or
6|=V s2 ∧ s3 ≤ yi, and, by the induction hypothesis, either {s1 ∧ s3 ≤
yi} |∼V ∆n or {s2 ∧ s3 ≤ yi} |∼V ∆n. By the monotonicity of the lattice
operations, {(s1 ∨ s2)∧ s3 ≤ yi} |=Lat sj ∧ s3 ≤ yi for j ∈ {1, 2}, so also
{ε} |∼V {sj ∧ s3 ≤ yi} for j ∈ {1, 2}. Hence {ε} |∼V ∆n.
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(e) Suppose that ε is (up to a permutation of joins) yi ≤ (t1 ∧ t2) ∨ t3
and 6|=V ε. Then, by properties (iii) and (v), 6|=V yi ≤ t3 and either
6|=V yi ≤ t1 or 6|=V yi ≤ t2. Hence 6|=V yi ≤ t1 ∨ t3 or 6|=V yi ≤ t2 ∨ t3,
and, by the induction hypothesis, either {yi ≤ t1 ∨ t3} |∼V ∆n or {yi ≤
t2 ∨ t3} |∼V ∆n. By the monotonicity of the lattice operations, {yi ≤
(t1∧t2)∨t3} |=Lat yi ≤ tj∨t3 for j ∈ {1, 2}, so also {ε} |∼V {yi ≤ tj∨t3}
for j ∈ {1, 2}. Hence {ε} |∼V ∆n. �

Corollary 5.5. The terms t1, . . . , tn ∈ Tm(x) are Lat-dependent if, and

only if, for some i ∈ {1, . . . , n},

|=Lat ti ≤
∨

j∈[n]\{i}

tj or |=Lat

∧

j∈[n]\{i}

tj ≤ ti.

Hence dependence in the variety of lattices is decidable.

6. Open Problems

We conclude with a short list of open problems:

(1) Proofs of uniform interpolation can be quite intricate. In particular,
Pitts’ constructive proof of this property for IPC involves a complicated
definition of left and right interpolants that is checked by induction on
derivations in a terminating sequent calculus. It therefore makes sense
to seek a simpler proof that IPC-dependence is decidable. Such a proof
might perhaps use the fact that subalgebras of finitely generated free
Heyting algebras are projective [12] and hence that finitely generated
subalgebras of finitely generated free Heyting algebras are finitely pre-
sented. The challenge would then be to provide a simple algorithm for
producing finite presentations of these subalgebras. Similarly, we expect
that there should be a more direct proof of decidability for dependence
in the variety of modal algebras that does not rely on the bisimulation-
based method of [23] for calculating uniform interpolants.

(2) It follows from Theorem 5.4 and Whitman’s condition that the minimal
DLat-refuting sets of equations described in Example 5.3 also serve as
(non-minimal) Lat -refuting sets of equations. This raises the question of
whether it is the case for any variety of lattices V that t1, . . . , tn ∈ Tm(x)
are V-dependent if, and only if, for some ∅ 6= I ( [n],

|=V

∧

i∈I

ti ≤
∨

j∈[n]\I

tj .

Note that it is easily checked (since the free lattice on two generators is
finite) that this is true for n = 2; that is, in any variety V of lattices,
t1, t2 are V-dependent if, and only if, |=V t1 ≤ t2 or |=V t2 ≤ t1.

(3) For all the varieties considered in this paper, the dependence problem
is decidable. It would therefore be interesting to know of an example



REFERENCES 17

(if one exists) of a variety with a decidable equational theory for which
dependence is undecidable.

(4) The decidability of dependence is an open problem for most non-locally
finite varieties associated to non-classical logics. In particular, varieties of
modal algebras for modal logics such as T, K4, S4, and KD and varieties
of pointed residuated lattices for substructural logics such as FL (the full
Lambek calculus), MTL (monoidal t-norm logic), R (relevant logic), and
MALL (multiplicative additive linear logic), all fail to be coherent [19,20]
and it is not known if their finitely generated free algebras are coherent.
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