Characterizing bone density pattern and porosity in the human ossicular chain using synchrotron microtomography.

Ivanovic, Aleksandra; Schalbetter, Fabian; Schmeltz, Margaux; Wimmer, Wilhelm; Caversaccio, Marco; Stampanoni, Marco; Bonnin, Anne; Anschuetz, Lukas (2024). Characterizing bone density pattern and porosity in the human ossicular chain using synchrotron microtomography. Scientific Reports, 14(18498) Nature Publishing Group 10.1038/s41598-024-69608-9

[img]
Preview
Text
s41598-024-69608-9.pdf - Published Version
Available under License Creative Commons: Attribution-Noncommercial-No Derivative Works (CC-BY-NC-ND).

Download (6MB) | Preview

The auditory ossicles amplify and transmit sound from the environment to the inner ear. The distribution of bone mineral density is crucial for the proper functioning of sound transmission as the ossicles are suspended in an air-filled chamber. However, little is known about the distribution of bone mineral density along the human ossicular chain and within individual ossicles. To investigate this, we analyzed fresh-frozen human specimens using synchrotron-based phase-contrast microtomography. In addition, we analyzed the volume and porosity of the ossicles. The porosity for the auditory ossicles lies, on average, between 1.92% and 9.85%. The average volume for the mallei is 13.85 ± 2.15 mm3, for the incudes 17.62 ± 4.05 mm3 and 1.24 ± 0.29 mm3 for the stapedes. The bone density distribution showed a similar pattern through all samples. In particular, we found high bone mineralization spots on the anterior crus of the stapes, its footplate, and along areas that are crucial for the transmission of sound. We could also see a correlation between low bone mineral density and holey areas where the bone is only very thin or missing. Our study identified a similar pattern of bone density distribution within all samples: regions exposed to lower forces generally show higher bone density. Further, we observed that the stapes shows high bone mineral density along the anterior crus and its footplate, which may indicate its importance in transmitting sound waves to the inner ear.

Item Type:

Journal Article (Original Article)

Division/Institute:

04 Faculty of Medicine > Department of Head Organs and Neurology (DKNS) > Clinic of Ear, Nose and Throat Disorders (ENT)
10 Strategic Research Centers > ARTORG Center for Biomedical Engineering Research

UniBE Contributor:

Ivanovic, Aleksandra, Schalbetter, Fabian, Wimmer, Wilhelm, Caversaccio, Marco, Anschütz, Lukas Peter

Subjects:

600 Technology > 610 Medicine & health
500 Science > 570 Life sciences; biology

ISSN:

2045-2322

Publisher:

Nature Publishing Group

Language:

English

Submitter:

Pubmed Import

Date Deposited:

12 Aug 2024 11:15

Last Modified:

12 Aug 2024 11:25

Publisher DOI:

10.1038/s41598-024-69608-9

PubMed ID:

39122776

BORIS DOI:

10.48350/199628

URI:

https://boris.unibe.ch/id/eprint/199628

Actions (login required)

Edit item Edit item
Provide Feedback