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Enabling the examination of cell-cell relationships in tissue, spatially resolved omics technologies
have revolutionised our perspectives on cancer biology. Clinically, the development of immune
checkpoint inhibitors (ICl) has advanced cancer therapeutics. However, a major challenge of effective
implementation is the identification of predictive biomarkers of response. In this review we examine the
potential added predictive value of spatial biomarkers of response to ICI beyond current clinical

benchmarks.

ICI has demonstrated moderate efficacy across a variety of cancer types. This
was highlighted in a multi-cancer study of ICI response across 27 cancer
types. An objective response rate of >30% was observed in four cancer types
(cutaneous squamous cell carcinoma, non-colorectal mismatch repair
deficient (dIMMR) tumours, melanoma, and Merkel-cell carcinoma).
Despite this clinical success, approx. 37% of cancer types demonstrated an
overall Response Rate (ORR)<10%"’. Additionally, ICI-associated
immune-related toxicities (immune-related adverse events (irAEs)) are
not uncommon’”. While their presence is thought to reflect an engaged
immune response and is commonly associated with an observed anti-
tumour response, clinical manifestations can impact a broad range of organs
and in some cases, prove to be fatal (up to 1.3% of treated patients)".
Identification of a predictive biomarker for ICI response is of great impor-
tance to preserve patients from treatment-associated toxicities and relieve
the financial burden on health systems from the use of inefficient therapies.

The current landscape of predictive biomarkers for ICI

The most prominently examined predictive biomarkers for response to ICI
include PD-L1 expression (by immunohistochemistry), tumour mutational
burden (TMB, the median number of mutations per megabase) and
microsatellite status. TMB testing is FDA-approved in patients with unre-
sectable or metastatic solid tumours for treatment with pembrolizumab
following progression after prior treatment’ while in patients with locally
advanced or metastatic colorectal cancer, microsatellite instability (MSI)
serves as a predictive biomarker and is associated with a favourable clinical
outcome®. PD-L1 expression by immunohistochemistry is a widely imple-
mented predictive biomarker for the prediction of response to anti-PD-1

and anti-PD-L1-based therapies for numerous tumour types’. For example,
for non-small cell lung cancer (NSCLC) and gastric cancer, PD-L1
expression is FDA-approved as a companion diagnostic for treatment with
pembrolizumab (PD-L1 IHC 22C3 pharmDx (Dako)"’.

PD-L1 expression can be quantified using the tumour proportion score
(TPS), which accounts for PD-L1 expression in tumour cells, or the com-
bined positive score (CPS) which accounts for PD-L1 staining in both
tumour cells and surrounding immune cells''. The TPS is considered a
reliable method for NSCLC; however, less robust for other solid cancers
where the CPS is more commonly applied. Despite the common evaluation
of PD-L1 expression, durable benefit from ICI has been observed in patients
with low or non-detectable PD-L1 expression'” questioning the sensitivity of
the assay. Equally, PD-L1-positive patients with no response to ICI treat-
ment have also been observed". There is a clear need for more reliable
predictive biomarkers to ICI and scope for a potential paradigm change in
assessing patient outcomes for such in clinical trials'’. Spatially resolved
quantification of biomarkers such as PD-LI or the discrete localisation of
cell-cell interactions holds potential value for the identification of a new
generation of “spatial biomarkers” of response to therapies such as ICL

Deriving spatial context from tissue

We define spatial biomarkers as those derived from the quantitation of the
spatial relationships of cellular components or target expression within
tissue e.g., distance between cells, geographical distribution of target
expression and/or cellular biomarkers across tissue. Enabling this quanti-
tation requires the use of technical modalities which measure RNA or
protein expression while retaining tissue architecture and cellular
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organisation. The past decade has seen a rapid expansion in the develop-
ment and commercialisation of spatially resolved omics technologies. Such
technologies enable the visualisation and quantitation of numerous mole-
cular targets and cellular components within tissue while retaining tissue
architecture. A variety of spatially resolved omics technologies exist and
have been comprehensively reviewed'* . The studies featured in this review
comprise largely of image-based technologies including imaging mass
cytometry (IMC), co-detection by indexing (CODEX / Phenocycler (Akoya
Biosciences), multiplex immunofluorescence (sequential, cyclic (CycIF) and
MILAN), immunohistochemistry and one sequencing-based technology,
the Digitial Spatial Profiler (DSP, Nanostring) (Fig. 1). The ability of such
technologies to examine a high number of molecular targets means that
numerous cell types can be examined within the same tissue section. The
resolution of technologies ranges from user-selected regions of interest
(ROIs) to single cells (cell segmentation). The retention of the spatial

architecture of such features enables the extraction of spatial (x and y)
coordinates and subsequent quantitation of their spatial distribution within
the tissue which requires the implementation of a variety of computational
methods. The most common spatial analysis methods described in this
review include cell-cell distance calculation, nearest neighbour distance
quantitation, radius-based cell density/frequency quantitation or target
interaction/co-expression through image masking (Fig. 2), additional
methods not featured have been reviewed by others'**’. Despite the appeal
of newer spatial omics technologies, it is important to consider the ability to
extract comparable spatial information (albeit at lower numbers of targets)
from more traditional methods within pathology such as haematoxylin and
eosin (H&E) or immunohistochemically stained sections. This type of
spatial analysis often requires the implementation of more advanced
computational modalities, such as artificial intelligence (AI) to see patterns
beyond the naked eye.
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Fig. 1 | Technology and methods to acquire spatially resolved data and quantify
spatial relationships. a Co-detection by imaging (CODEX/formerly Phenocycler)
(Image-based, IB). Following labelling using an antibody cocktail conjugated with
unique DNA barcodes a cyclical process of tissue imaging and reporter probe
removal. Image co-registration of cycles enables downstream image analysis.

b Immunofluorescence (Cyclic (CycIF), multiple iterative labelling by antibody neo-
deposition (MILAN) (IB): Iterative cycles of antibody incubation, CycIF: groups of 3
antibodies labelled with different fluorescent dyes for antibody incubation. MILAN:
unconjugated primary antibodies followed by fluorescent labelled secondary anti-
bodies, target imaging and removal. Images from each visualisation cycle are co-
registered, and downstream image analysis is applied. ¢ Multiplex immuno-
Sfluorescence (mIF) (IB): Iterative process of single antibody incubation, fluorescent
visualisation with tyramide signal amplification and antibody removal. One imaging
step acquires all fluorescent channels to visualise antibodies in the one tissue section
to which downstream image analysis is applied. d Immunohistochemistry (IHC) (IB):
Visualisation of a single protein target, can also be performed for the co-visualisation
of multiple targets. Primary antibody binding, secondary antibody conjugated to a

chromogenic detection molecule, e.g., horseradish peroxidase (HRP) and visuali-
sation through conversion of a chromogenic substrate, e.g., 3, 3’-diaminobenzidine
(DAB) by HRP into a coloured signal to be visualised under a light microscope or
brightfield scanner. e Imaging mass cytometry (IMC) (IB): Following labelling with a
cocktail of metal-tagged antibodies, labelled tissue undergoes laser ablation which
vaporises the tissue (with bound metal-tagged antibodies) in sequential small spots.
The ionised tissue is put through a mass cytometer, which detects and quantifies the
metal isotopes and correlates them to specific antibodies. The intensity of each
ablated spot is collated for each metal isotope and the spatial information on each
spot is used to reconstruct images for downstream image analysis. f Digital Spatial
Profiler (DSP) (Sequencing-based): Applicable for the detection of RNA or protein
molecules. For protein detection: following incubation with a cocktail of barcoded
antibodies, fluorescently tagged primary antibodies are applied to aid region of
interest (ROI) selection. For each ROI UV cleavage and aspiration of the antibody
barcodes will proceed. Each aspirate from a unique ROI will be deposited into a 96-
well plate for transcript counting via nCounter or NGS.
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Fig. 2 | Data analysis methods to quantify spatial relationships from spatial omics
technologies. a Target interaction and co-expression: The co-localisation of a target
expression can be used to infer target interaction. This is achieved through the
generation of masks per target of interest. Images with the corresponding masks are
co-registered and regions of mask overlap are determined as interaction of targets. A
similar approach can be utilised to assess target co-expression. For this, normally,
cells are segmented from digital images and assessed for the co-expression of the
target of interest. Once identified, the frequency or spatial organisation of co-
expressing or interacting cells/targets can be further quantified. b Cell-cell distance
calculation: The calculation of cell-cell distances involves the assignment of a

reference cell phenotype (cell A) upon which distances are calculated to a second cell
phenotype (Cell B). This is performed for each individual cell of the reference
phenotype, and distance calculations are averaged to provide a reflection of the
overall spatial distribution of cell B to cell A. ¢ Nearest neighbour distances: This
approach quantifies the distance between a reference Cell A and its nearest neigh-
bouring cell. This calculation can be performed iteratively for each cell of interest,
and distances averaged to provide a global overview of the proximity of neigh-
bouring cells to a specific reference cell of interest. d Radius-based cell quantitation:
For radius-based cell quantitation a reference cell A is defined upon which cell
numbers and cell phenotypes within a radius of varying size are quantified.

Whether high plex image-based technologies or through the applica-
tion of AI methods on H&E, the spatially resolved quantification of bio-
markers such as PD-L1 or the discrete localisation of cell-cell interactions
hold the potential to identify a new generation of “spatial biomarkers” of
response to therapies such as ICI. Reflecting upon the title of this review,
“how soon is now,” we evaluated current literature examining spatial bio-
markers of response to anti-PD-1 and or anti-PD-L1 therapy to answer:
What is the current landscape of spatial biomarkers in the field of ICI
response? Do spatial biomarkers provide added predictive value compared
to current clinical benchmarks? How close to the clinical application are
such spatial biomarkers?

Search criteria

We performed a literature search on PubMed in November 2023 for clinical
trials and clinical cohorts examining image-based spatial biomarkers using
validated search terms”. Inclusion criteria required the investigation of
spatially resolved image-based biomarkers of response to immunotherapy
on tissue which yielded 20 studies in total. This review focuses on tissue-
based modalities for the assessment of spatial biomarkers from routine
pathology specimens. Therefore, studies assessing imaging biomarkers from
radiology, positive emission tomography, magnetic resonance imaging and
computed tomography while holding the potential to obtain spatial bio-
markers have been excluded from this review. Multiple studies in melanoma
and NSCLC were identified enabling comparisons to be made between the
types of spatial biomarkers identified in each disease. Additionally, we
identified 6 studies assessing the use of Al for the identification of spatially
resolved morphological biomarkers of response from H&E and THC as well
as automation of the quantitation of current benchmarks such as PD-L1
expression.

Multiplexed image-based spatial biomarkers of
response

Melanoma

We identified seven studies assessing spatial biomarkers of response to ICI
in melanoma. All studies included single-cell methodologies assessing
protein expression, such as imaging mass cytometry or multiplex immu-
nofluorescence (mIF) and one study applied digital spatial profiling
(Nanostring) to assess compartment-level expression. From the studies

summarised (Fig. 3, Table. 1), two spatially resolved features were frequently
identified as predictors of response to ICI in metastatic melanoma
patients: 1. PD-L1" macrophages, and 2. T-cells. Toki et al.”* employed a
compartment-based strategy in combination with DSP to examine the bulk
expression of a panel of 44 protein markers as biomarkers of response in 60
pre-treatment melanoma formalin-fixed, paraffin-embedded (FFPE) tissue
specimens comprised in a tissue microarray from stages I to IV. The three
compartments include (1) CD68"* macrophages, (2) CD45+ leucocytes and
(3) S100 + HMB45" melanocytes. In univariate analysis assessment of
target counts in each compartment revealed that high CD8+ counts in the
macrophage compartment were significantly associated with response (CR/
PR) (P =0.014), progression-free survival (PFS) (P = 0.0082; HR, 0.42; 95%
CI, 0.22-0.83) and prolonged overall survival (OS) (P=0.0119; HR, 0.33;
95% CI, 0.14-0.78), indicating that a potential interaction between CD8+
T-cells and macrophages underly response mechanisms. In multivariate
analysis, high PD-L1+- expression in the macrophage compartment was
significant for response (CR/PR), PFS (P=0.0072; HR, 0.36; 95% CI,
0.18-0.69) and OS (P = 0.0032; HR, 0.15; 95% CI, 0.065-0.35). This feature
distinguished responders from non-responders irrespective of bulk PD-L1
expression in the melanocyte or the leucocyte compartments.

Using a similar compartment-based analysis, Lu et al.” identified in 11/
23 high-risk resectable melanoma patients treated with either nivolumab
only or a combination of ipilumumab/nivolumab high levels of 32M, Beta-
catenin, CD19 and CD8A can distinguish responders and non-responders
(AUC =0.998). £2M, CD19 and CD8A are correlated with response, while
Beta-catenin is correlated with non-response. Quantitation of the number of
adjacent immune cells surrounding a given immune cell revealed that a
higher immune neighbour number was observed in responders compared
to non-responders for baseline samples (P = 0.061).

Similar features were identified in a study by Antoranz et al.**. Using
Multiple iterative labelling by antibody neodeposition (MILAN), the
authors of this study identified 18 cell phenotypes from a panel of 37 pro-
teins in a cohort of 16 pre-treatment metastatic melanoma samples. Bulk
expression measurements, cellular density and cell-cell distance measure-
ments were made for each cell phenotype. The authors observed a sig-
nificant spatial difference in the expression of PD-L1* macrophages
between responders and non-responders. PD-L1 expression in macro-
phages close to the tumour edge and close to cytotoxic T-cells was found to
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Fig. 3 | Spatial biomarkers for response to immune checkpoint inhibition in
melanoma. a Toki et al.”: High PD-L1 and CD8 counts in macrophage compart-
ment associated with CR/PR, prolonged PFS and OS. b Lu et al.*’: High protein
counts of B2M, CD19 and CD8A, and higher immune neighbour number associated
with response. High protein counts of beta-catenin are associated with no response.
¢ Antoranz et al.”: High density of PD-L1+ macrophages close to tumour edge
(within 30 um) and close to cytotoxic T-cells (within 10 um) associated with

improved response. d Kim et al.”: High density of PD-L1+ macrophages, M1 and
activated M1 macrophages close to tumour cells (within 15 um) associated with
response. e Attrill et al.”: Shorter distance of CD39+ memory T-cells to tumour cells
in recurrence-free patients. f Johnson et al.”’: High PD-L1/PD-1 interaction score
and/or high IDO1/HLADR+- co-expressing cells associated with highest likelihood
of response. g Martinez-Morilla et al.”*: High B2M protein expression associated
with better overall survival.

have a superior predictive value (AUC 0.98) in comparison to bulk PD-L1
expression (AUC 0.68). More specifically and confirmed in a separate
validation cohort, a high density of PD-L1* M1-polarised macrophages
close to the tumour was significantly associated with response to ICI
(AUC 0.98). Using similar visualisation methods, Kim et al.”* employed a
variety of spatial measures including direct cell-cell distances, nearest
neighbour distances between cells near one another and radius-based
measurements identifying the percentages of cell phenotypes within 15 mm
of a specified cell type on a cohort of 23 stage IV melanoma patients.
Through this analysis, they” identified that a high spatial density of PD-L1+
T-cells (OR, 15.0; 95% CI, 1.031-218.3; P =0.048), M1 macrophages (OR,
1.226;95% CI 1.002-1.501; P = 0.048) and activated M1 macrophages (OR,
15.0; 95% CI, 1.031-218.3; P = 0.048) close to tumour cells (within 15 pm)
correlated with a favourable objective response to therapy. Through com-
parisons of immune cell densities in peri-tumoral and intra-tumoral regions

the authors observed that densities of PD-L1+ T-cells tended to be higher in
both peritumoral (P value not stated) and intra-tumoral regions (P = 0.017)
of tumours in good responders while poor responders demonstrated a
notably lower density of PD-L1+ T-cells in the peritumoral region com-
pared to intra-tumoral regions.

Similarly, Attrill et al.* used multiplex immunofluorescence on a large
cohort of 103 pre-treatment FFPE samples from stage III melanoma
patients with in-transit or nodal metastasis. The authors focused on asses-
sing intra-tumoral CD8" T-cell subtypes, namely, CD39*CD103*PD-
17CD8" (resident memory (Trm)) T-cells, CD39 CD103"PD-1"CD8*
T-cells and CD39~CD103 PD-1 CD8" T-cells, in association with therapy
response. Spatial measures, including the average distance of each CD8"
T-cell subtype to tumour cells and the percentage of each CD8" T-cell
subtype within a 20 um radius of tumour cells, were made. In the discovery
cohort three CD8" T-cell phenotypes were found to be associated with

npj Precision Oncology | (2024)8:178



Review article

//doi.org/10.1038/s41698-024-00671-1

https

(%5'98-€'G9 1D %56 ‘%6°GL ONV)
'S4y Jebuo) = ebejs pue uonosssip
apou ydwiA| 819|dwod 0} uolippe

Ul (22000 = d ‘%9228 = Uelpau)
|99 Aowsw +6gg) o uoiodoid
UBIH 1S4y 10} [opow SAROIPBId
‘LI00'0=d

‘wr /2°g0g = ueaw

44 Ld/wi] +6£a0 ‘wrig'6.9 = uesw
09y |d/wiL

+6€d0 :siuened (0ay) eousunoal

0} pasedwo9 (4y) 981 80USLNDBI

ul L d/wil +6€Q0 03 48s0j0
Apueoyiubis a1em s||92 BLOUBBIN
‘sjuaned aauy

aouauindaa ul (way) s|I9o- 1 Alowsw
-++6£Q9 0} 49S0|0 S||20 Jnowin}

ON

(09ss0=d

‘€9°L=L¥"0 10 %56 ‘18°0
HH) 9AISOd *% |< snjels
17-ad "4O 1IN Jo aA0adsall
90Ua.INJ3I Y)IM PajeIoosse
Jjou sem snjels |1dd

1199 Jnowiny
Jo wrl oz ulyum sadAy
1199 jo uolenuenb [elpey

[eAInns QouBISIp ||90
SOA 991} 90UBLINDBY Jnowny o} adAjouayd |90

o] BWoUBB 9 d Jlw

oz [B 19 [IURY

*asuodsal poob = s|j90 Jnowin}

Jo wrl gL uyum (810°0 = dnfen-o
‘€'8Le-LE0'k

‘1D %96 ‘0°S} ‘HO) sebeydosoew
LN pPareAioe pue (870°0

=on[eA-d {L0S 1-200"k 1D %56
‘922’ | ‘do) sebeydosoew LI (8700
=9anjea

-d '€'812-1€0°L ‘1D %56 ‘0°GL
‘dO) sli#oL +11ad 4o Ausuep ybiH
asuodsai poob = ||99 Jnowin}

JO wing | ulym sabeydosoew
LN pPaleAnoe ‘sabeydoioew

LI ‘sl@9-L + 11ad Ausuap ybiH

souelsIp
JnoquBieu }seseaN

ON  Euawo 1§103H SOOUBISIP (199180

e BWOUBBIN 9 pue 2 d diw

oz B30 Wiy

(866°0 = ONV) Y =SI199-1
21X010}49 pue a6pa Jnowin)} 0} 8s0|d
sabeydosoew +17ad Ausuap ybiH

ON

890 ONV
[e1oljauaq Jou L7ad ing

|99-] 21X0}0}A0 Jo wr Q|
‘abpa Jnowny wrl gg ulyHm

Aysuep abeydoioew
40 uoieyuenb [eIpEY

abpa 0}
SOA BuUdIIO |S103H aoueysip adAjouayd |90

9l ewouey YA d NVIIN

.- [e 18 ZueJOjUY

(8660 =0NV)
dN = ulueieD-eieg YbiH ‘Y = sjunoo
urejoud ¥8@o pue 61.a0 ‘Ngg UBIH

(19070 = d) 4 =48quinu Jnoqybiau
aunwiwil Lwcm_I _ww_nrr_mm aulleseg
HN = ulus)eos-e1ag YbiH ‘Y = sunod
uRjoad ¥8ao ‘6+ao ‘We2d UBIH

1192 sunwiwi JO 9oUEe)SIP
UaAIB Ul Jaquuinu sunwiwl
uoneuenb [ejpey

oN BUBIIO |SID3Y Jswpedwo)

4 d dlw

€e ewouep 6¢ d dsa

BN

"(€8'0-22°0 ‘10 %S6 ‘2v'0

‘HH :2800°0 = d) S4d PUE (82°0-+'0
‘10 %56 ‘€€°0 'HH ‘61 10'0=d)

SO pabuojoid ‘(710°0 =d)

Hd/"0 = ue wpedwod abeydoioew
ur'sjunoo gao YbH *(5€'0-590°0

‘10 %56 ‘S1°0 "UH ‘2€000=d)

SO pue (69°0-81°0 ‘10 %S6

‘9€°0 "dH ‘22000 = d) S4d pebuojoid
‘(1100°0 = d) Hd/HO = JuswipedwWwod
abeydoioew ul sjunod | 7-ad ybiH
“uawpedwod abeydosoew

ul sSJunod g YbiH uswpedwod
abeydoioew sunod L1ad YbiH

uswpedwoo
Jnowiny ut JoN

‘osuodsai
UHM S]JEIOOSSE JoU
pIp Jnowiny ul S)unod |dd

SO ‘S4d
SOA ‘eusiuo 151034 Juswpedwo)

09 euwouep 144 d dsa

2z B BOL

Ja)4ewolq |eneds Jo ainjesy Aay

¢osuodsai
Jo aanpoipaid
Jdewyouag

Jnsal
aAnodIpaid yJewyouag

ipoassasse asuodsai
iewyouag 4o} uiodpug ainseaw [eneds

3a)Ajeue
sa|dwes N adfy se0uen sjabiel N Jo adA} POy

J°d

solbojopoyiaw solwo [enjeds wo.y paALISp wo.y siddjewolq [eneds Alewwnsg | | ajqel

178

npj Precision Oncology | (2024)8



Review article

//doi.org/10.1038/s41698-024-00671-1

https

*(£200°0 = d) uoissaudxe |1-Ad

ybiy pue yuswebebus O3-110 ubly
pey siepuodsal [esianiun ‘Adessyy
0} puodsai jou pip 0 Bunoos sjusied
1V Y 03 pasedwod 8100s sunwiwi
|eneds Jomo| Ajpueoniubis pey YN
(92000=d

‘% 1'7S SA %8'€€) H SAHN

ul 93 Yyum sT10 Jo Juswabebus ssa
"(9000°0 = d *AloAnoadsal

‘%2129 PUB %G2h) H A YN Ul

LD yum pabebus s H JO % JomoT]
‘siopuodsaa

ul S||99 JnowiN} YMm sj|99- 1
91x0}0}4A9 Jo Jusawbebus aiow pue
(1.L0) s1199-1 91x030140 yum pabeus

‘AdeJayy |D] 01 papuodsa.
uolssaldxa | 7-Ad Ou Yyum
swiened v 1/y (%12) Y uey
(%¥S) @Anebou |7-ad 99 o}
Aol a10w YN “(€9L0°0 =d
19%9°02 SA %9°G)

H Ueyl Sd1 11-ad Jemoj

1120 Jnowin}

yoea jo wrl oy pue ||90-|
yoea jo wrl G| uiyum sadAy
1190 Jo uonenuenb [eipey

(1LH) sl199-1 4odjay Jo % 4aybIH soA  Apueoyubis peysjusned YN (Sd1) seA BUSILO |SIO3Y  ®doUuElSIp InoqyBieu isasesN 4] OTOSN 9 d dw oe T8 10 UID
‘(L0000 > d ‘(99°0-82°0) '920'0=d ‘S6'0-¥¥'0=10
10 %56 ‘€v°0 = [4H] paisnipeun) = SO ‘G9'0 =YH HO-IN0 Sd1 %
“(¥500°0>d ‘(¥8'0-2€70) 17Qd UM LYo uolepljeA
10 %56 ‘9570 = [4H] Ul S4d 404 Ajuo Jueoyubls
pajsnipeun) :S-d :1es uoleplieA (L0=d ‘L0 k=20 =10
“(Lo00'0>d ‘12°0 =4H) :§0-ind
‘10 %S6 ‘¢t"0 = [4H] peisnipe %065 +7ad SO 19s uoliepliea
-un) :S0 (L0000 > d (65°0-92°0) ‘(lg'0=d ‘2€'1-€50=10
10 %56 ‘6€°0 = [4H] pasnipeun) ‘G8°0 = HH) :40-Ino
:Sdd Syuow g "eouaLnoal %06S 11dd SO 1es buiuresy
403811 Ybly = 8100 Mo :38s Buures | (Lb'0=d ‘L0 k=L¥'0=1D
—(D]-2100s0UNWIWI ‘L2°0 =YH) :40-Ind
mol-ybiy) Aiobeyes-om | %1 17Aad SO 18s uonepien
" =(sl192 .mmm.o =d'S9'-€9'0=10 |99 Jnowin}
+17-ad pue 8ao jo Anwixoid H0-1n0 201'0=4H) :§0-INd % | Jo wrl gz uiyum sadk
pue Aysuap 8ao ‘siisn|o Sdl %1 yum 17ad SO 1es Buiuen :so [BAIINS |[249A0 1159 40 UoREIUEND [EIpRY
809 ‘sl1e2 +11-ad Jo @341 +8a9) U0oY00 uofeplea 10} 189S uonepIeA 1o Buluresy pue [EAIUNS - .
2109s J|-a109sounwwi YbIH ul S4d Ajuo ‘sap (Sdl) seA  @a4-uoissaiboid SOOUBISIP [[99—[9D [oleY4 IT1OSN 2 d Jlw
"(850°0 =d *(20"+-G€'0) 09°0 ‘(1D %S6)
HH :SO HOU0O UOREPI[EA Ul PUSI]
(G10'0=d ‘(r£'0-50°0) 02°0 ‘(1D %S6)
HH SO :Hoyod
K12n00sIp Ul D] 0} 9suodsai Jayeq
U}IM PajeIDoSSE aJom uolssaidxa
utajoud |\ Zg Jnowny Jo sjans| ybiH
‘asuodsai mn._m b
Japeq = uoissaidxa Wegg UbIH = = ON BUBIIO 1S103YH ewpedwo) 09 ewouejely [k d OnI E|IUO-ZauILEN
(e20=0onv
“18°0 = Ayouioads ‘€9 0 = ANAINSUSS
100°0 S d ‘%08) 8suodsai jo
pooy1el| 1seYBly 8y} pejessuowsp
(190 +HAV1H/1LOQl jo abejusoiad
ybiy pue 2109s uoljoeIBUI
17ad/1ad ubiy pey oym siepuodsey
280
Apoyioads pue 9°0 AuAsUSS = YN
pue Y usamiaq parenuaiapIp (2.g0=0nv
"Bis 8100s uonoeIBIUI |1Ad/LAd ‘96°0 = Aoyoads
‘asuodsau Jo pooyiay ‘6°0 = ANAISues
1saybiy = s||oo Buissaidxa ‘19'0=d) "N pue a|ge|leAe jou uoissaidxa-00)
HavH/1L0al ybly Jo/pue H U99M}aq SJeUILILIoSIP Jou Joud J1 1S103H!
109s uonoedul Ldd/1L1dd YBIH ON pIp auoje uoissaidxa | 7ad SOA /eusiud 1S103y ©100S uoIjoBISIU| QoL BWOUBBN c‘c'e d Jlw ,2'[e @ uosuyop
¢osuodsai
Jo aanpoipaid }nsai ¢passasse asuodsai 3)fjeue
Jay4ewolq |eneds jJo ainjes) Aoy }Jewyouag aAnoipad yiewyouag )Jewyouag Joj yuiodpug ainseaw |eneds so|dwes N adfy seouen sjebiel N joadAL pPouylsN oy

sal6ojopoylaw So1WO |eljeds WOy PaALISP Wo.y s1dyjewolq [eneds Atewwnsg | (panunuod) | ajqel

178

Precision Oncology| (2024)8

npj



Review article

//doi.org/10.1038/s41698-024-00671-1

https

(L200=d ‘%L 6 SA

%°02) GON SA g0 Ul BWOAIS Ul S|j80
-NVd)O/+95a0 0 % Jeybly ‘bis
Hjw

"8ON pajoipaid ‘Bis

juswipedwod Jnowny Ul (#20°0=d
‘12°0-+0"0 51D %56 ‘80°0 :HO)
/zLaopue (Leo'0=d ‘g'0-10°0 10
9656 ‘60°0 :HO) VLSIA 40 SIend] ybiH
'g0 9|qeInp yum

pajeloosse EmEthEoo Svyad ayr
ul(yL0'0=d ¥ Lb—¥S'L 1D %56 ‘S8
HO) ¥aO PUE (710'0=d ‘2097 |
110 %56 ‘2°9 *HO) 9500 JO Sjond] YbiH
dsd

"Hyouaq [eloulfo d|qeinp

-uou = Juawpedwod Jnowny

ur uoissaidxa V1SIA YBIH "Hyauaq

(L1'0=d ‘6€'1-220

10 %G6 ‘S50

'HH - Juswpedwod 89aD
‘L1'0=d €2 1-SL'0 10 %56
‘GH°0 ‘HH—uswpedwod
S¥ao) :Bunsel AN

ul *Bis Jou sem juawpedwod

|eoa1uno ajqeanp = juswpedwod abeydoioew 4o 8)14000n3) 3 G e e
Svao u1 95a0 YBIH ON ur uoisseidxe | 1ad UBIH S8A  EBUBO 18103Y wewpedwo) €5 OT0SN 24 d dsa enjobezebnz
‘[ealnins \_mmr_o_
40 aAnoIpald (800°0 =d
8020
10 %G6 25°0 HH ‘S4d
‘L00'0>d '69'0-¥2°0 1D
(Y0'0=d ‘1S +-20'k %86 ‘+¥°0 ‘4H ‘SO] (—89a0
10 %56 ‘¥¢'L "dH) S4d /+5¥a9)) serkooons|
PUE (910°0 =d ‘09" k-90°L IO %56 puUe (£10'0=d ‘¥6'0-8%'0
‘1€ “dH) SO J8H0YS Uim pajeloosse ‘10 %6 :29°0 ‘dH
Juswipedwo9 BwoJS aunwiwl ‘S4d ‘260°0=d ‘S0’ L-¥S°0
ur uoissaudxa g99ao UBIH :d dsSa (1)
‘4lw Aq pajepijep Wswpedwod S[EAISIUI SOUSPIUOD %G6 [BAIMNS |[BJOAO oe d Jw
*SO 19Moys = Juawpedwod ewolys 914o00n8| G20 ‘YH ‘SO)) SI[©2 Jnowin} pue [eAIuNs
aunwiwi ul uoissaidxe q9oa) UbIH pue Jnowiny ‘SeA ul uoissaidxe |1ad UbiH S9A  @au-uoissalbolid juswpedwo) fele] OTOSN (WA d dsa o '[E 19 JeIno
I0diN0 Sd1 %05 < 11
-(d 83 JO ‘(39S UoIEpIfeA BY} U
GL00=d ‘65°0=HH
‘}os AJBN0OSIP BU} UI £00°0 = o
‘G20 =4H odino Sd1 %1 < 11-Ad
Sd1 11ad 40} Uo1308.109 Buimo)|0)
aAnolpald paurewai siyL (Ev0'0 =d
66-9Y°0 1D %G6 ‘89°0 = YH)
‘AN PUE (720°0 = d ‘96'0-19'0
10 %56 ‘92°0 =4HH) :AN Ul S4d
1abuo| yym pajeloosse juswpedwod
anowny ui uolssaidxa a0 YybiH *‘Sdd 49buo| yum oosse
‘uoissaidxa 17ad 404 Bunsnipe (800°0=d ‘25'0=4H)
uaym aanolpald pauleway Wawpedwod JusWpEdWOoD sunwiwl ¢ d QW
*Sdd 196uo| = uswpedwod 91A000n3| pue (LL0'0=d ‘29°0=4H)
anowny ui uoissaldxa a9 YbiH PpUB INOWN} ‘SO A Jnowiny ul uolssaldxe L 1ad SOA BusIO |S103H Juswpedwo) 9G O19SN WA d dsa 2¢'[e 18 IJeInoN
*sdnoub Hd ul Jaybiy
Apueoyiubis (62070 = o) SeykoouUOW
pue (L£0°0 = ) sebeydoioew
‘(l20'0=d) $OQ ‘(7 +0'0 = d) Slieo-L
ad _CO_«_wOQEOo aunwiwi [ewons
"(6€0°0 = d) SO Uelpaw Jabuo
Sey 2109s ewouis ybly yum sjusiied
" =(8€8'0=0NV) L1-Ad Butpnjoul
sufejoud g|. Jo aunjeubis ewons ybiH (ees'0=0NV)
“d = 11ad Buipnjoul suisjoud gINL pue gL (822°0=0NV) gINL pue
81 Jo ainjeubis jewons ybiH 17ad ‘seA uoissaidxe |7ad 17Qd ‘SeA  BueO |SI03Y ewpedwo) 8l OT0SN zi8L VNY dsa \'Ie 30 Buog
¢osuodsai
Jo aanpoipaid }nsai ¢passasse asuodsai 3)fjeue
Jay4ewolq |eneds jJo ainjes) Aoy }Jewyouag aAnoipad yiewyouag )Jewyouag Joj yuiodpug ainseaw |eneds so|dwes N adfy seouen sjebiel N joadAL pPouylsN oy

sal6ojopoylaw So1WO |eljeds WOy PaALISP Wo.y s1dyjewolq [eneds Atewwnsg | (panunuod) | ajqel

178

Precision Oncology| (2024)8

npj



Review article

*S|[©2 Jnowiny
+17-Qd 03 49s0|o S||90- |

-+8Q9 paisneyxs ‘s|[@d Jnowin}
—171-Qd 03 s||90- | +8Q0 40 Auwixoid
pasea.ou| :g 1opuodsal sawanx3
upuap pue sebeydoioew
+17-ad ‘slied —1+8a9 o uoiodosd
ybiH : 1 1opuodsai swasxg

GNL ‘SOA BUSIIO | S103d

spooynoqybiau
Je|n||eo = puu
0} 4o Buusisniy

SooUE)SIPp
Jnoqybisu jsatesu Q|

¢ 1€ 10 BIPPHES

"(670°0 = d) SII®2 nown} +11ad

pue sOQ Pue (620°0 = d) SII92 Jnowin}
—17Aad pue s Usemiaq aouessip
JBH0YS YlM paje|a1iod gL JaybiH
*(€00°0 =d) SO PUE (y£0°0 =d)

Sdd 9SI0M Ylim paleloosse

asem sabeydosoew —17ad

O} pue SOQ —+71dd ©4 §||199 sinowiny
+17Ad wouj seouelsip Jouoys

‘SO pue S4d 9siom = sabeydosoew
-11-Qd 0} pue s|j22

[BAIMNS [[eJON0

onuIpuap -17-dd 01 Sj|92 anowny uonoipaid pue [eAININS
+17-Ad Wouy sasuelsip Japoys —  osuodsai Jo} pasSsasSE JON diNL ‘SeA  @aJj-uoissalbold Juswpedwo) el BN
*9109S YsU Jomo| 0} uosedwod
ul (Ajleanoadsal ‘syjuow /81 SA
€0'0} :Sdd!l UelpaW 1000 =d ‘0}+'€
HH) SO
Japioys g (Syuow /8'6 SA L8'Y
‘Sddl UBIPAW 1L00°0 > d ‘64'€ [HH])
SddJ! Jopoys = 2J09S sl JayBiH
'S|199 _€-NIL€-OV1,8A0/-€-NIL- L S|199 Jnowiny
-Ad-€-DVv1.8a0 ‘slied . 11ad ¥ I1e/s1199 paured jo Joquinu
-V1L10.€dX04,¥Ad/; L 1Ad ‘slied :abejusolad aAosYg
+800/-1-Ad-£-DV1,8a0 :Buimoyo} *S||199 JnowiNny 4O Jaquinu
8y} Jo sones Aysue( ‘uoipodoid S4d1 sebuol pamoys /Siied |92 sunwiwi-Inowny}
_1-Qd+800 Pue , |7Ad = 8400s Xsiy S|190 +171ad 40 (2000 =d) 40 Jeguunu :8100s 8AlOBYT
‘SOl uoipodoud pue (S00°0 =d) —|199 Jnowiny jo w0z
PUE SidJl JoHI0YsS = 2100S Ysu YyBIH SoA  Ausuep ieybiy yum sjusiied SSA  BUSIMO |SIO34M uiypm uoneyjuenb [eipey eI er
"asuodsal Y)m pajeloosse si
pue ANANOE 10}08Y8 ||90 | paseaioul
sjuasaidal a100geneds mo| e
9Iym 9suodsaI-Uuou YUM pajeloosse
s pue AjAnoe anissaiddns |90
| paseasoul sjussaidal aioogeleds
ubly v *(2810°0 = d) suswioads spoownoquBisu
Juswieal}-aid Ul asuodsal JEIN[I99 = puu
yum pajeroosse Ayeusiiubls 01 40 BuLRISNID
a0 0} UMOYS SeM 2100Seleds ay |
'Y = a10ogjeneds SaouBSIp
Mo ‘YN = a1005|eneds ybiH - - ON BLSIIO |S103Y Jnoqybieu jsesesu Q| o8 1 sd

o4o-9a

YuMm asou ul sadfy 199 Jayro

0} uey; |99 , 17-ad-2ad.89ad
0} J3s0]o Apusnbaly

alem s||99 L, 1-ad.L9M.8A0
pue ,|1-ad.g9Nzo.8ad

-0} X9=d sQHO
Jyeusq 8|geInp uou
ueys gL Jomoj Apueoyiubis

SOA BULO | S103H

SOOUE)SIP |[99-{|8D

o812
1Zzeawojopog

//doi.org/10.1038/s41698-024-00671-1

Jay4ewolq |eneds jJo ainjes) Aoy

¢osuodsai

ON Sey QYO H8ueq 8|qeing
Jo aanpoipaid }nsai
yiewyouag aAnoipad yiewyouag

ipassasse asuodsai
yiewyouag 1o} utodpug

ainseaw |eneds

o

https

sal6ojopoylaw So1WO |eljeds WOy PaALISP Wo.y s1dyjewolq [eneds Atewwnsg | (panunuod) | ajqel

178

Precision Oncology| (2024)8

npj




Review article

//doi.org/10.1038/s41698-024-00671-1

https

*9oud9salonjounwiwl 011940 41949 ‘Aijewoiko ssew Buibewr Dy ‘uonisodsipoau Apoqiue Aq Buljjage| aAesa) o

nw NYTIN

‘aousosalonfjounwiLl paxaldinw Hjw 4a|oid [eeds [eybip JSg ‘4eoued jsealq aareBau-aidul DGN.L “‘ewoydwA| [99-] SNosUBIND 791D ‘480UED [B}0810]00 DY ‘49oUEd Bun| (|99 |[eWS-UoU DTSN ‘9844-90Ua1INdaI {4 ‘©0USLINISI D8y ‘Iapuodsal-uou YN ‘Jepuodsal
Y ‘osuodsal 9A1}09(q0 HO ‘[eAIS}Ul 8OUSPHUOD %GE /D ‘Olfel prezey HH ‘eseasip anissaiboid gd ‘osessip a|qels gs ‘esuodsal [efped Hd ‘osuodsal 839|dwod 4D ‘[eAIMNS 88.)-Uoissaibal SH4 ‘[EAIMNS [[BJOAO SO ‘[BAIMNS 8814-UoIssaib0oid SHd ‘ulejoid 4 :suoijeinaiqay

‘asuodsai Jo siojoIpaid }sabuois
QIOM (L1°2-2€7L 11D 2L’} *HO
‘€00°0 =HA4 5 0} X g ="oHEeg)
S1j90 JINL ynm Bunoessiul

slje0-L +1401 +8a0 Bunessyjoid
JO uonoey PUE (95°L-61"| X1 ‘9L
HO ‘¥00°0 =44 ‘¥00°0 = "****y)
s|[eo [eleynde ynm Bunoessul

S|[e9 [eleynda +||QHIA 4O uondeI
*S8]B]S UOIBAIIOR Ul S|[80 paljiiusp|
‘asuodsai

1anaq = s||199 JWL yum Bunoessyul
sli99-1 +1491 +8a9 Bunesapold
Jo uonoely ybiy pue s|j20
lenayda yum Bunoeasul sjj@d
leljaynda +IIOHIN Jo uonoesy ybiH

10BJU0D
SSEW [[90 8joym ybnoiy}
ON BUBIIO | S103H suonoeRU |[90—(18D eve OgNL (94 d ONI .18 30 Buepm

"(26'0-81°0 10 ‘¥°0 :HO) (€eUoILIO
1S103Y! 0} Buipioooe syeem

2< 40} (aS) esessip s|qels + (Hd)
‘osuodsal [eiued+ (40) esuodsal
a19|dwoo) sjuaiyed Buipuodsai ul
*Alonioadsal

‘(S6°0-G5°0 :1D) G2°0 PUE ‘(¥6°0-+S"0
110) €20 (68°0-25°0 :10) 220

10 (DNY) @AN2 8y} Jepun sease
paAIasqo am ‘s}es-auab paulquiod
10 ‘pawejjul

‘papn|oxa 8y} Jo anjeA aAolpaid
aybiy Apueoyiubis sem jos-aush
pawiejul 8} Jo UoIssaidxe seasaym
‘(6" H1-2' 1 11D 'G'€ {(HO) ones

-sppo) syuaijed (syusned (Qd) esessip
anissaiboud) Buipuodsaiuou

ul JayBiy Apueoiiubis sem jos-aushb
papnjoxa ay} Jo uoissaidx3y

“H ursaybiy

19sauab pawepui ‘YN ul Jaybiy
1osauab papnjox3 ‘sadfQjouayd
H9I 01 Bulpuodsa.iod s)asauab
wo.j paALIap Jalisseo jeneds
*adfjouayd pawejyul Jo JusawiydLIUd

‘YN u1 sadfyouayd paioubi Ajuo s||@0 (28°0-15°0:1D) 99°0 J0 J9pJ0og Jnown} pue a1usd
pue papn|oxa Jo JuawyoLiug aunwiwi ‘Se A NV SOA BuLIIO 1S103H 1e saisuap adA} |90 uespy [ole] 29NL 17 d Jlw o [E 10 JewweH
¢osuodsai
Jo aanpoipaid }nsai ¢passasse asuodsai 3)fjeue
Jay4ewolq |eneds jJo ainjes) Aoy }Jewyouag aAnoipad yiewyouag )Jewyouag Joj yuiodpug ainseaw |eneds so|dwes N adfy seouen sjebiel N joadAL pPouylsN oy

sal6ojopoylaw So1WO |eljeds WOy PaALISP Wo.y s1dyjewolq [eneds Atewwnsg | (panunuod) | ajqel

178

npj Precision Oncology | (2024)8



https://doi.org/10.1038/s41698-024-00671-1

Review article

recurrence: (1) in recurrence-free patients a high proportion of CD39" Trm
(CD39°CD103"PD-1"CD8") cells and a high proportion of
CD39—CD103 + PD-1-CD8+- cells were identified and 2. in patients with
recurrence a high proportion of CD39 " CD103 PD-1 CD8+ (bystander)
cells was apparent. Incorporating spatial measures, in the validation cohort,
a significantly higher percentage of tumour cells closer to CD39+ Trm cells
was identified in recurrence-free patients (CD39+ Trm/P1 Recurrence:
mean = 679.2 um, CD39+ Trm/P1 Recurrence-free: mean =303.7 um,
P=0.0011). Bulk PD-L1 expression was not significantly associated with
recurrence, irrespective of the cut-off used (PD-L1 status >1%. Positive (HR
0.81, 95% CI 0.41-1.63, P = 0.5560).

Conferring a slightly different perspective Johnson et al.”” exam-
ined PD-1/PD-L1 interaction and IDO1/HLA-DR co-expression on a
large multi-institution cohort of 166 stage IV melanoma specimens. To
infer PD-1/PD-L1 interaction, the authors employed a pixel-based
mask approach through the identification of PD-L1" pixels and dilation
of these regions to infer interaction with neighbouring PD-1" pixels. A
separate mask of pixels with IDO1/HLA-DR co-expression was also
defined. This analysis demonstrated that those with the highest like-
lihood of response (80%, P < 0.001, sensitivity = 0.63, specificity = 0.81,
AUC=0.72) had a significantly high PD-1/PD-L1 interaction score
and/or high IDOI1/HLA-DR co-expression in comparison to non-
responders. Bulk PD-L1 or PD-1 expression alone, did not discriminate
between response groups (P = 0.67, sensitivity = 0.58, specificity = 0.56,
AUC=0.57).

A final study from Martinez-Morilla et al.”* demonstrated the appli-
cation of compartment-based analysis using imaging mass cytometry
(IMC) to screen for potential targets for further investigation. In this study, a
26-target IMC panel was applied to 60 specimens of stage III/IV metastatic
melanoma patients treated with ICI. Assessment of target expression in 6
compartments (all cells, tumour cells (HMB45/S100), stroma (tumour cells
subtracted from all cells), T-cells (CD3), B-cells (CD20) and macrophage
(CD68)) identified a subset of markers for further validation. Multivariate
analysis highlighted B2M as a potential target associated with ICI response
(discovery cohort: HR (95% CI), 0.20 (0.05-0.74); P =0.015, validation
cohort: HR (95% CI), 0.60 (0.35-1.02); P=0.058) however its specific
clinical utility was inconclusive.

Non-small cell lung cancer

We identified six studies examining spatial biomarkers of response to ICI in
NSCLC (2/6 on metastatic NSCLC) (Fig. 4, Table. 1). Two studies focused
primarily on single cell analysis using either multiplex-immunofluorescence
or IHC for response prediction in metastatic disease and both studies
identified comparable features as predictors of response. Ghiringhelli et al.””
examined spatial measures between PD-L1+ cells and CD8+ cells using
multiplex IHC in a large cohort of 265 metastatic NSCLC patients treated
with ICL. An Immunoscore-IC score was derived from the measurement of
the proximity between PD-L1+ and CD8+ cells and quantification of the
fraction of cell types within a 20 mm radius of a specified cell type. Patients
with a low score (two-category Immunoscore-IC) demonstrated a higher
risk of recurrence (endpoints: PES and OS) in both training (24 months
PFS: (unadjusted [HR] = 0.39, 95% CI (0.26-0.59), P < 0.0001). OS: (un-
adjusted [HR] =0.42, 95% CI, P <0.0001) and validation data sets (PFS:
(unadjusted [HR]=0.56, 95% CI (0.37-0.84), P<0.0054). OS=

(unadjusted [HR] =043, 95% CI (0.28-0.66), P<0.0001). A high
Immunoscore-IC was associated with responders.

In a similar analysis using a low number of targets, Qin etal.” applied a
6-plex immunofluorescence assay to a cohort of 52 metastatic NSCLC
patients to examine the cellular distribution and interaction of cells in the
tumour microenvironment. The authors performed a variety of spatial
measures between 6 major cell types (cytotoxic T-cells, helper T-cells, reg-
ulatory T-cells, epithelial tumour cell and “other” cells) including nearest
neighbour and cell-cell engagement through the measurement of cell type
frequency within a radius of between 15 and 40 pm from a specified cell of
interest. Through this analysis, a significantly lower degree of engagement of

cytotoxic T-cells with tumour cells (33.8% vs 54.1%, P =0.0026) and/or
helper T-cells (42.5% and 62.7%, respectively, P = 0.0006) was identified in
non-responders compared to responders. These spatial measures were
additive in predictive value to the percentage of PD-L1 tumour expression.
Universal responders had high CTL-EC engagement and high PD-L1
expression (P = 0.0027).

In contrast, four studies employed compartment-based investigations,
examining bulk expression of proteins from DSP (Nanostring) which was
coupled with validation of promising targets by multiplex immuno-
fluorescence. The most promising study from this group by Song et al.” for
the identification of compartment-based spatial biomarkers of response
focused on bulk RNA and protein expression in tumour and stromal
compartments. To reduce the dimensionality and complexity of targets, the
authors developed a signature score for each compartment. The stromal
signature score comprising 18 protein targets demonstrated the strongest
clinical value and greater predictive power (AUC 0.84) than bulk PD-L1
expression (AUC 0.78) and TMB (AUC 0.53). Interestingly, concordant
with features identified in single-cell studies, many of the 11 targets were
T-cell-associated. Furthermore, the stromal signature contained PD-L1 as
one of the 11 targets.

The last three studies” ™ using DSP employ the same compartment
methodology i.e., assessing bulk protein expression in four compartments
(tumour, leucocytes, macrophages, and immune stroma). The authors of
the studies use univariate analysis to identify targets for further validation via
multiplex immunofluorescence. The three studies identify potential targets
associated with response i.e., high CD66b in the immune compartment™
associated with shorter OS (HR, 1.31;95% CI 1.06-1.60; P = 0.016) and PFS
(HR, 1.24;95% CI 1.02-1.51; P = 0.04), high CD44 expression in the tumour
compartment™ associated with predictive clinical benefit in test cohort
(OR =1.22,95% CI 1.03-1.45; P = 0.018) and high CD56 expression in the
leucocyte compartment were associated with durable clinical benefit (OR:
6.7,95% CI: 1.46-30.7, P = 0.014) which may warrant further investigation.

Additional cancer types

In addition to the studies described, we identified seven studies across a
variety of cancer types (colorectal cancer” (n=1), cutaneous T-cell
lymphoma® (n = 1), gastric cancer” (n = 1), oesophageal cancer™ (n = 1),
ovarian cancer” (n=1) and triple-negative breast cancer'™' (n=2))
(Table. 1). Many of these studies examined the spatial relationship of
specific immune cell subtypes in relation to response.

Wang et al."' investigated the spatial relationship of cell types in dif-
ferent activation states in a cohort of 243 pre-treatment triple-negative
breast cancer samples using IMC. The authors of this study quantified the
frequency of cell-cell interactions of specific activated cell types. This was
achieved through the generation of cell masks and the identification of
neighbouring masks in contact with one another. The fraction of MHCII+
epithelial cells interacting with neighbouring epithelial cells (P interac-
tion = 0.004, FDR =0.004, OR: 1.36, CI: 1.19-1.56) and the fraction of
proliferating CD8+ TCF1+ T-cells interacting with neighbouring tumour
microenvironment cells (P interaction = 8.10-5, FDR = 0.003, OR: 1.72, CI:
1.37, 2.17) were strongest predictors of response. Similarly, Jia et al.”
assessed the spatial location and functional status of multiple cell types in a
cohort of 60 gastric cancer patients in relation to ICI response. In this study,
the authors developed an effective score (number of tumour-immune cell
pairs/number of tumour cells) and an effective percentage (number of pair
cells/all tumour cells) within 20 um of a tumour cell to reflect the cell-cell
interactions occurring in the cohort samples. Through this, a risk score was
generated combining multiple quantitative measures: PD-L1+4 and CD8 +
PD-1— proportion, density ratios of the following: CD8+ LAG-3— PD-1—/
CD8+ cells, PD-L1+/CD4+ FoxP3+ CTLA-44 PD-L1+ cells, CD8+
LAG-3+ PD-1— TIM-3—/CD8+ LAG-3+ TIM-3— cells. A higher risk
score was associated with shorter immunotherapy-related (ir)PES (HR:
3.19; P <0.001; median irPFS: 4.87 vs 19.87 months and irOS (HR: 3.10;
P =0.001; median irPFS: 10.03 vs 24.87 months, respectively). Continuing
the focus on the role of CD8+ T-cells for ICI response, Bortolomeazzi et al.”
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Fig. 4 | Spatial biomarkers for response to immune checkpoint inhibition in non-
small cell lung adenocarcinoma. a Ghiringhelli et al.”’: High Immunoscore-IC

score (CD8+ free of PD-L1+ cells, CD8 clusters, CD8 density and proximity of CD8
and PD-L1+ cells) associated with response. b Qin et al.”’: A higher percentage of
helper T-cells engaged with cytotoxic T-cells (within 15 pm) and more engagement
of cytotoxic T-cells with tumour cells (within 40 um) in responders. ¢ Song et al.”":
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response, longer median OS. d Moutafi et al.”: High CD44 expression in tumour
compartment associated with longer PFS. e Moutafi et al.”: Low CD66b expression
in immune stroma compartment associated with longer OS. f Zugazogoitia et al.”:
High CD56 and CD4 in CD45 compartment associated with durable clinical benefit.
High VISTA and CD127 in the CD68 compartment are associated with no durable
clinical benefit.

examined the spatial relationship of cells of the TME and their predictive
utility in comparison to TMB. In a cohort of 29 colorectal cancer patients,
the immune landscape of hypermutated durable-benefit tumours was first
characterised through RNA sequencing. These tumours demonstrated
significant numbers of immune cells (immune hot) and specifically high
levels of CD74+ macrophages and proliferating T-cells. To examine the
spatial interactions of these cell types, the authors utilised IMC and mea-
sured distances between CD8+ GZMB+ PD-1+4, CD8+ Ki67+ PD-1-+
T cells and CD68+ CD74+ PD-L1+- cells and other cell types. Through this,
it was demonstrated that CD8+ GZMB+ PD-1+ and CD8+ Ki67+ PD-
1+ T cells were more frequently closer to CD68+ CD74+ PD-L1+ cells
than other cell types in patients with durable-benefit CRC.

Phillips et al.* examined the topography of TME components in a
cohort of 14 advanced cutaneous T-cell lymphoma patients using CODEX.
Initial classification of cellular densities and their association with treatment
response yielded negative results. Using a cellular neighbourhood (CN)
method to identify coordinated multi-cellular communities, specific CNs
were associated with response status, namely, tumour and CD4+ cell
enriched CNs being associated with response, and conversely, Treg enriched
CNis associated with non-response. To enable clinical translation of these

observations the authors developed a SpatialScore derived from enrichment
cell types of specific CNs associated with responder vs non-responder
groups. The SpatialScore is quantified as a ratio of the average distance of
CD4+ T cells to the nearest tumour cells and the average distance of Treg
cells to the nearest tumour cells, representing a ratio of immune activity. The
SpatialScore was shown to be significantly associated with response in pre-
treatment specimens (P = 0.0182). A high SpatialScore represents increased
T cell suppressive activity and is associated with non-response while a low
SpatialScore represents increased T cell effector activity and is associated
with response. To further simplify the potential implementation of the
SpatialScore into a routine pathology department where access to tech-
nology such as CODEX would be a limiting factor, an 8-plex immuno-
fluorescence panel readily applicable to imaging platforms already widely
deployed in many clinical settings was developed. Validation of the pre-
dictive ability of the SpatialScore using this method (which requires a low
number of targets) demonstrated a fivefold lower SpatialScore in responders
(mean score 0.31) compared to non-responders (mean score 1.52) sug-
gesting the assay had a higher sensitivity compared with initial methods.
This study highlights the potential translation of spatial biomarkers from
discovery to a more suited technology for clinical translation.
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Artificial intelligence for image-based prediction of ICI

response

In recent years, Al modalities have revolutionised the field of computational
pathology, enabling the development of algorithms to perform a variety of
functions ie., automatic detection of histological features, prediction of
patient outcome and novel biomarker discovery. Deep learning (DL) is a
frequently implemented AI modality for computational pathology and
requires several steps for its implementation (Fig. 5A). As a starting point,
images are input for feature detection, most commonly from H&E-stained
slides. Because of their large size, whole slide images (WSIs) cannot be
processed at once and need to be divided into smaller image regions,
commonly named tiles. These tiles are used to train DL models either in a
supervised manner, where all tiles have a corresponding ground truth label,
or semi-supervised where the ground truth is defined at the WSI level. After
training, the model is fixed and can be applied to new unseen images. During
inference, the same process is applied: the WSl is cut into tiles of predefined
size and fed into the model. Tile-based predictions are finally aggregated to
reconstruct the WSI-level prediction.

In the context of ICI response prediction, multiple groups have been
using DL models to measure already known biomarkers such as PD-L1
positivity from pathology images and correlate it with patient response
(Table. 2). Ligero et al.*” used a semi-supervised approach to predict PD-L1
status from 233 IHC WSIs from an NSCLC cohort. They compared the
performance of TPS and CPS. Reaching an AUC of 0.80 on a pan-cancer test
cohort of 108 WSIs, they observed an improved association between PD-L1
predictions and response to ICI, compared to TPS and CPS. Also, patients
classified as high PD-L1 had significantly longer median PFS compared to
patients classified as low PD-L1. Along the same line, Shamai et al.” used
breast cancer H&E TMA cores from 3,376 patients to predict PD-L1 status
(Fig. 5B). Each H&E TMA was labelled as PD-L1 positive or negative by a
pathologist, using the corresponding IHC-stained TMA as ground truth. A
convolutional neural network (CNN) with residual connections was trained
using resized H&E TMAs to predict PD-L1 positivity, reaching an AUC of
0.91-0.93. The inter-observer variability of pathologists assessing PD-L1
positivity showed a kappa agreement value of 0.77, meaning that inde-
pendent pathologists might interpret PD-L1 differently and highlight the
benefit of support systems to improve diagnosis. Interestingly, the authors
also investigated morphological features associated with high and low
prediction scores of PD-L1 status. Using image features, they mapped
patient images to points in space (t-SNE). They found that a low prediction
score was associated with dense desmoplastic stroma surrounding tumour
ducts, various lumen sizes, low tumour-stroma ratio, and low immune cells.
In contrast, high prediction scores correlated with crowded solid tumour
nests, hyperchromatic nuclei, absence of lumens, small stromal area and
presence (sometimes in abundance) of tumour-associated immune cells.
Using a different approach, Park et al.* highlights the ability to derive spatial
biomarkers with clinical utility from haematoxylin and eosin (H&E) stained
slides (Fig. 5B). The authors established an AI model with Lunit Scope to
segment tumour epithelium, tumour stroma and detect Tumour Infiltrating
Lymphocytes (TILs) using a cohort of 3116 WSI from 25 cancer types. The
results were validated on two NSCLC cohorts totalling 518 patients. Based
on the amount of TILs in each segmented component (epithelium and
stroma) they defined three immune phenotypes (IP): inflamed, immune-
excluded and immune desert. They observed that inflamed IP was asso-
ciated with response to ICI, significantly correlated with PD-L1 TPS = 50%,
and had improved OS, TTR and longer PFS.

Instead of evaluating known biomarkers, some groups directly pre-
dicted response and patient outcomes from the digital H&E slides. Hu etal.””
extracted tumour tiles from 190 H&E melanoma digital slides to train a DL
model to predict responders vs non-responders. The model was tested on
two test cohorts: 54 H&E melanoma slides with an AUC of 0.778 and 55
H&E lung cancer slides with an AUC of 0.645. The results were compared
with a second DL model trained to identify TILs, reaching an AUC of 0.58 in
the melanoma dataset, emphasising the benefit of using DL on images to
leverage unknown features existing in the tissue slides. Shibaki et al.** trained

amodel to predict 1-year PFS through examination of the tumour immune
microenvironment (TIME) using three different stainings: H&E, PD-L1
and double CD8 and FoxP3. All three stains were registered and tiles from
the same regions were extracted (100,544 tiles from 78 patients). First, they
extracted image features for each stained tile (H&E, PD-L+ and CD8/
FoxP3) using an ImageNet pretrained EfficientNet. All three features were
aggregated and passed through a second CNN for tile-based prediction. To
compare image-based classification with patient information, they also
trained a model based on clinical data. Using a combination of both image-
based and patient-based models, they obtained a third model. Their com-
bined model showed the highest performance with an AUC of 0.868, a
patient-based model AUC of 0.789 (0.571-0.982), and an image-based
model of 0.782. The PFS was longer in the high efficacy group than in the
low efficacy group in all three models (patient information model, HR 0.468;
pathological image model, HR 0.334; combined model, HR 0.353, 95% CI
0.195-0.37). The authors also retrieved the features that were most
important for the classification decision and found that the importance of
the pathological image predictions was higher than that of the patient
information, highlighting the importance of the TIME in predicting patient
response. The authors also showed that ML methods improved upon
human count evaluations—AUC of human count, CD8+ lymphocyte:
0.681, FoxP3+ lymphocytes: 0.626, PD-L1 score: 0.567. Moreover, the PD-
L1 CPS was comparable between patients who achieved and those who did
not achieve 1-year PFS. Finally, Liu et al.” created an Ensemble model
(ICIsNet) composed of two CNNs (DenseNet, an EfficientNet) and one
Vision Transformer model (SwinVit v2) to predict good responders vs bad
responders (Fig. 5B). Their cohort was composed of 313 H&E slides from
264 patients with advanced gastric cancer from 4 different centres. ICIsNet
showed great performance on three validation data sets with AUC scores of
0.952, 0.920, and 0.962 for WSI-level predictions. Furthermore, overlaying
heatmap predictions over the WSI, they could identify morphologic features
associated with lack of response, such as poorer differentiation, diffuse
tumour tissue, signet ring cells, cellular mucin pools and reduced lym-
phocytic infiltration. On the other hand, good responders showed tumour
cells resembling normal tissue and increased lymphocytic infiltration.

These studies show the potential of using DL models to predict patient
response to ICI from histopathology images such as H&E to high-plex
imaging modalities. Half of the studies examined identified morphological
features of response. These methods are also applicable to identify further
features of response from more complex datasets such as those generated
from spatial omics imaging-based platforms.

Discussion

The clinical realisation of ICI has significantly advanced cancer therapeutics.
However, current predictive biomarkers for ICI response are sub-optimal.
In this review, we sought to evaluate whether the assessment of the spatial
distribution and interactions of cellular components in clinical samples
could identify superior spatial biomarkers of response to ICL

Tissue-based single-cell methodologies such as multiplex immuno-
fluorescence dominated the types of spatial platforms utilised. All studies
examined protein-based measures of target expression. While a variety of
methods were applied for spatially resolved quantitation of cell-cell inter-
actions and cellular distribution across the tissue samples, most commonly,
radial quantitation and cell-to-cell distances were implemented. In the
instance of studies utilising the DSP platform, spatial biomarkers were
limited to compartment-based quantitation e.g., stromal or tumour, tissue
compartment.

Many studies applied an initial discovery approach, examining, on
average, 20 protein targets. It is unlikely that routine pathology departments
would have the methods required to assess such a high number of targets
from a single tissue section, proving clinical translation of such spatial
biomarkers challenging. However, a subset of studies reduced their findings
to a handful of markers in consideration of potential clinical implementa-
tion. Studies such as Phillips et al. demonstrate a potential paradigm for the
transition from discovery to clinical translation. This dimensionality
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Fig. 5 | Artificial intelligence for image-based prediction of ICI response.

a Workflow of deep learning predictions applied to histopathology whole slide
images (WSIs). Tiles of predefined size are extracted from the digital WSI and fed
into the pretrained deep learning model, resulting in tile-level predictions. Tiles are
stitched back together to reconstruct the WSI and tile-level predictions are aggre-
gated to generate a WSI-level prediction. Results can be visualised by overlaying a
tile-based heatmap over the WSI. b Image-based derived morphological features
associated with response to immune checkpoint inhibitors (ICI). Three studies used
heatmaps to identify morphological features associated with response to ICI. 1. In
breast cancer (Shamai et al.”’), crowded solid tumour nests, hyperchromatic nuclei,
absence of lumen, low stromal area and presence of immune cells were found in

predicted PD-L1 positive patients, while negative patients were associated with the
presence of various lumen size, low tumour to stroma ration, dense desmoplastic
stroma around ducts and low immune cells presence. 2. In lung adenocarcinomas
(Park et al.**), the presence of intra-epithelial lymphocytes (immune-inflamed) was
found in responders, while non-responders were found to have various number of
lymphocytes in the stroma (immune-excluded or immune-desert). 3. Advanced
gastric cancer (Liu et al.”’) responders showed solid tumours resembling normal
tissue with increased lymphocyte infiltration whereas non-responders showed dif-
fuse and poorly differentiated tumours with the presence of signet ring cells, cellular
mucin pools and low lymphocyte infiltration.

reduction will be crucial for the clinical translation of spatial biomarkers
both in terms of affordability and utilising methodologies such as multiplex
immunohistochemistry or even H&E already routinely available in most
pathology departments. Such studies demonstrate how ‘spatial” does not
necessarily equate with ‘complex’ and highlight the potential ease of inte-
gration of spatial measures into clinical trial protocols as a routine occur-
rence. The only example of successful clinical translational from the

included studies is shown in the implementation of the IC-Immunoscore as
developed by Ghiringhelli et al.”’ as a CE-marked in vitro diagnostic assay
(Veracyte).

The bulk of studies that we identified focused on spatial biomarkers for
response in melanoma and NSCLC. This enabled comparisons between the
types of spatial biomarkers identified to be made within each disease type. In
the context of melanoma, we observed trends in the types of spatial
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biomarkers proving to be superior to bulk PD-L1 expression. Three studies
identified macrophages (their proximity to tumour cells and PD-L1
expression) as an important cell type for response prediction and three
studies highlighted the contribution CD8+ T-cells and their proximity to
tumour cells has on improving prediction of response. This was also a
feature of response in NSCLC where the potential importance of the
immune contexture and its spatial relationship to tumour cells added pre-
dictive value when integrated with the clinical benchmark of tumour PD-L1
expression (TPS). Despite these trends within melanoma and NSCLC, no
single common spatial biomarker of response was identified within or
between disease types across the 26 studies examined. While this is likely to
reflect differing biological modalities of response across disease types it may
also be reflective in multiple points of heterogeneity between studies.

This became an important factor when assessing the added predictive
value of spatial biomarkers. Of the 20 multiplexed image-based studies
assessed, 14 studies compared their derived spatial biomarkers of response
to benchmarks namely, PD-L1 expression or TMB. However, not all studies
assessed PD-L1 status comparative to current clinical standards, e.g., PD-L1
immunohistochemistry TPS/CPS, making a direct evaluation of the pre-
dictive utility of each spatial biomarker challenging. Studies which did not
evaluate clinical benchmarks for comparison often used multiplex immu-
nofluorescence modalities for data acquisition rendering immunohisto-
chemical assessment on the same tissue specimen challenging or impossible.
Additionally, many study cohorts are derived from clinical trials where
access to tissue is often limited which may render cutting of additional
sections a limitation to further benchmarking experiments. Seven of
the 14 studies identified a lack of predictive utility for their respective
benchmark measure of PD-L1 expression, excluding those from NSCLC,
where 5/6 of the studies confirmed the predictive utility of tumour PD-L1
expression (TPS). The utility of this is also reflected in the clinical applica-
tion of TPS and not CPS for determining PD-L1 expression in this specific
cancer context. Additionally, the same group of studies utilised differing
predictive endpoints to determine the utility of their spatial biomarkers,
ranging from RECIST criteria, heterogeneous classifications of responders
and non-responders from RECIST criteria, progression-free survival, and
overall survival. To enable direct comparisons between the utility of spatial
biomarkers within cancer types, the field would benefit greatly from
consortium-based efforts to compile large multi-disease cohorts on which
data acquisition modalities, data analysis methods, clinical benchmarking
and predictive endpoints could be homogenised.

The three Al-based studies investigating spatial biomarkers of response
demonstrate how AI could be used to identify morphological features
predictive of response to ICI from routine H&E slides. With H&E being part
of routine clinical pathology, accessibility to a large cohort of slides is readily
available. When coupled with the increasing digitisation of slide archives in
pathology departments, the potential application of Al for the discovery of
spatial biomarkers represents a powerful analysis modality with the
potential to democratise spatial biomarker discovery beyond centres with
the financial capability to perform more costly multiplexed image-based
methods. Additionally, Al modalities could be a powerful analysis tool when
applied to multiplexed image-based studies; however, we did not observe
this approach to spatial biomarker discovery in the studies assessed in this
review. Taken together, evidence suggests that there is a high potential for
merging both modalities to accelerate the discovery and clinical translation
of new predictive biomarkers for ICI response.

One important factor when considering the utility of predictive bio-
markers is the distribution of expression throughout the tumour. Three
studies (Antoranz et al., Kim et al., and Bortolomeazzi et al. assessed this and
identified significant levels of heterogeneity for their respective biomarkers,
highlighting the potential advantage of methodologies which retain the
architecture of biomarker expression to facilitate accurate quantitation of
tumour heterogeneity. Interestingly, Antoranz et al. identified that PD-L1+
macrophage expression was lower in the tumour area compared to the
tumour stroma interface, with expression peaking at the tumour edge. Kim
et al. study demonstrated that the spatial distribution of T-cell subsets and

innate immune cells differed between responders and non-responders. This
suggests that in some cases it is not merely the presence or absence of a
spatial interaction but its distribution throughout the tumour which has an
impact on response.

Taken together, the assessment and comparison of the above studies
demonstrate the importance of assessing the immune contexture and cell-
specific PD-L1 expression in a spatially resolved context. This paradigm
yielded superior predictors of response to ICI in numerous studies. Rea-
lisation of this on a clinical scale will require large multi-disease studies
utilising homogeneous modes of analysis and routine integration of spatial
measures in clinical trial protocols. As demonstrated by the application of
artificial intelligence modalities in this review, the analysis of standard H&E
images represents a cost-effective and widely available resource upon which
to examine spatial biomarkers of response. Keeping spatial simple may hold
the key, in part, to bringing spatial biomarkers into routine clinical practice.
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